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Abstract

Background: Diabetes mellitus is a common and complicated chronic lifelong disease. Hence, it is of high clinical
significance to find the most relevant clinical indexes and to perform efficient computer-aided pre-diagnoses
and diagnoses.

Results: Non-parametric statistical testing is performed on hundreds of medical measurement index results
between diabetic and non-diabetic populations. Two common boosting algorithms, Adaboost.M1 and LogitBoost,
are selected to establish a machine model for diabetes diagnosis based on these clinical test data, involving a total
of 35,669 individuals. The machine classification models built by these two algorithms have very good classification
ability. Here, the LogitBoost classification model is slightly better than the Adaboost.M1 classification model. The
overall accuracy of the LogitBoost classification model reached 95.30% when using 10-fold cross validation. The
true positive, true negative, false positive, and false negative rates of the binary classification model were 0.921,
0.969, 0.031, and 0.079, respectively, and the area under the receiver operating characteristic curve reached 0.99.

Conclusions: The boosting algorithms show excellent performance for the diabetes classification models based
on clinical medical data. The coefficient matrix of the original data is a sparse matrix, because some of the test
results were missing, including some that were directly related to disease diagnosis. Therefore, the model is
robust and has a degree of pre-diagnosis function. In the process of selecting the preferred test items, the most
statistically significant discriminating factors between the diabetic and general populations were obtained and
can be used as reference risk factors for diabetes mellitus.
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Background
Diabetes mellitus is a metabolic disease that is caused by
deficient insulin secretion or poor insulin utilization,
with hyperglycaemia as the main symptom. The number
of patients with type 2 diabetes has risen rapidly in re-
cent years, especially in developing countries. Diabetes is
a chronic, life-long disease that can be accompanied by
many complications in its later stages. Most diabetic pa-
tients also have abnormal lipid metabolism, and hyper-
lipidaemia can easily lead to atherosclerosis, which can
cause coronary heart disease, cerebral infarction and
other serious complications of diabetes [1]. According to
the latest data from the International Diabetes Federation,

there are currently 4.15 hundred million adult diabetic pa-
tients worldwide, and the global cost for the treatment of
diabetes and its complications reached $673 billion in
2015. Every 3 s, a person will be diagnosed as diabetic
somewhere in the world, and every 7 s, a patient will die
because of its complications. Furthermore, many people
have abnormal glucose tolerance and without interven-
tion and treatment will have developed diabetes after
5 years. Diabetes has become a public health problem
worldwide [2, 3].
Data mining refers to the process of searching for and

revealing information that has potential value from a
large amount of data by using specific algorithms. At
present, data mining technology has been widely used
and applied in many fields of business and scientific re-
search. With the continuous development of computer
technology, medical treatment has gradually become
digitized, and a large amount of medical data has been
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accurately recorded and preserved in medical institu-
tions. These medical information resources are of great
value for disease research [4, 5]. When using data min-
ing technology to automatically and thoroughly analyse
a large amount of historical data in a medical database,
valuable medical diagnosis rules can be built [6]. Data
mining technology, when applied to clinical medicine,
can support the diagnosis, treatment, and prevention of
disease [7–10]. Most algorithms in data mining can be
used not only to classify or cluster diseases but also for
feature selection to simplify the model and improve the
computational efficiency during the modelling process
[11, 12]. Some scholars use data mining algorithms to
classify diabetes with clinical test data, such as HbA1c,
adiponectin and BMI, and this approach achieves the de-
sired results [13]. However, because of the complexity of
the human body, the application of data mining technol-
ogy in clinical medicine is still relatively limited in
general.
A medical diagnosis analysis model built by data min-

ing technology has the nature of artificial intelligence: it
can exclude the interference of human factors, it has
strong objectivity, and it can gradually standardize and
automate the process of medical diagnosis [7, 14, 15].
The conclusion obtained by a clinical diagnosis model,
which is established based on the clinical detection in-
formation of tens of thousands of patients over decades,
can be more accurate than the conclusion drawn by an
individual physician with limited cases in his career life.
Hence, the application of data mining technology to
clinical medical disease modelling facilitates disease
diagnosis, providing relatively broad prospects for this
application.

Methods
Data processing method and overall procedure
This study was a single-centre study, and the data were
collected from the First Affiliated Hospital of Wenzhou
Medical University. Clinical data were collected from
more than 10,000 patients. These patients were diag-
nosed with diabetes in the endocrine department of the
First Affiliated Hospital of the university and were hospi-
talized between July 2004 and April 2014. The physical
examination data from more than 20,000 non-diabetic
people were also collected. These individuals had a phys-
ical examination between October 2010 and August
2014. The collected clinical data set includes a large
number of individuals and a wide range of physiological
test indexes. The overall data processing flow is shown
in Fig. 1.
The original collected data set contained two parts,

DATA I, which contains the diagnosis and treatment
data of the hospitalized diabetic patients, and DATA II,
which comprises the physical examination data of the

non-diabetic patients. DATA I contains the clinical test
results of 12,023 patients, including 1436 medical test
indexes and 2,842,157 test results. DATA II contains the
clinical test results of 24,617 patients, including 1282
medical test indexes and 2,907,596 test results.
First, records were deleted in DATA I and DATA II if

the recorded form was not in digital format. Second, if
the patient had more than one result for the same test
index, the latest record was used. The test records of
550 test indexes that were common to both DATA I and
DATA II were then retained. Finally, of the 550 test in-
dexes, the indexes where data were available for fewer
than 1000 patients were removed. Afterward, DATA I
and DATA II were combined to obtain the DATA III
data set. For each of the test items, the clinical record
was subjected to non-parametric statistical testing, and
the Wilcoxon rank sum test was used. Using the DATA
III data set, the Adaboost.M1 and LogitBoost algorithms
were selected to build two category classifiers for the
diabetes classification model; the performances were
then tested. In the experiment, a 10-fold cross-validation
method was employed.

Two-category diabetes classification model based on
Adaboost.M1 and LogitBoost
Machine learning has become a popular subject, and it
can prejudge data by imitating the reasoning and
thinking process of a human; thus, it helps people to
make decisions. The goal of machine learning is to
predict, as accurately as possible, unknown samples
using a model or criterion that has been constructed
from existing samples. Classification is a very common
and important task in machine learning research.
Traditional classification methods have many require-
ments with regard to the distribution of the raw data
or existing information. For example, Fisher’s method
requires that the data fit a multivariate normal distri-
bution, and Bayes’ method requires that the probability
distribution function and prior probability of each cat-
egory are known. However, meeting these require-
ments is not always easy. Thus, when these conditions
are not satisfied or the discriminant effect is poor, new
methods are needed.
In 1990, Schapire proved that weak classifier per-

formance, which is slightly better than random
guessing, can be boosted to generate a strong classi-
fier with arbitrary accuracy. Although building a high
precision model is difficult, producing a classification
model whose accuracy is only slightly better than
random guessing (a “weak classifier”) is not difficult.
The boosting algorithm is a machine learning
method that uses pre-generated weak classifiers for
continuous learning, gradually boosting them into a
“strong classifier.”
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The basic idea of the algorithm is to build a basic weak
classifier, such as a decision tree, based on an existing
sample data set; then, the weak classifier is called re-
peatedly, making the classifier more concerned with
samples that are difficult to judge by giving greater
weight to incorrectly judged samples in each round.
After several rounds, synthetic strong classifiers are fi-
nally formed by giving weighted votes to the weak clas-
sifiers of each round, which provides a prediction
model with high accuracy.
The boosting algorithms form a family of algo-

rithms. Here, Adaboost and LogitBoost, two represen-
tative algorithms of this family, were selected to build
the model. The Adaboost.M1 algorithm is a type of
Adaboost algorithm where the value of the weak

classifier is limited to {− 1,+ 1}, and the main process
of the algorithm is shown below.

(1) Input (x1, y1), (x2, y2), ⋯, (xn, yn)
(2) Initialization W 1 ¼ fW 1ðiÞ ¼ 1

.
n
; i ¼ 1;⋯; ng

(3) For t = 1, 2, ⋯, T
① Get the weak learner: ht : X→ {−1, +1}
② Calculate the error of the classifier:

Et ¼ 1
.
n

P
WtðiÞI½htðxiÞ≠yi�

③ Calculate the weight of the classifier:

at ¼ 1
.
2
ln½ð1−EtÞ=Et �

④ Change the weight of the training samples:

Wtþ1ðiÞ ¼ WtðiÞe−atyihiðxiÞ=Zt

Fig. 1 Data processing method and overall process
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(4) Output HðxÞ ¼ sign
�PT

t¼1 athtðxÞ
�

The training data is denoted by (x1, y1), (x2, y2), ⋯,
(xn, yn) where Xi ∈ R

d, Yi ∈ {−1, +1}, Wt(i) indicate the
weight distribution of the samples at iteration t times.
Furthermore, Zt is the normalization factor, which
ensures that the samples are subjected to one form of
distribution.
The outstanding advantage of the Adaboost algo-

rithm is its solid theoretical foundation, high predic-
tion accuracy, and ease of implementation [16]. The
LogitBoost algorithm is an improved form of the
Adaboost algorithm; Adaboost uses an exponential
loss function, while LogitBoost uses a negative log
likelihood loss function. The basic idea of LogitBoost
is similar to that of Adaboost, and as a result, we do
not elaborate on it here.
In the classification model, we used the test indexes

available for both the diabetic and non-diabetic patients
as the features of the classification model, and we se-
lected the detection results of the test indexes as the
specific values of the features. If the patient did not
participate in a test, then the test result was set to zero.
The results for the two-category classification model
were diabetic and non-diabetic. In the experiment, dif-
ferent groups of test items were taken as the features of
the model, and the diabetes classification models were
established using the above two types of boosting
algorithm.
Logistic and RandomForest are very common data

mining algorithms that can be used to classify clinical
diseases. We select some parts of the clinical data (the
clinical records of top 25 test index in 1000 diabetics
and 1000 non-diabetics) tested by these two types of al-
gorithms and the boosting algorithms used in this study
to compare their classification effects.
The experimental results (Table 1) show that in clin-

ical disease data modelling, the boosting algorithms used
in this paper have advantages in terms of model accur-
acy and time consumption. In most cases, the accuracy
of the Logistic and RandomForest algorithms are not as
good as that of the boosting algorithms, and the model-
ling time is longer than that of the boosting algorithms.
Among the selected algorithms, the Logistic algorithm

had a much larger modelling time than the other se-
lected algorithms.

Results
Distribution of the values of important test indexes
In the research, a non-parametric test method, specifically,
the Wilcoxon rank sum test, was used. The detection re-
sults for the common 221 test indexes for diabetics and
non-diabetics were compared one-by-one to obtain a
clinical medicine detection index that has significant dif-
ferences between these two groups of people. Table 2
shows the top 30 most significant differences in the detec-
tion indexes among these groups.

Table 2 Top-30 clinical detection indexes of the most
significant differences between diabetic and non-diabetic patients,
and the P value of the non-parametric test

No. Measurement name P-value

1 Mean Corpuscular Hemoglobin Contentration ≈0

2 Packed Cell Volume (PCV) ≈0

3 Percentage of Lymph ≈0

4 Erythrocyte ≈0

5 Hemoglobin ≈0

6 Albumin ≈0

7 Total Protein ≈0

8 Albumin Globulin Ratio ≈0

9 Urea Nitrogen ≈0

10 Hdl-Cholesterol ≈0

11 Glucose ≈0

12 Electrical Conductivity ≈0

13 Tri-Iodo Thyronine ≈0

14 Calcium Serum ≈0

15 Free T3 ≈0

16 Glycosylated Hemoglobin ≈0

17 Glucose (Emergency) ≈0

18 2 h Postprandial Blood Glucose ≈0

19 1 h Postprandial Blood Glucose ≈0

20 Erythrocyte Sedimentation Rate (ESR) 2.17E-300

21 Percentage Of Neutrophil 2.03E-290

22 Thrombin Time Ratio 9.91E-276

23 Indirect Bilirubin 2.46E-264

24 Gamma Glutamyltransferase 2.94E-249

25 Thrombin Time 9.46E-247

26 Fibrinogen 1.80E-241

27 Alkaline Absolute Value 1.82E-224

28 Cancer Embryo Antigen 1.11E-217

29 Absolute Value Of Lymph 2.87E-213

30 Serum Chloride 1.39E-203

Table 1 The classification effects of different algorithms

Time taken to
build model

The total
computing time

Accuracy
rate

ROC
area

Logistic 23.31 S 43 M 22 S 85.35% 0.907

RandomForest 2.13 S 30 S 91.55% 0.978

AdaBoost.M1 0.07 S 1 S 92.6% 0.973

LogitBoost 0.33 S 1 S 93.93% 0.979
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The detection results of the 30 test items in the table
were significantly different between the diabetic and
non-diabetic populations (P < 0.01). Of these 30 test items,
five indexes were directly related to the judgement of
whether the person had or did not have diabetes. The spe-
cific indicators were indexes 11 (glucose), 16 (glycosylated
haemoglobin, HbA1c), 17 (emergency glucose), 18 (2-h
postprandial blood glucose), and 19 (1-h postprandial
blood glucose). The other 25 indexes are currently rarely
mentioned in clinical practice when diagnosing diabetes.
However, the statistical results showed an enormous dif-
ference in the examination results of these 25 test indexes
for the diabetic and non-diabetic populations. This finding
indicates that in addition to the lower glucose uptake and
utilization and significantly increased blood glucose and
glycated haemoglobin, some other body functions and
the corresponding indexes also exhibit large significant
changes during or after the person develops the disease
compared to those of the healthy population.
Five and 1806 people in the diabetic and non-diabetic

populations, respectively, did not participate in the
examination of any of the 30 extracted test items. All of
the examination results of each test index were com-
pared with the standard reference upper and lower limit
values. Any examination result that was higher than the
maximum value was labelled “>upper limit”; any result
lower than the minimum value was labelled “<lower
limit”, and any result between the maximum and mini-
mum values was labelled “between upper limit & lower
limit”. The final results are shown in Fig. 2.
Rough comparison of the test results of the 30 test in-

dexes in the diabetic and non-diabetic populations in
Fig. 2(a) and (b) indicated that for quite a number of
tests, the proportion of diabetic patients who had results
that were lower or higher than the normal value was
higher than the corresponding proportion of non-
diabetic individuals. In other words, an extremely large
number of diabetic patients had abnormal test results
for some test indexes.
Relative to the non-diabetic population, diabetic pa-

tients are prone to having high results for the following
test indexes: urea nitrogen, glucose, HbA1c, glucose
(emergency), erythrocyte sedimentation rate (ESR) and
fibrinogen; these patients are also prone to having low
results for the following test indexes: packed cell volume
(PCV), erythrocyte, haemoglobin, albumin, total protein,
albumin globulin ratio, HDL-cholesterol, triiodothyronine,
serum calcium, and free T3.
Five test indexes are directly related to diabetes.

Among them, the results of two test indexes, 1-h post-
prandial blood glucose and 2-h postprandial blood glu-
cose, were not compared with the standard reference
values because few patients had these results. For most
of the diabetic patients, the examination results of the

tests for glucose, HbA1c, and emergency glucose were
higher than the normal upper limits. Three test indexes
had the highest proportion of individuals whose examin-
ation results were higher than normal in the diabetic
population, which is consistent with expectations.
In segments of the diabetic population, the glucose

values were normal. For a small segment of the diabetic
population, the glucose levels were lower than normal.
The ability to control blood glucose in diabetic patients is
not very good, and blood sugar values could be very differ-
ent at different times of the day, such as in the early morn-
ing or evening, before or after a meal, and before or after
taking medicine. The fluctuation in blood glucose is some-
times large. Under the action of insulin or hypoglycaemic
drugs, blood sugar values can be kept within the normal
range. However, in the case of an overdose of insulin or
hypoglycaemic drugs, hypoglycaemia could also occur.
Some individuals in the non-diabetic population also

had high blood glucose or HbA1c values. These people
could be people with impaired glucose tolerance who
are potentially diabetic. This situation could also occur
because of a transient increase in blood glucose in a
non-diabetic individual for some other reason.
For the PCV, albumin globulin ratio, and HDL-

cholesterol test indexes, almost half or more than half of
the patients with diabetes had low test results. For the
triiodothyronine [17] and fibrinogen indexes [18], nearly
half of the diabetic population had abnormal test results.
The proportion of the non-diabetic population who had
abnormal results for these test indexes was far smaller
than the proportion of the diabetic population. There-
fore, these indicators can be used as important reference
risk factors for diabetes.
Further evaluation of the test indexes that had a high

proportion of abnormal results showed that relative to that
of non-diabetic patients, the body functions of diabetic pa-
tients experience some remarkable changes in the follow-
ing respects. A) Anaemia, as indicated by the PCV,
erythrocyte and haemoglobin are prone to be low [19, 20].
B) The nutritional status, as indicated by albumin, total
protein, and the albumin globulin ratio, is prone to be
poor. C) The risk of having cardiovascular disease is high,
as shown by frequent low values of HDL-cholesterol and
high values of fibrinogen [21, 22]. The results show that
the complications that diabetic patients easily develop,
such as hypertension, hyperlipoidaemia, coronary heart
disease, and other vascular lesions, are most relevant to
the reduced HDL-cholesterol rather than the increased
LDL-cholesterol [23] and increased triglycerides [24, 25].
D) Hypothyroidism, or hypoparathyroidism, as shown by
triiodothyronine and free T3, is a frequent finding. Fur-
thermore, many diabetic patients have low serum calcium
levels. A decrease in the function of the parathyroid gland
decreases can lead to a decrease in serum calcium content.
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Performance of the classification model
The Data III data set contains 221 test indexes for both
non-diabetic patients and diabetic patients. The test in-
dexes were sorted in descending order according to the
level of difference, i.e., according to the P-value calcu-
lated by the non-parametric statistical test. We used the

top 100 test indexes with the most significant differences
between the two populations to build the disease classifi-
cation model.
Figure 3(a) shows the final classification accuracy and

receiver operating characteristic (ROC) area of the disease
classification model built by the Adaboost.M1 and

a

b

Fig. 2 Examination results of important detection indexes of non-diabetic patients (a) and diabetic patients (b)
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LogitBoost algorithms at each step, from 5 to 100 test in-
dexes in increments of 5, using 10-fold cross validation.
As the number of test indexes increased, the classification
accuracy of the model rapidly rose. When the number of
test indexes reached 30, the classification accuracy was
greater than 90%, and the ROC area was greater than 97%.
The models built by each boosting algorithm achieved very
good classification results. However, the performance of
the LogitBoost algorithm was slightly better.
Figure 3(b) shows the true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) rates at
each step of the classification model built by the Ada-
boost.M1 and LogitBoost algorithms. With the use of at
least 30 indicators, the models established by the two
boosting algorithms have low rates of missed diagnosis
and misdiagnosis.

The classification results show that using information
from more test indexes can greatly improves the classifi-
cation accuracy. In fact, when excluding the indexes that
directly relate to the clinical diagnosis of the disease, the
models built by the two boosting algorithms still have high
classification accuracy, even when only the 25 test indexes
of the top-30 indicators that are not directly related to the
clinical diagnosis of the disease were used to build the
classification model. When the Adaboost.M1 algorithm
was used, the overall classification accuracy and ROC area
were 89.10% and 0.958, respectively. When the LogitBoost
algorithm was used, the overall classification accuracy and
ROC area were 89.63% and 0.963, respectively.
These results show that the models can still provide a

comparatively accurate judgement about an individual’s
disease without the test results of the criteria indexes for

a

b

Fig. 3 a Prediction accuracy and receiver operating characteristic (ROC) area of the models built by each boosting algorithm. b TP, FP, TN, and
FN coefficients of the model built by each boosting algorithm
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that disease, such as glucose or HbA1c. Furthermore,
some segments of the population did not participate in
one or more examinations of the 25 tests. This finding
also indicates that the models are robust and have a cer-
tain pre-diagnosis function. Furthermore, these results
also illustrate that besides the glucose and glycated
haemoglobin indexes, these 25 test indexes have a strong
representational ability for diabetes.

Discussion
The data evaluated in our study were obtained from
thousands of patients, and hundreds of medical meas-
urement indexes were involved. This research was a
comprehensive study that involved a large amount of
data. However, if the original data set was larger, for ex-
ample, involving tens of thousands or hundreds of thou-
sands of patients, and included almost all of their test
results, the conclusions of the same analysis might be
slightly different, i.e., some other detection indicators
might also be present in the top 30 indexes.
In the classification model, the use of at least 30 detec-

tion indicators guaranteed the ideal classification accur-
acy. If all of the detection indicators are used, then more
useful information can be provided, and the accuracy of
the classification will be improved. There are five related
indicators among the 30 indicators, and the other indi-
cators were not considered as reference or related indi-
cators when judging whether or not a person has
diabetes in clinical practice. However, the statistical re-
sults show that as a healthy person gradually develops
into a diabetic patient and as a person’s blood sugar is
stable and continuously increasing, some body functions
of the person and the corresponding test indexes also
experience fundamental changes. The use of these test
results could also provide an ideal classification result,
i.e., diabetic patients could be identified, even in the ab-
sence of the person’s glucose and HbA1c data.
If more complete test results of a healthy population,

population with impaired glucose tolerance, and diabetic
population are used, then it could be possible to discover
clinical indexes that are abnormal before the glucose or
HbA1c indexes become abnormal, which would establish
an early screening model for diabetes.
The Adaboost algorithm is one of the 10 most famous

data mining algorithms, and it has been widely applied
in areas such as face recognition [26]. The experimental
results of this study show that this algorithm and Logit-
Boost, which is an improved version of Adaboost, show
excellent performance in the modelling of disease classi-
fication by using clinical medical data.

Conclusions
We found that the test indexes PCV, albumin globulin
ratio, HDL-cholesterol, triiodothyronine, and fibrinogen

differ significantly between people with and without dia-
betes; hence, these indexes can be used as important ref-
erence risk factors for diabetes mellitus.
Analysis and summary of the abnormal phenomena

among the test indexes showed that patients with dia-
betes tend to be anaemic, have poor nutritional status,
often suffer from cardiovascular disease, and tend to
have decreased thyroid or parathyroid functions.
With the clinical test results of 35,669 patients, we

used Adaboost.M1 and LogitBoost to build machine-
classification models for diabetes. Both typical boosting
algorithms showed excellent performance when used for
disease classification modelling based on large amounts
of clinical data.

Abbreviations
ESR: Erythrocyte sedimentation rate; FN: False negative; FP: False positive;
HbA1c: Glycosylated haemoglobin; PCV: Packed cell volume; ROC: Receiver
operating characteristic; TN: True negative; TP: True positive

Acknowledgments
We thank the First Affiliated Hospital of WenZhouMedical University for
providing the initial clinical examination data. We also thank the staff of the
Department of Information Technology at our hospital for providing the
necessary assistance with data collection.

Funding
Not applicable.

Availability of data and materials
The data that support the findings of this study are available from First
Affiliated Hospital of WenZhou Medical University, but restrictions apply to
the availability of these data, which were used under license for the current
study and, thus, are not publicly available. Data are however available from
the authors upon reasonable request and with administrative permission of
First Affiliated Hospital of WenZhou Medical University.

Authors’ contributions
PHC carried out the data processing work, analysed the test results, and
wrote and organized major sections of the manuscript. CDP wrote the
introduction, provided writing feedback and organized researchers in the
Department of Information Technology with regard to the collection of the
clinical data. All authors read and approved the final manuscript.

Ethics approval and consent to participate
All of the procedures performed in this study were approved by the ethics
committee of the First Affiliated Hospital of WenZhou Medical University
(Institutional review board approval No. 2017–126). Ethical approval for all of
the procedures followed were in accordance with the Declaration of Helsinki
of 1964 and its later versions. Due to the retrospective nature of the study,
informed consent was waived by the IRB of the First Affiliated Hospital of
WenZhou Medical University. Rong Jin granted permission in the Ethics
approval and consent to participate section.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Chen and Pan BMC Bioinformatics  (2018) 19:109 Page 8 of 9



Author details
1Institute of Biopharmaceutical Informatics and Technologies, Wenzhou
Medical University, Wenzhou, China. 2Department of Computer Technology
and Information Management, The First Affiliated Hospital of Wenzhou
Medical University, Wenzhou City, China.

Received: 12 October 2017 Accepted: 28 February 2018

References
1. Mann DM, Bertoni AG, Shimbo D, Carnethon MR, Chen H, Jenny NS,

Muntner P. Comparative validity of 3 diabetes mellitus risk prediction
scoring models in a multiethnic US cohort: the multi-ethnic study of
atherosclerosis. Am J Epidemiol. 2010;171(9):980–8.

2. Bener A, Kim EJ, Mutlu F, Eliyan A, Delghan H, Nofal E, Shalabi L, Wadi N.
Burden of diabetes mellitus attributable to demographic levels in Qatar: an
emerging public health problem. Diabetes Metab Syndr. 2014;8(4):216–20.

3. Peter P, Lipska K. The rising cost of diabetes care in the USA. Lancet
Diabetes Endocrinol. 2016;4:479–80.

4. You S. Embracing medical innovation in the era of big data. Zhonghua Wei
Chang Wai Ke Za Zhi. 2015;18(1):1–5.

5. Reznick JS. Media reviews. Digitisation, big data, and the future of the
medical humanities. Introduction. Med Hist. 2016;60(1):126.

6. Nahar J, Imam T, Tickle KS, Garcia-Alonso D. Issues of data governance
associated with data mining in medical research: experiences from an
empirical study. Stud Health Technol Inform. 2013;193:332–61.

7. Lupse OS, Crisan-Vida M, Stoicu-Tivadar L, Bernard E. Supporting diagnosis
and treatment in medical care based on big data processing. Stud Health
Technol Inform. 2014;197:65–9.

8. Robson B, Boray S. Data-mining to build a knowledge representation store
for clinical decision support. Studies on curation and validation based on
machine performance in multiple choice medical licensing examinations.
Comput Biol Med. 2016;73:71–93.

9. Rodrigues JF Jr, Paulovich FV, de Oliveira MC, de Oliveira ON, Jr. On the
convergence of nanotechnology and big data analysis for computer-aided
diagnosis. Nanomedicine (Lond). 2016;11(8):959–82.

10. Cao N, Zeng S, Shen F, et al. Predictive and preventive models for diabetes
prevention using clinical information in electronic health record. 2015 IEEE
Int Conference on Bioinformatics and Biomed. 2015:867–74.

11. Neumann U, Genze N, Heider D. EFS: an ensemble feature selection tool
implemented as R-package and web-application. BioData Min. 2017;10:21.

12. Neumann U, Riemenschneider M, Sowa JP, Baars T, Kalsch J, Canbay A,
Heider D. Compensation of feature selection biases accompanied with
improved predictive performance for binary classification by using a novel
ensemble feature selection approach. BioData Min. 2016;9:36.

13. Kalsch J, Bechmann LP, Heider D, Best J, Manka P, Kalsch H, Sowa JP,
Moebus S, Slomiany U, Jockel KH, et al. Normal liver enzymes are correlated
with severity of metabolic syndrome in a large population based cohort. Sci
Rep. 2015;5:13058.

14. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging:
harnessing big data and advanced computing to provide personalized
medical diagnosis and treatment. Curr Cardiol Rep. 2014;16(1):441.

15. Iqbal U, Hsu CK, Nguyen PA, Clinciu DL, Lu R, Syed-Abdul S, Yang HC, Wang
YC, Huang CY, Huang CW, et al. Cancer-disease associations: a visualization
and animation through medical big data. Comput Methods Prog Biomed.
2016;127:44–51.

16. Ayinala M, Parhi KK. Low complexity algorithm for seizure prediction using
Adaboost. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1061–4.

17. Wu J, Li X, Tao Y, Wang Y, Peng Y. Free triiodothyronine levels are
associated with diabetic nephropathy in Euthyroid patients with type 2
diabetes. Int J Endocrinol. 2015;2015:204893.

18. Sapkota B, Shrestha SK, Poudel S. Association of activated partial
thromboplastin time and fibrinogen level in patients with type II diabetes
mellitus. BMC Res Notes. 2013;6:485.

19. He BB, Xu M, Wei L, Gu YJ, Han JF, Liu YX, Bao YQ, Jia WP. Relationship
between Anemia and chronic complications in Chinese patients with type 2
diabetes mellitus. Arch Iran Med. 2015;18(5):277–83.

20. Hosseini MS, Rostami Z, Saadat A, Saadatmand SM, Naeimi E. Anemia and
microvascular complications in patients with type 2 diabetes mellitus.
Nephrourol Mon. 2014;6(4):e19976.

21. Bembde AS. A study of plasma fibrinogen level in type-2 diabetes mellitus
and its relation to glycemic control. Indian J Hematol Blood Transfus. 2012;
28(2):105–8.

22. Kotbi S, Mjabber A, Chadli A, El Hammiri A, El Aziz S, Oukkache B, Mifdal H,
Nourichafi N, Kamal N, Habbal R, et al. Correlation between the plasma
fibrinogen concentration and coronary heart disease severity in Moroccan
patients with type 2 diabetes. Prospective study. Ann Endocrinol (Paris).
2016;77:606–14.

23. Wang Y, Lammi-Keefe CJ, Hou L, Hu G. Impact of low-density lipoprotein
cholesterol on cardiovascular outcomes in people with type 2 diabetes: a
meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2013;
102(1):65–75.

24. Hjellvik V, Sakshaug S, Strom H. Body mass index, triglycerides, glucose, and
blood pressure as predictors of type 2 diabetes in a middle-aged
Norwegian cohort of men and women. Clin Epidemiol. 2012;4:213–24.

25. Miselli MA, Nora ED, Passaro A, Tomasi F, Zuliani G. Plasma triglycerides predict
ten-years all-cause mortality in outpatients with type 2 diabetes mellitus:
a longitudinal observational study. Cardiovasc Diabetol. 2014;13:135.

26. Jammoussi AY, Ghribi SF, Masmoudi DS. Adaboost face detector based on
joint integral histogram and genetic algorithms for feature extraction
process. Spring. 2014;3:355.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Chen and Pan BMC Bioinformatics  (2018) 19:109 Page 9 of 9


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data processing method and overall procedure
	Two-category diabetes classification model based on Adaboost.M1 and LogitBoost

	Results
	Distribution of the values of important test indexes
	Performance of the classification model

	Discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

