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Abstract

Background: Expression quantitative trait loci (eQTL) analysis identifies genetic markers associated with the
expression of a gene. Most existing eQTL analyses and methods investigate association in a single, readily available
tissue, such as blood. Joint analysis of eQTL in multiple tissues has the potential to improve, and expand the scope of,
single-tissue analyses. Large-scale collaborative efforts such as the Genotype-Tissue Expression (GTEx) program are
currently generating high quality data in a large number of tissues. However, computational constraints limit
genome-wide multi-tissue eQTL analysis.

Results: We develop an integrative method under a hierarchical Bayesian framework for eQTL analysis in a large
number of tissues. The model fitting procedure is highly scalable, and the computing time is a polynomial function of
the number of tissues. Multi-tissue eQTLs are identified through a local false discovery rate approach, which rigorously
controls the false discovery rate. Using simulation and GTEx real data studies, we show that the proposed method has
superior performance to existing methods in terms of computing time and the power of eQTL discovery.

Conclusions: We provide a scalable method for eQTL analysis in a large number of tissues. The method enables the
identification of eQTL with different configurations and facilitates the characterization of tissue specificity.

Keywords: Expression quantitative trait loci, Genotype-tissue expression project, Empirical Bayes, Tissue specific,
Local false discovery rate

Background
Expression quantitative trait loci (eQTL) analyses identify
single nucleotide polymorphisms (SNPs) that are associ-
ated with the expression level of a gene. A gene-SNP pair
such that the expression of the gene is associated with
the value of the SNP is referred to as an eQTL. One may
view eQTL analyses as Genome-Wide Association Studies
(GWAS) with multiple molecular phenotypes. Identifi-
cation of eQTLs is a key step in investigating genetic
regulatory pathways. To date, numerous eQTLs have been
discovered to be associated with human traits such as
height and complex diseases such as Alzheimer’s disease
and diabetes [1, 2].
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With few exceptions, existing eQTL studies have
focused on a single tissue; in human studies this tissue
is usually blood. An important next step in exploring
the genomic regulation of expression is to simultaneously
study eQTLs in multiple tissues. Multi-tissue eQTL analy-
sis can strengthen the conclusions of single tissue analyses
by borrowing strength across tissues, and can help provide
insight into the genomic basis of differences between tis-
sues, as well as the genetic mechanisms of tissue-specific
diseases.
Recently, the NIH Common Fund’s Genotype-Tissue

Expression (GTEx) project has undertaken a large-scale
effort to collect and analyze eQTL data in multiple tis-
sues on a growing set of human subjects, and there has
been a concomitant development of methods for the
analysis of such data. For example, Peterson et al. [3]
and Bogomolov et al. [4] developed new error control
procedures to control false discovery rates at different
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levels of resolution (e.g., at the SNP level or the gene
level) for eQTL analysis. The methods have been used
to identify genes whose expression is regulated by SNPs
(eGenes), or SNPs that affect the expression levels of mul-
tiple genes (eSNPs). However, the methods only concern
how to reduce the number of hypotheses in a hierarchical
structure, but cannot effectively borrow strength across
tissues to enhance eQTL discoveries. Lewin et al. [5],
Sul et al. [6] and Han et al. [7] developed regression-
based methods via Bayesian multivariate regression and
random-effects models. The models accommodate data
from multiple tissues simultaneously, and integrate infor-
mation across tissues for eQTL detection. However, a
potential drawback is that they only focus on one gene
or gene-SNP pair at a time, and fail to leverage informa-
tion across different gene-SNP pairs. Flutre et al. [8] and
Li et al. [9] developed hierarchical Bayesian models to
model summary statistics across multiple tissues. The
models capture the marginal distribution of each gene-
SNP pair with interpretable parameters, and explicitly
characterize heterogenous eQTL configurations in mul-
tiple tissues. However, the model fitting is computation-
ally expensive and cannot scale to a large number of
tissues. Recently, Urbut et al. [10] proposed an ad hoc
approach based on shrinkage to improve the scalability
of the Bayesian models. However, the procedure is sub-
ject to overfitting and the model parameters are hard to
interpret. Initial analyses and conclusions of the GTEx
project are described in [11]. As part of this work, the
“Bayesian Model Averaging” method [8] and the MT-
eQTL (“MT” stands for multi-tissue) method [9] were
applied to 9 human tissues with sample size greater than
80, focusing on local (cis) pairs for which the SNP is
within one mega-base (Mb) of the transcription start site
(TSS) of the gene. The analysis found that most eQTLs
discovered were common across the 9 tissues included
in the study, though the effect size may vary from tis-
sue to tissue. In addition, there are a small, but poten-
tially interesting, set of eQTLs that are present only in a
subset of tissues, the most common cases being eQTLs
that are present in only one tissue, or present in all
but one tissue.
As GTEx and related projects proceed, data are being

collected from an increasing number of subjects, and
an increasing number of tissues. In the current GTEx
database (v6p), more than 20 tissues have a sample size
greater than 150. Existing eQTL analysis methods that
can effectively borrow strength across tissues are lim-
ited in their ability to perform simultaneous local eQTL
analyses in a large number of tissues. Methods like
[8] and [9] incorporate and rely on a binary configuration
vector, with dimension equal to the number of available
tissues, that describes, for each gene-SNP pair, the pres-
ence or absence of association in each tissue. The total

number of possible configurations grows exponentially in
the number of tissues, making computation, numerical
accuracy, and memory management problematic when
dealing with large numbers of tissues.
In this paper, we develop an efficient computational

tool, called HT-eQTL (“HT” stands for high-tissue), for
joint eQTL analysis. The method builds on the hierarchi-
cal Bayesian model developed in [9], but the estimation
procedure is significantly improved to address scaling
issue associated with a large number of tissues. Rather
than fitting a full model, HT-eQTL fits models for all pairs
of tissues in a parallel fashion, and then synthesizes the
resulting pairwise models into a higher order model for
all tissues. To do this, we exploit the marginal compati-
bility of the hierarchical Bayesian model, which is not an
obvious property and was proven in [9]. An important
innovation is that we employ a multi-Probit model and
thresholding to deal with the exponentially growing con-
figuration space. The resulting model and fitting proce-
dure can be efficiently applied to the simultaneous eQTL
analysis of 20-25 tissues. Empirical Bayesian methods for
controlling false discovery rates in multiple hypothesis
testing are developed. We design testing procedures to
detect different families of eQTL configurations.We show
that the eQTL detection power of HT-eQTL is similar to
that of MT-eQTL, and that both outperform the tissue-
by-tissue approach, in a simulation study with a moderate
number of tissues. We also compare HT-eQTL with the
Meta-Tissue method in the analysis of the GTEx v6p data.
This analysis shows that the methods have largely concor-
dant results, but that HT-eQTL gains additional power by
borrowing strength across tissues.

Methods
In this section we describe the HT-eQTL method, begin-
ning with a review of the hierarchical Bayesian model
and the MT-eQTL method in [9], and then describing
our proposal on how to fit the Bayesian model in high-
tissue settings. Next, we describe a local false discovery
rate based method for performing flexible eQTL infer-
ence. Finally, we discuss a marginal test and a marginal
transformation to check and improve the goodness of fit
of the model.

Review: Bayesian hierarchical model and MT-eQTL
procedure
Consider a study with n subjects and K tissues. From
each subject we have genotype data and measurements
of gene expression in a subset of tissues. In many cases,
covariate correction will be performed prior to analysis of
eQTLs. For k = 1, . . . ,K , let nk ≤ n denote the num-
ber of subjects contributing expression data from tissue k.
Let λ = (i, j) be the index of a gene-SNP pair consisting
of gene i and SNP j, and let � be the set of all local (cis)
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gene-SNP pairs. For λ = (i, j) ∈ � and k = 1, . . . ,K , let
rλ(k) denote the (covariate corrected) sample correlation
between the expression level of gene i and the number
of copies of the minor allele of SNP j in tissue k, and
ρλ(k) be the corresponding population correlation. Define
rλ = (rλ(1), . . . , rλ(K)) to be the vector of sample correla-
tions across tissues, and define the vector ρλ of population
correlations in the same fashion.
Let Zλ = h(rλ) · d1/2, where h(·) is the entrywise Fisher

transformation with the effect of variance stabilization, ·
is the Hadamard product, and d is a K-vector whose kth
component is the number of samples in tissue k minus
the number of covariates removed from tissue k minus 3.
With proper preprocessing of the gene expression data,
the vector Zλ is approximately multivariate normal [12]
with mean μλ = h(ρλ) · d1/2 and marginal variance one.
In particular, if ρλ(k) = 0 then the kth component of Zλ

has a standard normal distribution, and can therefore be
used as a z-statistic for testing ρλ(k) = 0 vs ρλ(k) �= 0.
Thus we refer to Zλ as a z-statistic vector.
The MT-eQTL model introduced in [9] is a Bayesian

hierarchical model for the random vector Zλ. The model
can be expressed in the form of a mixture as

Zλ ∼
∑

γ∈{0,1}K
p(γ )NK

(
μ · γ , � + � · γ γ ′ )

. (1)

The mixture in (1) is taken over the set {0, 1}K of length
K binary vectors. Each vector γ ∈ {0, 1}K represents a
particular configuration of eQTLs across the K available
tissues: γk = 1 if the gene-SNP pair indexed by λ is an
eQTL in tissue k, and γk = 0 otherwise. We define Ham-
ming class m (m = 0, · · · ,K) as the set of all binary
K-vectors havingm ones, which correspond to all config-
urations in which there is an eQTL in m tissues and no
eQTL in K − m tissues. The parameter p(γ ) is the prior
probability of the configuration γ . We collect all the priors
in a length-2K vector p. The K-vector μ characterizes the
average true effect size of eQTLs in each tissue. The K×K
correlation matrix � captures the behavior of Zλ when no
eQTLs are present (γ = 0): its diagonal entries are 1 due
to the variance stabilization caused by the Fisher trans-
formation, and its off-diagonal entries reflect correlations
arising from subject overlap between tissues. The K × K
matrix � captures the covariance structure of non-zero
eQTL effect sizes in different tissues. Let θ = {p,μ,�,�}
denote the set of unknown model parameters.
Under the model (1) the distribution of Zλ is a normal

mixture with each component corresponding to a specific
eQTL configuration. In particular, if γ = 0 (λ is not an
eQTL in any tissue) then Zλ ∼ NK (0,�); if γ = 1 (λ is
an eQTL in all tissues) then Zλ ∼ NK (μ,� + �). The
true configuration vector for each gene-SNP pair λ can

be viewed as a latent variable. The main goal of a sta-
tistical analysis is to obtain the posterior distribution of
each latent variable, and to use it to make inferences about
eQTL configurations in multiple tissues.
In order to make inference about configuration vectors,

we first estimate the model parameters θ = {p,μ,�,�}.
In practice it is common to set the average effect size
vector μ to 0, as minor alleles are equally likely to be asso-
ciated with high or low expression, and we assume in what
follows thatμ = 0. The remaining parameters can be esti-
mated within a maximum pseudo-likelihood framework,
where the pseudo-likelihood is defined as the product of
the likelihoods of all considered gene-SNP pairs. We note
that factorizing the likelihood in this way ignores depen-
dence between adjacent and nearby SNPs arising from
linkage disequilibrium. However, our interest is not in the
joint behavior of the vectors Zλ but in their marginal
behavior, which is reflected in the mixture (1). In par-
ticular, the parameters in Model (1) determine, and are
determined by, themarginal distribution of the vectorsZλ,
and do not depend on joint distribution of the vectors Zλ.
A modified EM algorithm was devised in [9] to estimate

the parameters from the pseudo-likelihood (see Section
A of the Additional file 1). While the method scales lin-
early with sample size and the number of gene-SNP pairs,
its computational time increases exponentially with the
number of tissues K (see Fig. 1). For genome-wide stud-
ies, it is infeasible to apply the method to data with more
than a few tissues. Moreover, the number of configura-
tions grows exponentially with the number of tissues as
well, making inference about configurations difficult as

Fig. 1 The model fitting times of MT-eQTL and HT-eQTL for a
sequence of nested models with dimensions 2 to 9 in the simulation
study. The solid line with circles is for MT-eQTL, and the dashed line
with triangles is for HT-eQTL
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well. Below we introduce a scalable procedure, the HT-
eQTL method, to address multi-tissue eQTL analysis in
about 20 tissues.

The HT-eQTL method
The original MT-eQTL model has the desirable prop-
erty of beingmarginally compatible. Let the dimension of
the MT-eQTL model be the number of available tissues.
Marginal compatibility means that: 1) the marginalization
of a K-dimensional model to a subset of L tissues has
the same general form as the K-dimensional model; and
2) the corresponding parameters for the L-dimensional
model are obtained in the obvious way by restricting the
parameters of the K-dimensional model to the subset of L
tissues.
Because of marginal compatibility, it is straightforward

to obtain a sub-model from a high dimensional model
without refitting the MT-eQTL parameters. The HT-
eQTL method, which is discussed below, estimates the
high dimensional model from the collection of its one-
and two-dimensional sub-models. Thus we address the
computationally intractable problem of estimating a high
dimensional model by considering a manageable num-
ber of sub-problems that can be solved efficiently, and in
parallel.
In the MT-eQTL model, the covariance matrices �

and � reflect interactions between pairs of tissues, while
the probability mass function p(·) captures higher order
relationships between tissues. The HT-eQTL model is
built from estimates of all one- and two-dimensional sub-
models, which can be computed in parallel. In particular,
we make use of a Multi-Probit model to approximate
the K-th order probability mass function p(·) from the
probability mass functions of two-dimensional models. In
what follows we denote the estimated parameters of the
two-dimensional model for tissue pair (i, j) by

pij=
(
pij00, p

ij
01, p

ij
10, p

ij
11

)
, �ij=

(
1 δij

δij 1

)
, �ij=

(
σ
ij
11 σ

ij
12

σ
ij
21 σ

ij
22

)
.

A description of the two-tissue model fitting procedure
can be found in Section A of the Additional file 1.
Assemble �: For each tissue pair (i, j) where 1 ≤ i < j ≤
K , the corresponding off-diagonal value of� is denoted by
δij. An asymptotically consistent estimate of δij is the off-
diagonal value of �ij, which is the null covariance matrix
for the two-dimensional model for tissue pair (i, j). Mak-
ing this substitution for each i < j and placing ones along
the diagonal yields the proposed estimate of � (i.e., �̂). In
practice, since each �ij is typically estimated from a large
number of gene-SNP pairs, �̂ is very close to � with neg-
ligible variability. If �̂ is not positive definite (which did
not occur in our numerical studies), we set the negative
eigenvalues of �̂ by 0, and rescale it to be a correlation
matrix.

Assemble �: To estimate the covariance matrix
� = {σij}, we decompose it into the diagonal values,
which are tissue-specific variances, and the corre-
sponding correlation matrix. For each diagonal entry
σkk (k = 1, · · · ,K), there are K − 1 estimates, namely
σ 1k
22 , · · · , σ (k−1)k

22 , σ k(k+1)
11 , · · · , σ kK

11 . In practice, the dis-
tribution of z-statistics is usually heavy-tailed, inflating
the pairwise estimates of the variance. As a remedy, we
propose to use the minimum of the K − 1 estimates as
the estimate of σkk to compensate the inflation effect.
The induced correlation matrix from � is estimated in
the same way as �. In particular, we start with a matrix
having ones along the diagonal and off-diagonal entries
σ
ij
12/

√
σ
ij
11σ

ij
22. We then obtain the closest positive semi-

definite matrix by setting negative eigenvalues to zero,
and rescale the resulting matrix to be a correlation matrix.
Combining the correlation matrix with the diagonal
variance terms, we obtain the estimate �̂.
TheMulti-Probit Model for p: Existing multi-tissue eQTL
studies [9, 11] support several broad conclusions about
eQTL configurations across tissues. Researchers found
that most gene-SNP pairs are not an eQTL in any tis-
sue (Hamming class 0) or were an eQTL in all tissues
(Hamming class K). With larger sample sizes and a larger
number of tissues (thus providing increased power to
detect cross-tissue sharing), we expect these two Ham-
ming classes to predominate.
In general, the probability mass functions obtained from

two-dimensional models will not determine a unique
probability mass function on the full K-dimensional
model. Here wemake use of a multi-Probit model through
which we equate the values of the estimated probabil-
ity mass function with integrals of a multivariate normal
probability density. In particular, for each tissue pair (i, j),
we select thresholds τ

ij
1 , τ

ij
2 ∈ R and a correlation ωij ∈

(0, 1) so that if (Wi,Wj) are bivariate normal with mean
zero, variance one, and correlation ωij then

Pr
{
I

(
Wi ≥ τ

ij
1

)
= u and I

(
Wj ≥ τ

ij
2

)
= v

}
= pij(u, v)

for each u, v ∈ {0, 1}. Here I(A) is the indicator function of
A, and pij(·) is the estimated probability mass function for
the pair (i, j).
Beginning with a symmetric matrix having diagonal val-

ues 1 and off-diagonal values equal to ωij, we define a cor-
relation matrix � following the procedure used to define
�̂. Let φK (·) be the probability density function of the cor-
responding K-variate normal distribution NK (0,�). For
each tissue j, we define an aggregate threshold τ j to be
the minimum of τ

ij
1 (i < j) and τ

ji
2 (j < i). Here we

use the minimum because pairwise models may occa-
sionally overestimate the null prior probability pij(0, 0).
Subsequently, for each configuration γ ∈ {0, 1}K , we
define the probability
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p(γ ) =
∫

I1
· · ·

∫

IK
φK (x)dx

where Ik is equal to (−∞, τ k] if γk = 0, and (τ k ,∞), if
γk = 1. Consequently, we obtain the estimate of probabil-
ity mass function p for the K-dimensional model.
Threshold p(·): In practice, many of the 2K possible con-
figurations will have estimated probabilities close to zero.
In order to further reduce the number of configurations,
we set the threshold for the prior probabilities to be 10−5,
and truncate those values below the threshold to be zero.
The remaining probabilities are rescaled to have total
mass one. As a result, the total number of configurations
with non-zero probabilities is dramatically reduced to a
manageable level for subsequent inferences.

Inferences
The first, and often primary, goal of eQTL analysis in
multiple tissues is to detect which gene-SNP pairs are
an eQTL in some tissue. Subsequent testing may seek to
identify gene-SNP pairs that are an eQTL in a specific
tissue, and pairs that are an eQTL in some, but not all, tis-
sues. As themodel (1) is fit with large number of gene-SNP
pairs, we ignore the estimation error associated with the
model parameters and treat the estimated values as fixed
and true for the purposes of subsequent inference.
The mixture model (1) may be expressed in an equiva-

lent, hierarchical form, in which for each gene-SNP pair λ,
there is a latent random vector �λ ∈ � indicating whether
or not that pair is an eQTL in each of the K tissues. The
prior distribution of �λ is characterized by the probabilis-
tic mass function p(·). In the hierarchical model, given
that �λ = γ , the random z-statistic vector Zλ has distri-
bution NK (0,� + � · γ γ ′). The posterior distribution of
�λ given the observed vector zλ can be used to test eQTL
configurations for the gene-SNP pair λ.
Detection of eQTLs with specified configurations

can be formulated as a multiple testing problem, and
addressed through the use of local false discovery rates
derived from the posterior distribution of gene-SNP pairs.
Suppose that we are interested in identifying gene-SNP
pairs with eQTL configurations in a set S ⊆ {0, 1}K . This
can be cast as a multiple testing problem

H0,λ : �λ ∈ Sc versus H1,λ : �λ ∈ S

where λ ∈ �. Rejecting the null hypothesis for a gene-SNP
pair λ indicates that λ is likely to have an eQTL configura-
tion in S. There are several families S of particular interest,
corresponding to different configurations of interest:

• Testing for the presence of an eQTL in any tissue:
S = {γ : γ �= 0}

• Testing for presence of a tissue-specific eQTL, i.e., an
eQTL in some, but not all, tissues:
S = {γ : γ �= 0, γ �= 1}

• Testing for presence of an eQTL in tissue k only:
S = {γ : γk = 1}

• Testing for presence of a common eQTL, i.e., an
eQTL in all tissues: S = {1}.

To carry out multiple testing under the hierarchical
Bayesian model, we make use of the local false discovery
rate (lfdr) for the set S, which is defined as the posterior
probability that the configuration � lies in Sc given the
observed z-statistics vector z. The local false discovery
rate was introduced by [13] in the context of an empiri-
cal Bayes analysis of differential expression inmicroarrays.
Other applications can be found in [14–16]. Formally, the
lfdr for S ⊆ {0, 1}K is defined by

ηS(z) := Pr(� ∈ Sc | Z = z) =
∑

γ∈Sc p(γ )fγ (z)
∑

γ∈{0,1}K p(γ )fγ (z)
, (2)

where fγ (z) is the pdf ofNK
(
0,� + � · γ γ ′). Thus ηS(zλ)

is the probability of the null hypothesis given the z-
statistic vector for the gene-SNP pair λ. Small values of the
lfdr provide evidence for the alternative hypothesis H1,γ .
In order to control the overall false discovery rate (FDR)
for the multiple testing problem across all gene-SNP pairs
λ ∈ � we employ an adaptive thresholding procedure for
local false discovery rates [9, 13, 14, 17]. For a given set of
configurations S, and a given false discovery rate threshold
α ∈ (0, 1), the procedure operates as follows.

• Calculate the lfdr ηS(zλ) for each λ ∈ �.
• Sort the lfdrs from smallest to largest as

ηs
(
λ(1)

) ≤ · · · ηs
(
λ(N)

)
.

• Let N be the largest integer such that

1
N

N∑

i=1
ηs

(
λ(i)

)
< α.

• Reject hypotheses H0,λ(i) for i = 1, . . . ,N .

It is shown in [9] that the adaptive procedure controls
the FDR at level α under very mild conditions. Conse-
quently, we obtain a set of discoveries with FDR below the
nominal level α.

Results
In the first part of this section, we conduct a simula-
tion study with 9 tissues. We compare HT-eQTL with the
MT-eQTL [9], Meta-Tissue [6] and tissue-by-tissue (TBT)
[18–21] methods on different eQTL detection problems.
The Meta-Tissue approach leverages the fixed effects and
random effects method to address effect size hetero-
geneity and detect eQTLs across multiple tissues. The
TBT approach first evaluates the significance of gene-SNP
association in each tissue separately, and then aggregates
the information across tissues. We also compare HT-
eQTL and MT-eQTL in terms of the model fitting times
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and parameter estimation accuracy. Then we apply the
two scalable methods, HT-eQTL and Meta-Tissue, to the
GTEx v6p data with 20 tissues.

Simulation
In the simulation study, we first generate z-statistics
directly from Model (1) with K = 9 tissues. We
fix the model parameters {p,μ,�,�} to be the ones
estimated from MT-eQTL method on the GTEx pilot
data. In particular, the parameters are available from
the supplementary material of [9]. For each gene-SNP
pair, we first randomly generate a length-K binary
configuration vector γ based on the prior proba-
bility mass function p. Given γ , the marginal dis-
tribution of the z-statistics is N

(
μ · γ ,� + � · γ γ ′).

Then we simulate a length-K effect size vector from the
multivariate Gaussian distribution. We repeat the proce-
dure 105 times to obtain the true eQTL configurations and
corresponding z-statistic vectors in 105 gene-SNP pairs.
The true eQTL configurations under the simulation are
used to evaluate the efficacy of different methods.
We first compare the computational costs of the MT-

eQTLmodel fitting and the HT-eQTLmodel fitting (with-
out parallelization). We consider a sequence of nested
models with dimensions from 2 to 9. The model fitting
times on the simulated data are shown in Fig. 1. We
demonstrate that the model fitting time for the MT-eQTL
grows exponentially in the number of tissues, while it
grows much slower for the HT-eQTL. Namely, the HT-
eQTL scales better than the MT-eQTL. This is because
the HT-eQTL model fitting only involves the fitting of
all the 2-tissue MT-eQTL models and a small overhead
induced by assembling the pairwise parameters.When the
total number of gene-SNP pairs and the number of tissues
are large, the advantage of HT-eQTL is significant. Based
on the timing results for MT-eQTL on the 9-tissue GTEx
pilot data in [9], we project its fitting time to be more
than 30 CPU years on 20 tissues. As we describe later, fit-
ting the HT-eQTL model on the 20-tissue GTEx v6p data
only takes less than 3 CPU hours. We remark that the
straightforward parallelization of the 2-tissue MT-eQTL
model fittings will further reduce the computational cost
for HT-eQTL.
Now we compare the parameter estimation from MT-

eQTL and HT-eQTL. We particularly focus on the 9-
tissue model. The HT-eQTL parameters are obtained
by fitting all 2-tissue models and assembling the pair-
wise parameters as described above. The MT-eQTL
parameters are obtained directly by fitting a 9-tissue MT-
eQTL model. Regarding the estimation of the correlation
matrix �, the quartiles of the entry-wise relative errors
are (0.86, 2.42–4.36%) and (0.81, 2.00–2.72%) for HT-
eQTL and MT-eQTL, respectively. Regarding the esti-
mation of the covariance matrix �, the quartiles of

the entry-wise relative errors are (1.13, 2.41–3.25%)
and (0.36, 0.68–1.08%) for HT-eQTL and MT-eQTL,
respectively. Namely, although HT-eQTL had larger rela-
tive errors than MT-eQTL, both methods estimated the
covariance matrices very accurately. For the probability
mass vector p, we calculated the Kullback-Liebler diver-
gence of different estimates from the truth, defined as
DKL (p‖̂p) = ∑2K

i=1 pi log (pi/p̂i). The MT-eQTL estimate
has a very small divergence of 0.025 while the HT-eQTL
estimate has a slightly larger divergence of 0.141. Over-
all, the HT-eQTL estimates are slightly less accurate than
the MT-eQTL estimates, which is expected because the
HT-eQTL method has fewer degrees of freedom than the
MT-eQTL method. When there are abundant data rela-
tive to the number of parameters, the more complicated
MT-eQTL model will result in more accurate estimation.
Nevertheless, we emphasize that the HT-eQTL estimates
are sufficiently accurate for the eQTL detection purposes
(see Fig. 2).
Next, we compare the eQTL detection power of dif-

ferent methods. We particularly focus on the detection
of four types of eQTLs: (a) eQTLs in at least one tissue
(Any eQTL); (b) eQTLs in all tissues (Common eQTL);
(c) eQTLs in at least one tissue but not all tissues (Tissue-
Specific eQTL); (d) eQTLs in a single tissue (Single-
Tissue eQTL). In addition to theMT-eQTL and HT-eQTL
methods, we also consider the Meta-Tissue and TBT
approaches. In order to detect Any eQTL, we exploit the
random effects model in Meta-Tissue and a minP proce-
dure in TBT, where the minimum p value across tissues is
used as the test statistics for each gene-SNP pair. To detect
Common eQTL, we use the fixed effects model in Meta-
Tissue and amaxP procedure in TBT, where themaximum
p values across tissues are used. To detect Tissue-Specific
eQTL, we devise a diffP procedure for TBT, where the test
statistics for each gene-SNP pair is the difference between
the maximum and the minimum p values across tissues.
A large value indicates the discrepancy between the two
extreme p values is large, and thus provides a strong evi-
dence for the gene-SNP pair to be a tissue-specific eQTL.
Similarly, for Meta-Tissue, we exploit the difference of p
values from the fixed effects model and the random effects
model as the test statistics. Finally, for Single-Tissue eQTL
detection, Meta-Tissue reduces to the TBT method. We
just use the p values in the primary tissue and ignore those
in other tissues. For the MT-eQTL and HT-eQTL meth-
ods, we adapt the lfdr test statistics in (2) to different
testing problems accordingly.
We evaluate the performance of different methods using

the Receiver Operating Characteristic (ROC) curves for
different eQTL detection problems. The results are shown
in Fig. 2. In particular, in panel (a), a gene-SNP pair
identified by a method is deemed as a true positive if it
truly has an eQTL in any tissue; otherwise, it is a false



Li et al. BMC Bioinformatics  (2018) 19:95 Page 7 of 11

a b

c d

Fig. 2 The ROC curves of different methods for different eQTL detection problems in the simulation study. a Any eQTL detection; b Common eQTL
detection; c Tissue-specific eQTL detection; d Single-tissue eQTL detection

positive. Similar for the other panels. The Area under a
Curve (AUC) is also calculated for each curve. The ora-
cle curves correspond to the lfdr approach based on the
true model with the true parameters. In all eQTL detec-
tion problems, the MT-eQTL and HT-eQTL methods
have comparable performance, very similar to the ora-
cle results. While we expect the MT-eQTL to perform
similarly to the oracle procedure, it is surprising that the
HT-eQTL, only using information in tissue pairs, also pro-
vides comparable (although slightly worse) results to the
oracle procedure. Both MT-eQTL and HT-eQTL clearly
outperform the Meta-Tissue and TBT approaches in all
detection problems.
To sum up, the HT-eQTL method achieves high

parameter estimation accuracy and eQTL detection
power at a low computational cost. For a large number

of tissues, it provides a preferable alternative to the MT-
eQTL method.

GTEx v6p data
The GTEx v6p data constitute the most recent freeze
for official GTEx Consortium publications, and can be
accessed from the GTEx portal at http://www.gtexportal.
org/home/. We apply the HT-eQTL method to 20 tissues
(selected in consultation with the GTEx Analysis Work-
ing Group), including 2 brain tissues, 2 adipose tissues,
and a heterogeneous set of 16 other tissues. We consider
all 70,724,981 cis gene-SNP pairs where the SNP is within
1Mb of the TSS of the gene.
To obtain model parameters using HT-eQTL, we first

fit
(20
2
) = 190 2-tissue models, and then assemble all

the pairwise parameters following the procedure in the

http://www.gtexportal.org/home/
http://www.gtexportal.org/home/
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method section. The probability mass vector p estimated
from the Multi-Probit model is summarized in Fig. 3.
We particularly focus on 377 configurations with prior
probabilities greater than 10−5. The prior probabilities
are added up for configurations in the same Hamming
class, providing a general characterization of the multi-
tissue eQTL distribution. The parabolic shape estimated
from the data is concordant with previous results from
the pilot study [11]. The global null configuration (the
binary 0 vector) has the largest probability of 0.936, and
the common eQTL configuration (the binary 1 vector)
has the second largest probability of 0.0396. Configu-
rations in Hamming class 1 (eQTL in only one tissue)
and 19 (eQTL in all but one tissues) have relatively large
probabilities. All other configurations have much lower
probabilities. We remark that as the number of possible
configurations increases exponentially with the number of
tissues, the prior probability of each configuration is likely
to decrease.
Recall that � captures the covariance of effect sizes in

different tissues when eQTLs are present. We treat the
correlation matrix induced from � as the distance met-
ric between tissues, and use the single linkage to conduct
hierarchical clustering for the 20 tissues. The dendrogram
is shown in Fig. 4. We demonstrate that similar tissues,
such as the two adipose tissues and the breast tissue, or
the two brain tissues, are grouped together. The whole
blood is apparently different from all the other tissues.
These findings are concordant with those in the pilot
analysis [11].
We also carry out testing of eQTL configurations

(at a fixed the FDR level of 5%) for the presence of an eQTL
in any tissue, in all tissues, in at least one but not all tissues,

Fig. 3 The summary plot of the probability mass vector estimated
from the HT-eQTL method on the GTEx v6p 20-tissue data. The prior
probabilities are added up for configurations in the same Hamming
class and then log-transformed

and in each individual tissue. The number of discoveries
are shown in Table 1. As a comparison, we also apply the
Meta-Tissue method [6] to the same data set. In particu-
lar, we focus on the Any eQTL detection problem, using p
values from the random effects model in Meta-Tissue. We
apply the Benjamini and Yekutieli approach [22] to control
the FDR at the level of 5%. As a result, we obtain over 6.36
million cis pairs from the Meta-Tissue method. About
3.60 million of these pairs are shared with the HT-eQTL
method. We further investigate the unique discoveries of
each method. As shown in the left panel of Fig. 5, the
unique discoveries made by HT-eQTL have very small p
values from the Meta-Tissue method, indicating those are
likely to be “near” discoveries for the Meta-Tissue method
as well. In the right panel of Fig. 5, however, the exces-
sive unique discoveries made by Meta-Tissue have highly
enriched large lfdr values. The distribution of the lfdr
values for the unique Meta-Tissue discoveries is striking.
It indicates that the majority of the unique Meta-Tissue
discoveries are not close to being significant according to
the HT-eQTL model. This may be partially due to the
inadequacy of the p-value-based FDR control method for
highly dependent tests in Meta-Tissue. We further inves-
tigated those gene-SNP pairs with large lfdr values, and
found that many have large effect sizes with opposite signs
in different tissues. These gene-SNP pairs cannot be well
characterized by Model (1), because the estimated corre-
lations between tissues are large and positive. As a result,
they have large lfdrs from HT-eQTL. Further research is
needed to determine whether those gene-SNP pairs are
true eQTLs of interest or not.

Discussion
In this paper, we develop a new method, HT-eQTL, for
joint analysis of eQTL in a large number of tissues. The
method builds upon the empirical Bayesian framework,
MT-eQTL, proposed in [9], and extends it to 20 or more
tissues. Like the earlier model, the HT-eQTL model pro-
vides a flexible platform for modeling and testing differ-
ent configurations of eQTLs, while effectively leveraging
information across tissues and across gene-SNP pairs. The
model fitting procedure only involves the estimation of
all 2-tissue models, and the obtained pairwise parame-
ters are then assembled to get the full model parameters.
Even in low-dimensional settings, the HT-eQTL method
expedites the parameter estimation procedure of the MT-
eQTL model with little cost in accuracy. The detection
of eQTLs with different configurations is addressed by
adaptively thresholding the corresponding local false dis-
covery rates, which efficiently borrow strength across
tissues and control the nominal FDR. Finally, the numer-
ical studies demonstrate the efficacy of the proposed
method. In the GTEx v6p data analysis, we apply HT-
eQTL to 20 tissues. The estimated prior probabilities of
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Fig. 4 The clustering result of 20 tissues in the GTEx v6p data analysis. The distance metric is the correlation of eQTL effect sizes between tissues,
estimated from the HT-eQTL method

Table 1 The numbers of discoveries and the corresponding
percentages of total cis pairs for different eQTL detection
problems

eQTL Configuration Number (× 1E6) Percentage (%)

eQTL in Any Tissue 4.088 5.78

eQTL in All Tissues 0.708 1.00

Tissue-Specific eQTL 0.239 0.34

Adipose Subcutaneous 3.640 5.15

Adipose Visceral Omentum 3.536 5.00

Adrenal Gland 3.302 4.67

Artery Tibial 3.671 5.19

Brain Cerebellum 3.329 4.71

Brain Cortex 3.120 4.41

Breast Mammary Tissue 3.507 4.96

Colon Transverse 3.515 4.97

Esophagus Mucosa 3.716 5.25

Heart Left Ventricle 3.433 4.85

Liver 1.727 2.44

Lung 3.576 5.06

Muscle Skeletal 3.581 5.06

Nerve Tibial 3.712 5.25

Ovary 2.999 4.24

Pancreas 3.479 4.92

Prostate 3.021 4.27

Skin Sun Exposed Lower Leg 3.717 5.26

Thyroid 3.758 5.31

Whole Blood 3.147 4.45

The FDR level is fixed at 5% for all testing problems

eQTL configurations show that most eQTLs are com-
mon across all tissues or present in a single tissue.
The estimated effect sizes provide additional insights
into the tissue similarity and clustering. We identify a
large number of common and tissue-specific eQTLs. A
large proportion of the discoveries are replicated by the
Meta-Tissue approach. The additional unique discover-
ies made by our method are “near” discoveries for the
Meta-Tissue method, as illustrated by the highly skewed
p-value distributions (see Fig. 5). It indicates that HT-
eQTL is able to push the detection boundary in a favorable
direction (i.e., more statistical power) while preserving
error control.
The HT-eQTL method is a necessary first step in the

extension of the multi-tissue eQTL model, and a basis
for extensions to 30 or more tissues. There are sev-
eral future research directions. One the one hand, the
proposed method relies on the marginal compatibility
of a multivariate Gaussian distribution. In practice, if
the joint distribution of the z-statistics deviates from
the Gaussian distribution, it may affect the model fit-
ting. One may investigate multivariate transformations
to make the z-statistics jointly Gaussian. Another direc-
tion is to estimate very high dimensional distributions on
the space of configurations. One may explore a hierarchi-
cal structure in tissues, where each hierarchy only con-
sists of a moderate number of tissues (or tissue groups).
Then the proposed method can be applied to each
hierarchy separately and combined afterwards. One
could also explore computationally efficient and accu-
rate approximations of the cumulative probabilities of a
high-dimensional multivariate Gaussian distribution.



Li et al. BMC Bioinformatics  (2018) 19:95 Page 10 of 11

Fig. 5 Histograms of the Meta-Tissue p values for the unique Any
eQTL discoveries made by HT-eQTL (left), and the HT-eQTL lfdr for the
unique Any eQTL discoveries made by Meta-Tissue (right)

Conclusions
We present a scalable method for multi-tissue eQTL
analysis. The method can effectively borrow strength
across tissues to improve the power of eQTL detec-
tion in a single tissue. It also has superior power to
detect eQTL of different configurations. The model
parameters capture important biological insights into
tissue similarity and specificity. In particular, from the
GTEx analysis we observe that most cis eQTLs are
present in either all tissues or a single tissue. The
eQTLs identified by the proposed method provide a valu-
able resource for subsequent analysis, and may facilitate
the discovery of genetic regulatory pathways underlying
complex diseases.
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Abbreviations
EM: Expectation-Maximization; eQTL: Expression Quantitative Trait Loci; FDR:
False discovery rate; GTEx: Genotype-Tissue Expression project; GWAS:
Genome-Wide Association Studies; HT-eQTL: High-Tissue Expression
Quantitative Trait Loci analysis; lfdr: Local false discovery rate; Mb: Mega-base;
MT-eQTL: Multi-Tissue Expression Quantitative Trait Loci analysis method; ROC:
Receiver Operating Characteristic; SNP: Single nucleotide polymorphism; TBT:
Tissue-by-Tissue analysis; TSS: Transcription start site

Acknowledgements
The authors would like to thank members of the GTEx Analysis Working Group
for helpful comments and discussions.

Funding
This work was supported by the National Institutes of Health [1R01HG008980-01
to GL, R01MH101819 and R01MH090936 to GL, ABN, FAW, R01HG009125 to
ABN]; the National Science Foundation [DMS-1613072 to ABN]; and the
National Institute of Environmental Health Sciences [P42ES005948 to FAW,
P30ES025128 to DJ].

Availability of data andmaterials
The GTEx v6p data used in this paper are available from the GTEx portal
(although application may be required) at http://www.gtexportal.org/home/.
The Matlab code for implementing the method, including a numerical
example, is publicly available at https://github.com/reagan0323/MT-eQTL/
tree/master/HT-eQTL.

Authors’ contributions
GL, ABN and FAW conceptualized the project and developed the novel
methodology and analysis. DJ helped conduct the Meta-Tissue method. GL,
ABN and FAW contributed to the analysis and interpretation of results and
editing the final manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Biostatistics, Mailman School of Public Health, Columbia
University, 722 W 168 Street, New York, USA. 2Center for Human Health and
the Environment and Bioinformatics Research Center, North Carolina State
University, 850 Main Campus Drive, 27695 Raleigh, USA. 3Department of
Statistics and Biological Sciences, North Carolina State University, 2311 Stinson
Drive, 27695 Raleigh, USA. 4Department of Statistics and Operations Research
and Department of Biostatistics, University of North Carolina at Chapel Hill, 318
E Cameron Avenue, 27599 Chapel Hill, USA.

Received: 28 August 2017 Accepted: 28 February 2018

References
1. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping

complex disease traits with global gene expression. Nat Rev Genet.
2009;10(3):184–94.

2. Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits:
challenges and prospects. Nat Rev Genet. 2009;10(8):565–77.

3. Peterson CB, Bogomolov M, Benjamini Y, Sabatti C. Treeqtl: hierarchical
error control for eqtl findings. Bioinformatics. 2016;32(16):2556–8.

4. Bogomolov M, Peterson CB, Benjamini Y, Sabatti C. Testing hypotheses
on a tree: new error rates and controlling strategies. arXiv preprint
arXiv:1705.07529. 2017.

https://doi.org/10.1186/s12859-018-2088-3
http://www.gtexportal.org/home/
https://github.com/reagan0323/ MT-eQTL/tree/master/HT-eQTL
https://github.com/reagan0323/ MT-eQTL/tree/master/HT-eQTL


Li et al. BMC Bioinformatics  (2018) 19:95 Page 11 of 11

5. Lewin A, Saadi H, Peters JE, Moreno-Moral A, Lee JC, Smith KG, Petretto E,
Bottolo L, Richardson S. Mt-hess: an efficient bayesian approach for
simultaneous association detection in omics datasets, with application to
eqtl mapping in multiple tissues. Bioinformatics. 2015;32(4):523–32.

6. Sul JH, Han B, Ye C, Choi T, Eskin E. Effectively identifying eQTLs from
multiple tissues by combining mixed model and meta-analytic
approaches. PLoS Genet. 2013;9(6):1003491.

7. Han B, Duong D, Sul JH, de Bakker PI, Eskin E, Raychaudhuri S. A general
framework for meta-analyzing dependent studies with overlapping
subjects in association mapping. Hum Mol Genet. 2016;25(9):1857–66.

8. Flutre T, Wen X, Pritchard J, Stephens M. A statistical framework for joint
eQTL analysis in multiple tissues. PLoS Genet. 2013;9(5):1003486.

9. Li G, Shabalin AA, Rusyn I, Wright FA, Nobel AB. An empirical bayes
approach for multiple tissue eQTL analysis. Biostatistics. 2017. kxx048.
https://doi.org/10.1093/biostatistics/kxx048.

10. Urbut SM, Wang G, Stephens M. Flexible statistical methods for
estimating and testing effects in genomic studies with multiple
conditions. bioRxiv. 2017096552.

11. The GTEx Consortium. The genotype-tissue expression (gtex) pilot
analysis: Multitissue gene regulation in humans. Science. 2015;348(6235):
648–60.

12. Mudholkar GS, Chaubey YP. On the distribution of Fisher’s transformation
of the correlation coefficient. Commun Stat Simul Comput. 1976;5(4):
163–72.

13. Efron B, Tibshirani R, Storey JD, Tusher V. Empirical Bayes analysis of a
microarray experiment. J Am Stat Assoc. 2001;96(456):1151–60.

14. Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene
expression with a semiparametric hierarchical mixture method.
Biostatistics. 2004;5(2):155–76.

15. Efron B. Size, power and false discovery rates. Ann Stat. 2007;35(4):
1351–77.

16. Efron B. Microarrays, empirical Bayes and the two-groups model. Stat Sci.
2008;23(1):1–22.

17. Sun W, Cai TT. Oracle and adaptive compound decision rules for false
discovery rate control. J Am Stat Assoc. 2007;102(479):901–12.

18. Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV, Gabriel WN,
Welsh-Bohmer KA, Hulette CM, Denny TN, Goldstein DB. Tissue-specific
genetic control of splicing: implications for the study of complex traits.
PLoS Biol. 2008;6(12):1000001.

19. Dimas AS, Deutsch S, Stranger BE, et al. Common regulatory variation
impacts gene expression in a cell type–dependent manner. Science.
2009;325(5945):1246–50.

20. Ding J, Gudjonsson JE, Liang L, et al. Gene expression in skin and
lymphoblastoid cells: refined statistical method reveals extensive overlap
in cis-eQTL signals. Am J Hum Genet. 2010;87(6):779–89.

21. Fu J, Wolfs MG, Deelen P, et al. Unraveling the regulatory mechanisms
underlying tissue-dependent genetic variation of gene expression. PLoS
Genet. 2012;8(1):1002431.

22. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple
testing under dependency. Ann Stat. 2001;29:1165–88.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://doi.org/10.1093/biostatistics/kxx048

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Review: Bayesian hierarchical model and MT-eQTL procedure
	The HT-eQTL method
	Inferences

	Results
	Simulation
	GTEx v6p data

	Discussion
	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

