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Prediction of sensitivity to gefitinib/
erlotinib for EGFR mutations in NSCLC
based on structural interaction fingerprints
and multilinear principal component
analysis
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Abstract

Background: Non-small cell lung cancer (NSCLC) with activating EGFR mutations, especially exon 19 deletions and
the L858R point mutation, is particularly responsive to gefitinib and erlotinib. However, the sensitivity varies for less
common and rare EGFR mutations. There are various explanations for the low sensitivity of EGFR exon 20 insertions
and the exon 20 T790 M point mutation to gefitinib/erlotinib. However, few studies discuss, from a structural
perspective, why less common mutations, like G719X and L861Q, have moderate sensitivity to gefitinib/erlotinib.

Results: To decode the drug sensitivity/selectivity of EGFR mutants, it is important to analyze the interaction between
EGFR mutants and EGFR inhibitors. In this paper, the 30 most common EGFR mutants were selected and the technique
of protein-ligand interaction fingerprint (IFP) was applied to analyze and compare the binding modes of EGFR mutant-
gefitinib/erlotinib complexes. Molecular dynamics simulations were employed to obtain the dynamic trajectory and a
matrix of IFPs for each EGFR mutant-inhibitor complex. Multilinear Principal Component Analysis (MPCA) was applied
for dimensionality reduction and feature selection. The selected features were further analyzed for use as a drug
sensitivity predictor. The results showed that the accuracy of prediction of drug sensitivity was very high for both
gefitinib and erlotinib. Targeted Projection Pursuit (TPP) was used to show that the data points can be easily
separated based on their sensitivities to gefetinib/erlotinib.

Conclusions: We can conclude that the IFP features of EGFR mutant-TKI complexes and the MPCA-based tensor
object feature extraction are useful to predict the drug sensitivity of EGFR mutants. The findings provide new
insights for studying and predicting drug resistance/sensitivity of EGFR mutations in NSCLC and can be beneficial
to the design of future targeted therapies and innovative drug discovery.
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Background
Somatic mutations in the kinase domain of the epi-
dermal growth factor receptor (EGFR) gene are de-
tected in about 10–35% of patients with advanced
non-small cell lung cancer (NSCLC) [1–3]. These mu-
tations occur within EGFR exons 18–21 and more
than 80% of them are exon 19 deletions or the exon
21 L858R point mutation [4, 5]. The first-generation
EGFR tyrosine kinase inhibitors (TKI), including gefi-
tinib and erlotinib, which reversibly bind to the kin-
ase domain of EGFR, are widely used to treat NSCLC
patients with activating EGFR mutations [6–13]. These
inhibitors block the abnormal subsequent signal transduc-
tion caused by EGFR mutations and lead to inhibition of
tumor proliferation.
Tumors with activating EGFR mutations, especially

exon 19 deletions and the L858R point mutation, are
particularly responsive to gefitinib and erlotinib, with an
objective response rate (ORR) of approximately 60%
[7, 8, 11–13]. However, the sensitivity varies for less
common and rare EGFR mutations. Most EGFR exon
20 insertions except A763_Y764insFQEA (about 4.0–
9.2% of all lung tumors with EGFR mutations [4, 14–
17]), the exon 20 T790 M point mutation (in less
than 5% of untreated tumors [18] and over 50% of
treated tumors that have acquired resistance to gefi-
tinib/erlotinib [19, 20]), and the complex mutations
L858R/T790 M and exon 19 deletion/T790 M, are as-
sociated with low sensitivity to clinically achievable
doses of gefitinib/erlotinib. Some other less common
mutations, like exon 18 point mutations in position
G719 (G719A, C or S, about 3% of all tumors) and
the exon 21 L861Q mutation (about 2% of all tu-
mors), are associated with some level of sensitivity to
gefitinib/erlotinib [1, 4, 21–30].
There are various explanations for the different sensitiv-

ities of EGFR mutations to gefitinib/erlotinib. For the
T790 M mutation, two possibilities were raised. One is
that substitution of threonine 790 with a bulky methionine
sterically interferes with the binding of TKIs [19, 20, 31].
Another is that introduction of the T790 M mutation in-
creases the affinity for adenosine triphosphate (ATP)
which reduces binding of competing TKIs such as gefi-
tinib and erlotinib [19, 20, 32]. For EGFR exon 20 inser-
tions, one explanation is that the insertion forms a
“wedge” at the end of the C-helix that may effectively lock
the helix in its active position [17]. However, there are few
structural studies on less common mutations, such as
G719X and L861Q that still demonstrate some sensitivity
to gefitinib/erlotinib. Our group has previously attempted
to decipher the mechanism of drug resistance based on
several computational methods, including analysis of local
surface geometric properties [33–35], binding free energy
[34, 36] and stability analysis [37]. These studies provided

useful references to understand the sensitivity of EGFR
mutants to gefitinib or erlotinib.
To decode the drug sensitivity or selectivity of EGFR

mutants, it is important to analyze the interaction between
EGFR mutants and EGFR inhibitors. Protein-ligand inter-
action fingerprint (IFP) based methods [38–40], which en-
code the protein-ligand interfacial interaction as 1D
fingerprints, has been widely applied to protein-ligand
interaction mining [41], binding site comparisons [39],
prediction of binding mode [42] and other studies [43–
46]. Thus, IFP should be a promising method to com-
pare the binding mode of EGFR mutants with EGFR
inhibitors. As proteins are always dynamic, with their
atoms constantly in motion, the protein-ligand IFP
will change overtime even if a protein is in a stable
state. Therefore, each EGFR mutant-inhibitor complex
will have multiple versions of its protein-ligand IFP.
It is more reasonable to use these multiple versions
of the IFP to depict the binding mode of one EGFR
mutant-inhibitor complex.
In this study, we used the technique of IFP to

analyze and compare the binding modes of EGFR
mutants and EGFR inhibitors. Molecular dynamics
simulations [47] were employed to obtain the dy-
namic trajectory and a matrix of IFP for each EGFR
mutant-inhibitor complex. A Multilinear Principal
Component Analysis (MPCA) framework [48] was
applied for dimensionality reduction and feature
selection. The selected features were further analyzed
for use as a drug sensitivity predictor. Our results
showed that the accuracy of prediction of drug sensi-
tivity was very high for both gefitinib and erlotinib.
The findings provide new insights into methods to
study and predict drug resistance/sensitivity in lung
cancer treatment and can guide future designs of tar-
geted therapies and innovative drug discovery.

Results
EGFR mutation selection
EGFR mutations were selected according to the survey
carried out in [49] and were the 11 most common exon
19 deletions, the 6 most common exon 20 insertions,
the most common exon 18 deletion delE709_T710insD,
the most common exon 19 insertion I744_K745insKIP-
VAI, G719X (A, C or S), E709X (A or K), S761I, L858R,
L861Q and T790 M (including T790 M_L858R and
T790 M_delE746_A750 complex mutations) (Table 1).
These 30 mutations account for over 90% of all EGFR
mutations.
The sensitivities of the 30 EGFR mutations to gefitinib/er-

lotinib were divided into three levels, high, moderate, and
low. This classification was done based on the data col-
lected by [49] on in vitro sensitivities to gefitinib/erlotinib
in Ba/F3 cells expressing each EGFR mutation. Specifically,
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exon 19 deletions and L858R have IC50 values (nM) of
< 100. E709X (A or K), G719X (A, C or S), delE709_-
T710insD, I744_K745insKIPVAI, A763_Y764insFQEA,
S768I and L861Q have IC50 values (nM) of 100–999.
Other exon 20 insertions and T790 M (including
T790 M_L858R and T790 M_delE746_A750) have IC50
values (nM) of > 1000. Sensitivity to gefitinib/erlotinib was
then set as high, moderate and low, respectively.

Computational simulation results
Although some EGFR mutant structures are available in
the Protein Data Bank (PDB) [50], for example L858R-
gefitinib (2ITZ) and G719S-gefitinib (2ITO), no struc-
tural information for most EGFR mutant-gefitinib/

erlotinib complexes exists in the public domain. Most
EGFR structural information in the PDB database is not
completely recorded as some residues may not be seen in
the electron density of the crystal structure. For example,
residues 866–875 and 991–1001 of 2ITZ are not recorded.
Therefore, computational modeling of the structures of all
EGFR mutant-gefitinib/erlotinib complexes from a single
template will be an appropriate approach. 1M17 (WT
EGFR-erlotinib complex) was chosen as the template and
the main part of the kinase domain (residues 696 to 988)
was used.
Structures for all EGFR mutants were generated using

Rosetta and procedures similar to those described in [51]
(Fig. 1). The structures of the EGFR mutants are very simi-
lar to that of WT EGFR (Fig. 1(b)) with differences in some
mutants, especially exon 19 insertion I744_K745insKIP-
VAI, exon 19 deletions and exon 20 insertions (Fig. 1(c-e)).
Compared with WT EGFR, the deletion and insertion sites
of the mutants were rearranged. Only a small difference
was observed in substitution mutants, like E709A, G719C
and L858R.
Before performing MD simulations, EGFR mutants

should be bound with gefitinib or erlotinib to generate
EGFR mutant-gefitinib/erlotinib complexes. This was
done based on structural alignment of the EGFR mu-
tants to templates of EGFR-gefitinib (2ITY) or EGFR-
erlotinib (1M17) complexes thus allowing proper place-
ment of the TKI positions. After validating the equilibra-
tion of the system by observing the stability of the
temperature, density, energy, and root mean square
deviation (RMSD) of the system (see Additional file 1:
Figure S1), MD simulations were performed and a
trajectory of 1000 frames (2 ns) was obtained for each
EGFR mutant-gefitinib/erlotinib complex.

Interaction fingerprint calculation
For each frame in the trajectory, we extracted its IFP and
for all frames in the trajectory of each complex we pro-
duced an IFP matrix. This IFP matrix can be considered
as the binding mode of this EGFR mutant with the specific
TKI. Figure 2 shows the IFP matrices for four example
EGFR mutant-gefitinib complexes, delE746_A750-gefi-
tinib, T790 M_delE746_A750-gefitinib, A763_Y764insF-
QEA-gefitinib and D770_N771insSVD-gefitinib. Of these,
delE746_A750 has high sensitivity to gefitinib, A763_
Y764insFQEA has moderate sensitivity to gefitinib, while
T790 M_delE746_A750 and D770_N771insSVD have low
sensitivity to gefitinib.
In Fig. 2, the x-axis is the residue index and the y-axis

is the frame number. Residues 723, 762, 779, 781, 803,
845, 858 and/or their neighboring residues have obvious
differences among these four IFP matrixes. Even though
differences between IFP matrixes can be seen, it is hard
to conclude what kind of IFP matrix, or binding mode

Table 1 Selected EGFR mutations and their corresponding drug
sensitivity to gefitinib/erlotinib based on the survey carried out
by [49]

Category Mutations Sensitivity

1 Del 19 delE746_A750 High

2 delL747_P753insS

3 delL747_T751

4 delL747_A750insP

5 delL747_S752

6 delE746_S752insV

7 delE746_P753insVS

8 delL747_T751insP

9 delE746_T751insA

10 delL747_P753

11 delS752_I759

12 L858R L858R

13 E709X E709A Moderate

14 E709K

15 Del 18 delE709_T710insD

16 G719X G719A

17 G719C

18 G719S

19 Ins 19 I744_K745insKIPVAI

20 S768I S768I

21 L861Q L861Q

22 Ins 20 A763_Y764insFQEA

23 V769_D770insASV Low

24 D770_N771insSVD

25 H773_V774insH

26 H773_V774insPH

27 H773_V774insNPH

28 T790 M T790 M

29 T790 M_L858R

30 T790 M_delE746_A750
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of an EGFR mutant-TKI complex, corresponds to
high, moderate, or low sensitivity to gefitinib/erloti-
nib. One solution is to reduce the data dimensionality
and extract the most discriminative features, which
can be done by Multilinear Principal Component
Analysis (MPCA).

MPCA-based tensor objects recognition
With MPCA, a multilinear equivalent of PCA, we
can determine a multilinear transformation that maps
tensor objects onto a lower dimensional tensor sub-
space while preserving the variation in the original
data. In this work, we applied the MPCA framework

Fig. 1 Computational modeling results of EGFR mutants. a The template WT EGFR structure (1M17). b All EGFR mutants involved. c Exon 19
deletions and WT EGFR structure. The three LRE residues are marked as red. d Exon 19 insertion I744_K745insKIPVAI and WT EGFR structure. The
insertion site is marked as red. e Exon 20 insertions and WT EGFR structure. The insertion sites are marked as red and WT is marked as green

Fig. 2 IFP matrices for four EGFR mutant-gefitinib complexes. a delE746_A750-gefitinib. b T790 M_delE746_A750-gefitinib. c A763_Y764insFQEA-gefi-
tinib. d D770_N771insSVD-gefitinib
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to extract features from the IFP matrix (2nd-order
tensor) objects.
After combining the IFP matrixes of multiple EGFR

mutant-TKI complexes, we can obtain a third order IFP
tensor. Using this 3rd-order IFP tensor and the label of
each EGFR mutant-TKI complex (the sensitivity to gefi-
tinib/erlotinib) as inputs to the MPCA framework, we
can produce a lower dimensional tensor, which is then
rearranged into a feature vector, in descending order

according to class discriminability, and the first H most
discriminative components are kept and used as the ex-
tracted features. The value of H is empirically deter-
mined. In our work, as we had only 30 samples for each
TKI, we used values of H from 3 to 20 for the drug sen-
sitivity prediction task. Figure 3 shows the views of the
first-second, first-third and second-third selected fea-
tures for all EGFR mutant-gefitinib and –erlotinib com-
plexes. We can see that the three mutant groups can be

Fig. 3 Distributions of EGFR mutant samples described with the first 3 selected features. a, c and e are for EGFR mutant-erlotinib complexes and
b, d and f are for EGFR mutant-gefitinib complexes. a and b are projections of the mutant features to the first and second selected features. c
and (d) are projections of the mutant features to the first and third selected features. e and f are projections of the mutant features to the second and
third selected features. Here, red, green and blue circles represent mutant groups that correspond to high, moderate and low sensitivity to ge-
fitinib / erlotinib, and’+’ stands for the centroid of each group
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roughly separated using only the first three extracted
features. The class discrimination power of projected
tensor features is shown in Additional file 1: Figure S2
and the selected 20 features for EGFR mutant-gefitinib
and -erlotinib complexes are shown in Additional file 2.
To verify that our extracted features are useful to pre-

dict the sensitivity to gefitinib/erlotinib of each EGFR mu-
tant, we performed classification experiments using the 5
most commonly used classifiers available in Weka 3.8.0,
NaiveBayes, Logistic (logistic regression), RandomForest,
libSVM (Support Vector Machine) and IBK (KNN, k-
Nearest Neighbor). For RandomForest, we set the number
of iterations to be performed at 500. For IBK we set the
number of neighbor to use at 5. All other parameters were
left as default values.
The results are shown in Fig. 4. The x-axis is the value

of H, which means the first H most discriminative compo-
nents of the feature vector. The y-axis is the classification
accuracy or the recognition rate. For the two groups of
data (EGFR mutant-gefitinib and erlotinib complexes), the
classification accuracies increase as H increases for most
classifiers. When H equals 3, accuracies are about 75%,
while at H equal to 9 or 10, accuracies reach about 90%.

After that, accuracies remain at a high level except for
libSVM with EGFR mutant-gefitinib complexes.
We also used Targeted Projection Pursuit (TPP), an

interactive data exploration technique that provides an
intuitive and transparent interface for data exploration
[52], to further verify the classification results. Views
with three values of H, 3, 5 and 10, are presented for the
two groups of data in Fig. 5. The three kinds of points
(different drug sensitivities) separate more clearly as H
increases. At H equal to 10, the three classes can be sep-
arated easily.

Discussion
Tumors with activating EGFR mutations, especially exon
19 deletions and the L858R point mutation, are particu-
larly responsive to gefitinib and erlotinib. However, the
sensitivity varies for less common and rare EGFR muta-
tions. There are various explanations for the low sensi-
tivity of EGFR exon 20 insertions and the exon
20 T790 M point mutation to gefitinib/erlotinib. How-
ever, few studies discuss, from a structural perspective,
why some less common mutations, like G719X and
L861Q, have moderate sensitivity to gefitinib/erlotinib.

Fig. 4 Classification accuracies of the five most commonly used classifiers against different values of H. H means the number of most discriminative
components of the output feature vector retained for classification. a The classification accuracies for EGFR mutant-gefitinib complexes. b The
classification accuracies for EGFR mutant-erlotinib complexes
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To decode the drug sensitivity/selectivity of EGFR mu-
tants, it is important to analyze the interaction between
EGFR mutants and EGFR inhibitors.
In this study, we used IFP to analyze and compare the

binding mode of EGFR mutant-inhibitor complexes, ap-
plied the MPCA framework to extract features from the
IFP data and employed several commonly used classi-
fiers to predict the sensitivity to gefitinib/erlotinib for
each EGFR mutant. The 30 most common EGFR mu-
tants were defined to have high, moderate or low sensi-
tivity to gefitinib/erlotinib based on data collected by
[49]. Structures for all EGFR mutant-inhibitor complexes
were generated and MD simulations were used to pro-
duce a trajectory of 1000 frames (2 ns) for each EGFR
mutant-gefitinib/erlotinib complex. The IFP for each
frame in the trajectory was extracted to form an IFP
matrix for the trajectory. This IFP matrix can be consid-
ered as the binding mode of this EGFR mutant with the
specific TKI. MPCA was applied to extract features from
the IFP matrix (2nd-order tensor) giving a feature vector
for each EGFR mutant-inhibitor complex. To verify that
the extracted features were useful to predict sensitivity
to gefitinib/erlotinib for each EGFR mutant, classifica-
tions using the 5 most commonly used classifiers in
Weka 3.8.0 were performed. The accuracy of the predic-
tion of drug sensitivity was very high (> 90%) for both

gefitinib and erlotinib. To verify the classification results
and view the data points more clearly, Targeted Projec-
tion Pursuit (TPP) was used to show that the data points
can be easily separated based on their sensitivities to ge-
fitinib/erlotinib. Thus, the IFP features of EGFR mutant-
TKI complexes and MPCA-based tensor object feature
extraction are helpful to predict the drug sensitivity of
EGFR mutants.
Our study has some limitations. First, only the 30 most

common EGFR mutations of at least 594 types of EGFR
mutations reported in the COSMIC database [53] were
used. However, these 30 mutations account for more
than 90% of all EGFR mutations. Sensitivity of the other
mutations to gefitinib/erlotinib are not certain due to
limited clinical data. The 30 most common mutations
provide more reliable data for this study. Secondly, we
determined sensitivity to gefitinib/erlotinib based on in-
formation from [49]. Specifically, for EGFR mutants with
IC50 values (nM) of < 100, 100–999 and > 1000, sensitiv-
ity to gefitinib/erlotinib was set as high, moderate, or
low, respectively. These IC50 values will have a certain
amount of error. In one case, the IC50 values for
delE746_S752insV showed a large difference – 306 with
gefitinib and 14 with erlotinib. Sensitivity to gefitinib/er-
lotinib for this mutant was set to high as EGFR exon 19
deletions respond well to gefitinib/erlotinib. IC50 values

Fig. 5 Data points with different values of H using targeted projection pursuit. a EGFR mutant-gefitinib complexes. b EGFR mutant-erlotinib
complexes. Each point stands for an EGFR mutant-TKI complex with high (red) moderate (blue) or low (green) sensitivity to the corresponding TKI
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are continuous and the choice of cut-off values (100 and
1000) may affect the classification accuracy. We believe
that the influence will be small and our results are reli-
able as a whole. On the other hand, although gefitinib
and erlotinib have different structures, different pharma-
cokinetic and pharmacodynamics properties and differ-
ent affinities with their receptors, several studies [54–56]
showed that they demonstrated comparable effects on
progression-free survival, overall survival, overall re-
sponse rate and disease control rate, which did not vary
considerably with EGFR mutation status. Thus, we
treated the sensitivity to gefitinib and erlotinib for each
EGFR mutant as the same. The third limitation is that
the method used in this study may be not suitable for ir-
reversible TKIs, such as afatinib and osimertinib, be-
cause it is difficult to simulate the process of the
formation of the covalent bond. It is not meaningful to
study the binding mode of EGFR mutant and irreversible
TKIs after the covalent bond has been formed. Other
methods are needed to study irreversible TKIs.
Selection of the EGFR template structure to model the

EGFR mutants may affect the results. A crystal structure
of an active WT EGFR tyrosine kinase domain with gefi-
tinib or erlotinib, of which there are - 1M17 (WT EGFR
with erlotinib), 2ITY (WT EGFR with gefitinib) and
4WKQ (WT EGFR with gefitinib), is a reasonable tem-
plate. 1M17 is the most complete structure with only resi-
dues 989 to 1000 missing in the electron density. Since
residues after 988 are the ‘tail’ of the kinase domain and
are far from the binding site, ignoring these residues is
reasonable when modeling other EGFR mutants.
Although the MPCA framework and the five most

common classifiers available in Weka 3.8.0 were chosen
to study the performance of our proposed drug sensitiv-
ity prediction scheme, other feature extraction methods
and classifiers could also be investigated to potentially
improve the classification results.

Conclusions
IFP was used to analyze and compare the binding mode
of the 30 most common EGFR mutants with gefitinib or
erlotinib. MPCA was used to extract features from the
IFP data and several commonly used classifiers were
employed to predict the sensitivity to gefitinib/erlotinib
for each EGFR mutant. A high accuracy in prediction of
sensitivity to gefitinib and erlotinib was obtained. By
visualizing the data points using Targeted Projection
Pursuit (TPP), the data points could be easily separated
according to their sensitivities to gefitinib/erlotinib.
Thus, we can conclude that the IFP features of EGFR
mutant-TKI complexes and the MPCA-based tensor ob-
ject feature extraction are helpful to predict the drug
sensitivity of the relatively rarer EGFR mutants. The
findings here can provide new insights for studying and

predicting drug resistance/sensitivity of EGFR mutations
in NSCLC treatment and can be beneficial to the design
of future targeted therapies and innovative drug
discovery.

Methods
Computer simulation
A. EGFR mutant-TKI complex modeling
Our method for EGFR mutant-TKI complex modeling
consisted of three main steps. The first step was to choose
a template structure of the WT EGFR kinase domain. In
this study, 1M17 (EGFR WT-erlotinib complex) was
chosen and the main part of the kinase domain (residues
696 to 988) was used as the template.
The second step was to generate structures for all EGFR

mutants using Rosetta [57] and the procedures were simi-
lar to those described in [51]. Specifically, EGFR point mu-
tants were generated using the Rosetta ddg_monomer
protocol. EGFR deletions and insertions were generated
using the Rosetta comparative modeling (CM) protocol.
We also performed an energy minimization using Amber
to optimize the generated structures [58].
The third step was to combine the above EGFR mu-

tant structures with gefitinib or erlotinib to generate
EGFR mutant-gefitinib/erlotinib complexes. This was
done through structural alignment using Molsoft ICM-
Browser (http://www.molsoft.com/icm_browser.html) [59].
Specifically, the EGFR mutant structures were aligned to
templates of the EGFR-gefitinib (2ITY) or EGFR-erlotinib
(1M17) complexes. Then the positions of the gefitinib
of 2ITY or the erlotinib of 1M17 were taken to ob-
tain EGFR mutant-gefitinib/erlotinib complexes. An
energy minimization was performed on the structures
to remove possible conflicts between the EGFR mu-
tants and gefitinib/erlotinib.

B. Molecular dynamics (MD) simulations
Amber 16 was used to perform MD simulations [58].
Before performing the key production MD simula-
tions, two more steps were needed - preparation of
the coordinate (.inpcrd) and topology (.prmtop) files
of the EGFR mutant-TKI complexes and minimization
and equilibration of the system to guarantee a stable
simulation.
Specifically, we first used the reduce program in

Amber 16 to add hydrogens to gefitinib and erlotinib.
Then the antechamber program was applied to assign
atomic charges and atom types for them. After that, the
LEaP tool in Amber was used to generate the coordinate
and topology files for the EGFR mutant-TKI complex.
The Amber force fields protein.ff14SB and gaff2 were
loaded and the EGFR mutant was loaded and combined
with gefitinib or erlotinib to generate a single UNIT.
After neutralizing the UNIT by adding Cl- or Na + ions,
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a solvent environment was created with the TIP3P water
model and a truncated octahedral water box was used
with a 10-Å buffer around the solute in each direction.
At this point, the saveamberparm command in the LEaP
tool can be used to save the coordinate and topology
files for further processing.
After this preparation the simulation program pmemd

can start the MD simulations. First a 1000-step energy
minimization on the system was utilized to remove pos-
sible bad contacts within the system. Then, the system
was heated from 0 K to 300 K over 50 ps. A density
equilibration for 50 ps and a constant-pressure equilibra-
tion for 500 ps followed. For minimization, heating and
density equilibration, a weak restraint with a weight of 2
(in kcal/mol-Å^2) is applied on all atoms of the solute.
The equilibration of the system was validated by observ-
ing the stability of the temperature, density, energy, and
root mean square deviation (RMSD) of the system.

Production MD simulations of 2 ns were performed at
constant temperature and pressure. A trajectory of 1000
frames was obtained for each EGFR mutant-gefitinib/er-
lotinib complex.

Interaction fingerprint calculation
Our calculation of the interaction fingerprint (IFP) for
each EGFR mutant-TKI complex is based on the PyPlif
software [60], which is a python implementation of IFP.
Seven different types of interactions for each residue are
encoded (Fig. 6(a)), including Apolar (van der Waals), aro-
matic face to face, aromatic edge to face, hydrogen bond
(protein as hydrogen bond donor), hydrogen bond (pro-
tein as hydrogen bond acceptor), electrostatic interaction
(protein positively charged) and electrostatic interaction
(protein negatively charged).
For each frame in the MD trajectory, we can combine

the 7-bit IFP of all residues to obtain its IFP vector (Fig.

Fig. 6 Interaction fingerprint. a Seven bits that represent seven different interactions for each residue. In the diagram, 1 means the interaction
exists while 0 means the interaction does not exist. b Example of WT EGFR-erlotinib interactions (PDB: 1M17). The 3D figure was generated using
Molsoft MolBrowser 3.8–5 (http://www.molsoft.com/). c For each frame in the MD trajectory, we can combine the 7-bit IFP of all residues to
obtain its IFP vector. d For all frames in the MD trajectory of each complex we can produce an IFP matrix. This IFP matrix can be considered as
the binding mode of this EGFR mutant with the specific TKI. e Combining these IFP matrices of multiple EGFR mutant-TKI complexes, we can
obtain a third order IFP tensor

Zou et al. BMC Bioinformatics  (2018) 19:88 Page 9 of 13

http://www.molsoft.com


6(c)). For all frames in the MD trajectory of each
complex, we can produce an IFP matrix (Fig. 6(d)).
This IFP matrix can be considered as the binding
mode of this EGFR mutant with the specific TKI.
Combining these IFP matrices of multiple EGFR mutant-
TKI complexes, we can obtain a third order IFP tensor
(Fig. 6(e)).

MPCA
MPCA [48] is a multilinear equivalent of PCA. Given a
set of training tensor samples fXm∈ℝI1�I2�…�IN ;m ¼ 1;
2;…;Mg, where In is the n-mode dimension of the tensor,
MPCA determines a multilinear transformation fU ðnÞ∈
ℝIn�Pn ; n ¼ 1; 2;…;Ng that maps the original tensor
space ℝI1⨂ℝI2…� ℝIN into a tensor subspace ℝP1⨂ℝP2…

�ℝPN (with Pn < In, for n = 1, 2, …, N):

Ym ¼ Xm�1U
1ð ÞT�2U

2ð ÞT…�NU
Nð ÞT ;m ¼ 1; 2;…;M

ð1Þ
In other words, the MPCA objective is to deter-

mine the N projection matrices that maximize the
total tensor scatter, so that the projected tensor ob-
jects fYm∈ℝP1�P2�…�PN ;m ¼ 1; 2;…;Mg preserve most
of the variation observed in the original data:

U nð Þ; n ¼ 1; 2;…;N
n o

¼ arg max
XM

m¼1
Ym−Y

�� ��2
F

ð2Þ

where
PM

m¼1 kYi−Yk2F is a measure of the variation, or

the total tensor scatter of all tensor samples. Y is the

mean tensor given by Y ¼ ð 1MÞ
PM

m¼1 Ym.

MPCA-based tensor object recognition
MPCA-based tensor object classification was employed
to verify that the extracted IFP features were robust for

the prediction of drug sensitivity. The recognition sys-
tem used here was based on [48] and there were three
main modules, preprocessing, feature extraction and
classification.

A. Preprocessing
MPCA only accepts tensor samples of the same dimen-
sions. However, the 30 EGFR mutants have various
number of residues and their corresponding IFPs have
different lengths. We need to normalize all IFPs to the
same length, which was done by adding zeros to proper
positions of the IFPs of all EGFR mutants. As an ex-
ample, we consider three EGFR mutants delE746_A750,
V769_D770insASV and A763_Y764insFQEA (Fig. 7).
For delE746_A750, 35 (5×7, where 7 means the 7 bits
fingerprint for each residue) zeros are added between
residues K745 and T751, due to the deletions of
delE746_A750, 28 (4×7) zeros are added between residues
A763 and Y764, due to the insertions of A763_Y764insF-
QEA, and 21 (3×7) zeros are added between residues
V769 and D770, due to the insertions of V769_D770in-
sASV. For V769_D770insASV, 28 (4×7) zeros are added
between residues A763 and Y764, due to the insertions of
A763_Y764insFQEA. For A763_Y764insFQEA, 21 (3×7)
zeros are added between residues V769 and D770,
due to the insertions of V769_D770insASV. Then, the
IFPs of these three EGFR mutants will have the same
length. The length-normalized tensor samples are
then centered by subtracting the mean tensor of all
tensor samples.

B. Feature extraction
MPCA is an unsupervised technique and the variation
captured in the projected tensor subspace includes both
within-class and between-class variation. For classifica-
tion, a feature selection strategy [48], which enlarges the
between-class variation and lessens the within-class vari-
ation, should be applied. Specifically, the class discrimin-
ability Γ is first calculated based on Eq. (3).

Fig. 7 Example of normalizing the IFPs of three EGFR mutants to the same length by adding zeros. a For delE746_A750, 35 (5×7, where 7 means
the 7 bits fingerprint for each residue) zeros are added between residues K745 and T751, due to the deletions of delE746_A750, 28 (4×7) zeros
are added between residues A763 and Y764, due to the insertions of A763_Y764insFQEA, and 21 (3×7) zeros are added between residues V769
and D770, due to the insertions of V769_D770insASV. b For V769_D770insASV, 28 (4×7) zeros are added between residues A763 and Y764, due to
the insertions of A763_Y764insFQEA. c For A763_Y764insFQEA, 21 (3×7) zeros are added between residues V769 and D770, due to the insertions
of V769_D770insASV
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Γp1;p2;…;pN ¼
X

C
c¼1

Nc∙ Yc p1; p2;…; pNð Þ−Yðp1; p2;…; pNÞ� �2
X

M
m¼1

Ym p1; p2;…; pNð Þ−Ycmðp1; p2;…; pNÞ� �2

ð3Þ

where Ym is the projected tensor of Xm , Y and Yc are
the mean tensors of all tensor samples and tensor sam-
ples in class c, respectively. C is the number of classes,
M is the total number of samples, Nc is the number of
samples for class c, and cm is the class label for the ten-
sor sample Xm.
Then, the projected tensor Ym is rearranged into a fea-

ture vector ym, in descending order according to the
class discriminability Γ, and the first H most discrimina-
tive components of ym are kept.

C. Classification
To verify that our extracted features are robust for the
prediction of the sensitivity of each EGFR mutant to the
drugs gefitinib or erlotinib, we performed classification
experiments (with 10-fold cross-validation) using the 5
most commonly used classifiers available in Weka 3.8.0
[61], NaiveBayes, Logistic (logistic regression), Random-
Forest, libSVM (Support Vector Machine) and IBK
(KNN, k-Nearest Neighbor). For RandomForest, we set
the number of iterations to be performed as 500. For
IBK we set the number of neighbor to use as 5. All other
parameters are set to default values.

Additional files

Additional file 1: Figure S1. (A) The temperature, (B) density, (C) energy
and (D) backbone RMSD of the delE746_A750-gefitinib complex as
functions of time. The system finally reaches a stable state after a series
of equilibration operations. Figure S2. Class discrimination power of
projected tensor features. (A) Class discrimination power of all projected
tensor features of EGFR mutant-gefitinib complexes. (B) Class discrimination
power of the first 30 most discriminative projected tensor features of EGFR
mutant-gefitinib complexes. (C) Class discrimination power of all projected
tensor features of EGFR mutant-erlotinib complexes. (D) Class discrimination
power of the first 30 most discriminative projected tensor features of EGFR
mutant-erlotinib complexes. (DOCX 115 kb)

Additional file 2: The list of extracted 20 features for EGFR mutant-
gefitinib and -erlotinib complexes. The first column is the mutation name.
The last column is the response level to gefitinib or erlotinib. The first
row is the index of features. (XLSX 27 kb)
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