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Abstract

Background: Various indexing techniques have been applied by next generation sequencing read mapping tools.
The choice of a particular data structure is a trade-off between memory consumption, mapping throughput, and
construction time.

Results: We present the succinct hash index – a novel data structure for read mapping which is a variant of the
classical q-gram index with a particularly small memory footprint occupying between 3.5 and 5.3 GB for a human
reference genome for typical parameter settings. The succinct hash index features two novel seed selection
algorithms (group seeding and variable-length seeding) and an efficient parallel construction algorithm, which we
have implemented to design the FEM (Fast(F) and Efficient(E) read Mapper(M)) mapper. FEM can return all read
mappings within a given edit distance. Our experimental results show that FEM is scalable and outperforms other
state-of-the-art all-mappers in terms of both speed and memory footprint. Compared to Masai, FEM is an
order-of-magnitude faster using a single thread and two orders-of-magnitude faster when using multiple threads.
Furthermore, we observe an up to 2.8-fold speedup compared to BitMapper and an order-of-magnitude speedup
compared to BitMapper2 and Hobbes3.

Conclusions: The presented succinct index is the first feasible implementation of the q-gram index functionality that
occupies around 3.5 GB of memory for a whole human reference genome. FEM is freely available at https://github.
com/haowenz/FEM.
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Background
DNA sequencing has become a powerful technique in
many areas of biology and medicine. Technological break-
throughs in high-throughput sequencing platforms dur-
ing the last decade have triggered a revolution in the
field of genomics. Up to billions of short reads can be
quickly and cheaply generated by these platforms in a sin-
gle run, which in turn increases the computational burden
of genomic data analysis. The first step of most associ-
ated pipelines is the mapping of the generated reads to a
reference genome.
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Read mappers fall into one of the two classes. One
class, including FastHASH [1], mrsFAST [2], RazerS3 [3],
BitMapper [4], and Hobbes [5], is referred to as all-
mappers. All-mappers attempt to find all mapping loca-
tions of each read. The other class, including Bowtie2 [6],
BWA [7], and GEM [8], is referred to as best-mappers.
Best-mappers use some heuristic methods for identifying
one or a few top mapping locations for each read. These
heuristic strategies can lead to a significant improvement
in speed. However, for some specific applications, such
as CHIP-seq experiments [9], copy number variation and
RNA-seq transcript abundance quantification [10], it is
often more desirable to use all-mappers to identify all
mapped locations of each read. In this work, we focus on
designing an efficient and scalable all-mapper algorithm.
To simplify searching the whole reference which con-

tains billions of characters, all-mappers often use the
seed-and-extend strategy. Using this strategy, all-mappers
initially index fixed-length seeds or k-mers (substrings
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of length k) of the reference genome into a hash table
or similar data structure. Secondly, based on the obser-
vation that every correct mapping for a read in the ref-
erence genome will also be mapped by the seed, each
query read is divided into seeds to query the hash table
index for candidate mapping locations. Finally, dynamic
programming algorithms such as Needleman-Wunsch
[11] and Smith-Waterman [12] are used to extend the
read at each candidate location and verify the correct-
ness of each candidate location below a given error
threshold e.
A number of indexing techniques have been applied for

the readmapping problem. These include suffix trees [13],
suffix arrays [14], Burrows-Wheeler transform (BWT)
with FM-index [15], and q-grams [16–18]. The choice
of the index is key to performance. State-of-the-art all-
mappers mainly rely on the q-gram index which typically
occupies around 12GB of memory for a human reference
genome. Since this index typically has to be kept in main
memory during the mapping process, approaches with a
much smaller memory footprint are highly desirable. This
is particular important for modern computer architec-
tures featuring fast memory of limited size such as high
bandwidth memory (HBM).

Short read alignment
Short-read alignment (SRA) is a crucial component of
almost every NGS pipeline. The goal of SRA is to map
each read to the true location in the given reference
genome. Note that this location might neither be unique
(because of repeat structures in the reference genome)
nor be an exact match (because of sequencing errors or
true genomic variations). From a computational perspec-
tive, we can formulate SRA as an approximate sequence
matching problem as follows.

Definition 1 (Edit distance) The edit (or Levenshtein)
distance between two sequences S1 and S2 over the alpha-
bet � is the minimum number of point mutations (i.e.
insertions, deletions, or substitutions) required to trans-
form S1 into S2.

Definition 2 (Short-read alignment) Consider a set of
reads R, a reference genome G, and an error threshold e.
Find all substrings g of G that are within edit distance e to
some read R ∈ R. We call such occurrences g in Gmatches.

SRA can be solved by a classical dynamic programming
(DP) approach which calculates the semi-global alignment
between each R ∈ R and G. Unfortunately, the resulting
time complexity proportional to the product of sequence
lengths per alignment renders the alignment of a large
number of short reads to a mammalian reference genome
intractable.

To address this problem most state-of-the-art solutions
are based on a seed-and-extend approach consisting of
two phases: the first phase identifies promising candidate
regions (seeds) for each read in G while the second phase
determines whether a seed can actually be extended to
a full match [19]. Implementations of the first phase are
usually based on the algorithmic ideas of indexing and fil-
tering. A possible filtering strategy in order to discard large
regions ofG is based on the pigeonhole principle. Applied
to the SRA scenario, the pigeonhole lemma states that if
a read R ∈ R is divided into e + 1 non-overlapping q-
grams (substrings of length q = �|R| /(e + 1)�), then at
least one of them occurs exactly in a match. Such exact
occurrences can be identified quickly by storing G in an
appropriate q-gram index data structure. In practice, some
SRA tools also use more advanced methods to find seeds
such as q-gram counting. The subsequent extension stage
requires the implementation of a verification algorithm in
order to determine whether an actual match (with an edit
distance ≤ e) actually exists in the vicinity of each seed
location. Current SRA tools apply fast and parallelized
versions of DP based algorithms for this step such as the
Smith-Waterman algorithm.

Hash index data structure
For a sequence s, we denote the substring that begins at
position a and ends at position b as s[ a..b]. We use |s|
to denote the length of s. For any k-mer s1, we denote
its occurrence list and the length of the list as L(s1) and
|L(s1)|, respectively.
The traditional hash index stores all occurrences for

each k-mer (i.e. the locations the k-mer occurs in the
reference genome). As shown in Fig. 1, this hash index
consists of two (dense) tables, lookup table Lu and occur-
rence table Occ. Each element in Lu stores the start index
of the occurrence list of its corresponding k-mer in the
reference genome in Occ. Occ stores the list of locations
for every k-mer in ascending order.
The number of entries in Lu is 4k . Thus, its size grows

exponentially with k. However, the frequencies of k-mers
decrease when employing larger k [20]. Typically, the val-
ues of k utilized by SRA tools usually range between 10 to
13. Thus, Lu exhibits a relatively low memory footprint,
ranging from 1MB to 64MB.
Since Occ needs to record the occurrence lists of all k-

mers in a given reference genome sequence G, it needs to
store |G|−k+1 positions. Assuming that each position can
be represented by an integer, the size of a traditional hash
index is the sum of the size of Lu andOcc, which equals to

size = SOI × (4k + |G| − k + 1). (1)

SOI denotes the size of integer in bytes. For larger ref-
erence genomes |G| dominates 4k . In this case the size
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Fig. 1Workflow of FEM

of a hash index approximately equals to the size of Occ,
which is

size ≈ SOI × (|G| − k + 1). (2)

Related work
There have been a variety of techniques proposed for
solving the SRA problem. The majority of all-mappers
is based on a filtration plus validation approach. Many
state-of-the-art seed selection algorithms aim at reduc-
ing the sum of seed frequencies of a read using different
heuristics or greedy algorithms in the filtration stage.
Existing seed selection algorithms can be classified into
three categories:

1 Extend frequent seeds in order to reduce their
occurrences. The adaptive seeds filter used in the
GEM read mapper [8] belongs to this category. LAST
[21] also uses adaptive seeds for read mapping and
genome comparison.

2 Sample the frequency of each seed and choose seeds
with low frequencies. Both cheaper k-mer selection
(CKS) used in FastHASH [1] and optimal prefix
selection (OPS) used in Hobbes [5] belong to this
category. For a fixed seed length k and a read of
length L, CKS samples �L

k � seed positions in a read,

the interval between consecutive positions is k base-
pairs. Different from CKS, the OPS algorithm allows
for a greater freedom of choosing seed positions; i.e.
each seed can be selected from any position in the
read. Although OPS is more complex, it is capable of
finding less frequent seeds compared to CKS.

3 Discover the least frequently-occurring set of seeds
by a DP-based algorithm. The optimal seed solver
(OSS) algorithm [20] belongs to this type. Currently,
the OSS algorithm has not been integrated into
existing read mappers due to significant overheads in
terms of both memory and computation.

For the validation stage, a variety of DP-based align-
ment algorithms can be used to calculate the edit distance
between a read and a reference candidate region. The
Needleman Wunsch [11] algorithm for global alignment
and the Smith-Waterman algorithm [12] for local align-
ment can be used in the validation stage. However, the
speed of these is insufficient. Myers algorithm [22] is
more efficient by exploiting bit-parallelism. It encodes
a whole DP column in terms of two bit-vectors and
computes the adjacent column using 17 bit-wise opera-
tions. RazerS3 [3] implements a banded version of Myers
algorithm. The latest version of RazerS3 further acceler-
ates the banded Myers algorithm by SIMD vectorization
using SSE instructions. More recently, BitMapper [4] and
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BitMapper2 [23] have been proposed for improving candi-
date verification. They verify multiple candidate positions
at the same time using a variation of Myers’ bit vector
verification algorithm.

Methods
In this section, we first present the succinct hash index
together with a parallel construction algorithm. We illus-
trate how it can reduce the index size. Subsequently,
we propose two new seed selection algorithms called
group seeding and variable-length seeding based on the
succinct hash index. We show how they guarantee to
return all mappings under hamming distance and edit dis-
tance, respectively. Finally, we demonstrate the workflow
of FEM, a novel readmapper which adopts these concepts.

Succinct Hash Index
As mentioned in “Hash index data structure” section,

the traditional hash index stores all locations of the
occurrence for all possible k-kmers. For larger refer-
ence genomes, this requires a large amount of memory.
For example, for a human reference genome consisting
of more than 3G base-pairs (bps), it needs more than
12GB to load its hash index into memory according to
Eq. 2. However, for even larger genomes such as the
wheat reference genome containing about 16G bps, the

Algorithm 1 Parallel Succinct Hash Index Construction
Require: G, k and lstep
Ensure: Occurrence table Occ, lookup table Lu and an

auxiliary table Au
1: Memory initialization of Occ, Lu and Au
2: # pragma omp for
3: for i ← 0 to (|G| − k + 1)/lstep do
4: hashValue ← hash(G[ i · lstep..i · lstep + k − 1] );
5: location ← i · lstep;
6: Au[ i]← (hashValue, location);
7: end for
8: Sort Au by hash value of each entry first, then by loca-

tions for the entries with the same hash value with
Intel TBB library

9: for i ← 0 to (|G| − k + 1)/lstep do
10: Lu[Au[ i] .hashValue]← Lu[Au[ i] .hashValue]+1;

11: Occ[ i]← Au[ i] .location;
12: end for
13: sum ← 0
14: for i ← 0 to 4k − 1 do
15: sum ← sum + Lu[ i]
16: Lu[ i]← sum;
17: end for
18: return Occ, Lu;

traditional hash index requires more than 64GB mem-
ory. Furthermore, the construction of the traditional hash
index requires a complete scan of the reference genome
sequence leading to long construction times.
To reduce the memory consumption for read mapping

and the run time for index construction, we present a new
index data structure called succinct hash index. The key
idea of the succinct hash index is inspired by the FM-index
[7], which only keeps a small portion of entries of the suf-
fix array and retrieves the discarded entries with the help
of nearby known entries.
Different from the traditional hash index, the succinct

hash index only stores the locations which are a multiple
of lstep in the occurrence list Occ. Here, lstep is the step
size for scanning the reference genome sequence. Figure 2
illustrates the construction progress using lstep = 7.When
building the traditional hash index, to retrieve all occur-
rences for each k-mer during mapping, lstep is always set
to one to record all locations. However, the succinct hash
index employs lstep larger than one. Thus, the size of Lu
does not change but the size ofOcc is reduced by the factor
of lstep, i.e.

SOI × |G| − k + 1
lstep

. (3)

For a human reference genome, the size of its succinct
hash index is only about 3GB for lstep = 4.
Since the succinct hash index does not scan and save

all locations of the reference genome sequence, we miss
locations which are not a multiple of lstep when trying to
retrieve them. We call those locations missed locations
and will show how to handle them with two new seed
selection algorithms later.
In order to further accelerate index construction, we

have designed a novel parallel index construction algo-
rithm. Instead of directly inserting locations for each
k-mer into its location list, we temporarily store a pair for
each k-mer which contains its hash value and occurred
location into an auxiliary table. This process can be paral-
lelized using multiple threads. Subsequently, we sort this
auxiliary table by the hash value of each pair and then
by locations for pairs with the same hash value. We take
advantage of the parallel sort primitive of the Intel TBB
library to accelerate this process. Finally, we count the
occurrence for every k-mer and build the two tables Lu
and Occ. Algorithm 1 describes this parallel algorithm in
detail. Since the first two steps are predominant in the
whole process, the algorithm has good scalability with
respect to the number of utilized threads.

Group seeding
The key idea of traditional seed selection algorithms is
based on the pigeonhole principle. Given an error thresh-
old e, they select e + 1 non-overlapping seeds. Due to
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Fig. 2 Example of seeding for index construction of the succinct hash index using lstep = 7

the pigeonhole principle, at least one k-mer will not be
affected by errors. Thus all the occurrences of these k-
mers can be retrieved as candidate locations to be verified
later, which guarantees to find all mapping locations with
at most e errors for each read.
However, usage of the succinct hash index can cause

missed locations when retrieving occurrence lists for
k-mers. Thus, we present a modified seed selection
algorithm called group seeding, which can retrieve all
candidate locations for reads with respect to ham-
ming distance using a succinct hash index. Our new
seed selection algorithm is based on the following two
definitions:

Definition 3 (Position groups) We define a partition of
the set of positions P in the given reference genome sequence
into lstep mutually disjoint sets Pi, 0 ≤ i < lstep called posi-
tion groups. Pi, 0 ≤ i < lstep, contains all reference genome
positions p with p mod lstep = i. Thus, P = ⋃lstep−1

i=0 Pi.

Definition 4 (Seed groups) We define a partition of the
set of all substrings of length k (seeds) of a read R (denoted
as Sk) into lstep sets Ski , 0 ≤ i < lstep, called seed groups. Ski
contains all seeds that start at a location j in R, 0 ≤ j ≤
|R| − k, with j mod lstep = i. Thus, Sk = ⋃lstep−1

i=0 Ski .

Using these definitions, we can formulate the follow-
ing observation if we consider no indels in the alignment
between reads and reference genomes.

Lemma 1 Consider a read R which is mapped to the
reference genome at position p with p mod lstep = i; i.e.
p ∈ Pi. Then only seeds belonging to seed group Sj of R can
be retrieved from the succinct hash index with

(i + j) = lstep. (4)

We illustrate the correctness of Lemma 1 using Fig. 3
as an example configuring the step-size lstep as 4 and con-
sidering a read R and a mapping location belonging to P2.
In this case only seeds belonging to seed group S2 appear
in a recorded location which can be retrieved from the
succinct hash index. Since we assume that there are no
insertions or deletions in the alignment, the seeds c, e,
and f are in S2. Thus, all seeds in group S2 can be used to
search for a position p in P2, whereby the sum of the posi-
tion group index i and the seed group index j equals to the
step-size lstep.
Based on the definitions and Lemma 1, we design our

group seeding algorithm based on a divide-and-conquer
strategy tailored towards the succinct hash index as shown
in Fig. 4. The basic idea of group seeding can be repre-
sented by three steps:

1 We divide all candidate mapping locations and all
seeds in the read into lstep groups.

2 Each position group Pi, 0 ≤ i < lstep, is assigned a
specific seed group Sj according to Eq. 4.

3 Any existing seed selection algorithm can be used to
select e + 1 non-overlapping seeds from a specific
seed group Sj. These e + 1 non-overlapping seeds are
used to search the succinct hash index for all
candidate mapping locations with respect to position
group Pi, where i + j = lstep. The union of identified
locations for each position group Pi forms the set of
mapping candidates of a read R.

Group seeding supports any existing seed selection
algorithm as long as it guarantees to find all candidate
locations. In FEM, we utilize a combination of OPS [5]
with an additional prefix algorithm [24] as the basic seed
selection algorithm. TheOPS algorithm is efficient since it
aims to select a set of seeds with the minimal total number
of candidate locations. Furthermore, the additional prefix
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Fig. 3 Consider a mapping position p ∈ P2 of a read R in a reference genome sequence. We distinguish useful and useless seeds in R for searching
the mapping position p using lstep = 4

algorithm can further decrease the number of candidate
locations for any existing seed selection algorithm. The
key idea is to retrieve all occurrences of e + 2 seeds from
the index and then select locations that come from at least
two seeds as candidates. However, we need a modifica-
tion of the original OPS algorithm since it uses a DP-based
method to select e+ 1 non-overlapping seeds from a seed
pool whereby seeds can start from any positions in the
read. In order to integrate OPS into the group seeding
algorithm, for a position group Pi, we limit the seed pool
of OPS to the associated seed group Sj.
Since seed selection among different seed groups are

independent from each other, group seeding can be effi-
ciently parallelized on modern CPUs. Although group
seeding guarantees to return all mapping locations when
exclusively considering mismatches, it can maintain high
accuracy if there are insertions or deletions. Group seed-
ing guarantees no false negatives as long as the numbers
of seeds in each seed groups after location i on read R are
equal if an indel occurred at location i.

Variable-length seeding
To tolerate indels, we propose variable-length seeding as
another novel seed selection algorithm. Different from
group seeding, variable-length seeding guarantees the
return of all mapping locations when considering both
mismatches and indels based on the succinct hash index.
Let k′ equal to k + lstep − 1. The new seeding algorithm is
based on the following definition:

Definition 5 (Sub-seed) Consider a seed S at least k′
base-pairs in length of a read R. We define any substring of
length k of S as sub-seed Ssi if it occurs at location i in S.

Then variable-length seeding gets insight from Lemma 2.

Lemma 2 Given an error-free seed S of length k′, any of
its occurrences on the reference genome can be retrieved by
at least one of its sub-seeds.

In order to demonstrate the correctness of Lemma 2, we
use the exhaustive method shown in Fig. 5. Given the seed
S of length k′, we need to retrieve all locations where it
occurs on the reference genome for the subsequent verifi-
cation step. We first generate lstep sub-seeds from seed S.
Without loss of generality, we use p to denote any position
on the reference genome where S occurs. The succinct
hash index records one every lstep positions. Thus, for
positions p, p + 1, . . .p + lstep − 1, one and only one of
them is a recorded position denoted as ps = p + i, where
0 ≤ i ≤ lstep − 1. Then, ps is in the occurrence list of
sub-seed Ssi , i.e. ps ∈ L(Ssi ), which can be retrieved.
Based on Lemma 2, we propose the basic idea of naive

variable-length algorithm consisting of three steps:

1 We estimate the frequency of each seed of length k′
by accumulating the frequencies of its lstep sub-seeds.

2 Using an existing seed selection algorithm, we select
a set of e + 1 non-overlapping seeds with a minimal
length of k′. We denote this set of seeds as SSet.
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Fig. 4 An illustration of retrieving all locations of a read with the group seeding algorithm using lstep = 4

3 For each seed in SSet, we generate lstep sub-seeds to
search the succinct hash index. The union of all
locations retrieved by each sub-seed forms the set of
all candidate mapping locations.

Naive variable-length seeding features an existing seed
selection algorithm in the first step. Though each seed in
SSet further generates lstep sub-seeds, the occurrences of
the seeds do not increase significantly. Since the occur-
rences of the sub-seeds are also reduced due to the
sub-sampling by means of the succinct hash index, the
accumulated frequencies of the sub-seeds can be close to
the frequency of the seed. However, by increasing the seed
length to k′, this algorithm is limited to a smaller seed
pool. Thus, the naive variable-length algorithm produces
many candidate seeds which may decrease the efficiency
of the subsequent verification stage.
A previous study [20] on seed frequency estimation

shows how occurrences of a seed decrease when k grows
larger. Inspired by this observation, we employ several
strategies to extend the fixed-length seeds, i.e. seeds with
length k′, to variable-length seeds in order to reduce
candidate locations as follows.

1 We extend the seeds in SSet as long as they do not
overlap with each other. Seeds with higher frequency
compared to their neighboring seeds in SSet are
extended with higher priority.

2 Within each extended seed Si, 0 ≤ i ≤ e, all
sub-seeds are divided into lstep groups called
sub-seed groups. Two sub-seeds Ssix and Ssiy are in the
same sub-seed group if and only if their start
locations x and y in Si satisfy

x mod lstep = y mod lstep. (5)

3 For each sub-seed group, we choose the least
frequent sub-seed. We use BSeti to denote the set of
chosen sub-seeds for Si. The set BSet = ⋃e

i=0 BSeti
forms the set of all candidate mapping locations.

Algorithm 2 shows how the variable-length seeding
algorithm generates candidate locations for read R.
In the first for-loop (Line 2), the frequency of each seed

in SSet is estimated by the sum of frequencies of lstep
sub-seeds. Est[ i] stores the estimated frequency of a seed
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Fig. 5 The length of the seed is 9 and the length of any sub-seeds of it is 6. Since lstep = 4, 4 sub-seeds of the seed are generated. The occurred
position of the seed can belong to any of the 4 position groups, which is showed in four cases. In any case, the occurred location can be retrieved
with one of its sub-seeds from the succinct hash index

starting at location i of R. We utilize any existing seed
selection algorithm to select a set of e+1 non-overlapping
seeds and store them in SSet (Line 8). Each seed in SSet
is represented by a four-tuple (start, end, f , s), where start
and end denote the start and end location of the seed in
R, respectively. f denotes the estimated frequency of the
seed and s denotes the seed sequence.
We extend the first seed in SSet so that it starts from

the first location in R (Line 9). Similar in Line 10 for
the end of the last seed in SSet to the end of R. Dur-
ing the seed extension stage in the second for-loop (Line
11), seeds in SSet with higher frequency compared with
their neighboring seeds in SSet are given higher exten-
sion priority. When the current seed is more frequent,
we set its start to the end of the previous seed in SSet,
which indicates that it is “extended" (Line 13). Otherwise,
the previous seed in SSet occurs more frequently. In this
case, we set the end of it to the start of current seed
(Line 15).
We use a pair (loc, f ) to represent each sub-seed, where

loc is the location of the sub-seed in R and f is its fre-
quency. After extending a seed Si in SSet, for each sub-
seed in Si, we find out which sub-seed group it belongs
to (Line 25), its location on R (Line 26) and its frequency
(Line 27). Then, the least frequent sub-seed is selected

within each sub-seed group and stored in BSeti[ j], where
j denotes that the sub-seed belongs to sub-seed group j.
A phasing on the length of the current seed is employed
immediately after selecting the least frequent sub-seed
by leaving its unused base pairs to the next seed in SSet
(Line 35). Finally, we unite all the selected sub-seed sets
(Line 38) and retrieve the occurred locations of all selected
sub-seeds to formulate the candidate location list CList
(Line 39).
Hobbes2 [24] proposed to select e + 2 non-overlapping

seeds for generating candidate positions and showed that
adding an additional seed significantly reduces the num-
ber of candidates thus accelerating read mapping. Based
on this observation, we also select e + 2 seeds in our
approach. According to Hobbes2, it is still reasonable to
assume that each seed independently generates candidate
positions when using e + 2 seeds. Hence, we can select
an optimal combination of e + 2 instead of e + 1 seeds in
Algorithm 2 (Line 8).
Since the variable-length seeding algorithm has fully

utilized the unused base-pairs between adjacent seeds,
it allows a greater freedom of choosing sub-seed
positions for each seed in SSet and thus gener-
ates less candidate locations compared to a naïve
implementation.
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Algorithm 2 Variable-length Seeding
Require: lstep, k, e, R, Occ and Lu
Ensure: a list of candidate locations CList
1: k′ ← k + lstep − 1;
2: for i ← 0 to |R| − k′ do
3: Est[ i]← 0
4: for j ← 0 to lstep − 1 do
5: Est[ i]← Est[ i]+ ∣

∣L(R[ i + j . . . i + j + k − 1] )
∣
∣ ;

6: end for
7: end for
8: Select e + 1 seeds with Occ and Lu and stores them

into SSet
9: SSet[ 0] .start ← 0;

10: SSet[ e] .end ← |R| − 1;
11: for i ← 0 to e + 1 do
12: if SSet[ i] .f >= SSet[ i − 1] .f then
13: SSet[ i] .start ← SSet[ i − 1] .end + 1;
14: else
15: SSet[ i − 1] .end ← SSet[ i] .start − 1;
16: end if
17: end for
18: for i ← 0 to e + 1 do
19: for j ← 0 to lstep − 1 do
20: BSeti[ j] .loc ← SSet[ i] .start + j;
21: BSeti[ j] .f ← |L(SSet[ i] .s)| ;
22: end for
23: end ← lstep;
24: for j ← lstep to SSet[ i] .end − k do
25: offset ← j mod lstep;
26: loc ← SSet[ i] .start + j;
27: f ← |L(R[ loc . . . loc + k − 1] )| ;
28: if loc < BSeti[ offset] .f then
29: BSeti[ offset] .loc ← loc;
30: BSeti[ offset] .f ← f ;
31: end ← j
32: end if
33: end for
34: if end > lstep and i < e + 1 then
35: SSet[ i + 1] .start ← SSet[ i] .start + end + k;
36: end if
37: end for
38: BSet ← ⋃e

i=0 BSeti;
39: Retrieve occurred locations of sub-seeds from BSet

with Occ and Lu, then store them into CList
40: return CList;

FEMworkflow
The workflow of FEM is shown in Fig. 1. FEM is based
on a seed-and-extend strategy and is targeted at standard
multi-core CPUs and takes advantage of multi-threading
as well as SIMD instructions to accelerate the mapping
process. It employs a load balancing scheme implemented
using the Pthreads library. After obtaining the reference

genome sequence, FEM first constructs the succinct hash
index to be used for the alignment. The left part of Fig. 1
presents the construction progress of the succinct hash
index. After loading the index, reads are loaded into a read
queue gradually. Multiple threads exclusively get reads
from the read queue and map them back to the reference
genome as shown in the right part of Fig. 1. The mapping
process mainly consists of the following steps.

1 FEM retrieves candidate locations from the succinct
hash index for each read with group seeding or
variable-length seeding. In this step, we choose
optimal prefix q-gram [5] as the seed selection
algorithm and use additional q-grams [24] to filter
out false positive candidate locations.

2 FEM verifies each candidate location with an
efficient version of the banded Myers’ algorithm. We
have implemented this bit-parallel algorithm with
128-bit registers and the SSE instruction set on a
CPU to accelerate verification.

3 Finally, FEM generates alignment results in SAM
format for valid mapping locations and puts them
into a result queue.

Results
Experimental setup
We have implemented FEM in C++ and compiled it
with GCC 4.8.5. All experiments have been performed
on a Linux server with two Intel Xeon processors (E5-
2650, 2.60 GHz), 64 GB of RAM, CentOS 7.2. We have
thoroughly compared FEM with four state-of-the-art “all-
mappers", which are designed to return all mapping
positions of a read with respect to a given edit dis-
tance threshold: Hobbes3, BitMapper2, Bitmapper, and
Masai. We have also included two popular best-mappers,
GEM and BWA in the comparison. We exclude other
all-mappers (such as mrFAST, mrsFAST [2], Razers3 and
Yara [25]) in our comparison since it has been shown
already previously in [26] that they do not perform as well
as Hobbes3 and BitMapper in terms of either speed or
accuracy.
In our experiments, we have used the human genome

hg19 as reference. We evaluate the performance on
both simulated and real short read datasets. Simulated
reads are generated from hg19 using Mason [27] con-
figured with default Illumina profile settings. We gen-
erate simulated reads of length 100bps. In addition,
we use two real read datasets from NCBI SRA (acces-
sion numbers SRR826460 and SRR826471) with read
lengths between 150 and 250bps. All mappers have been
configured to exhaustively search for possible mapping
locations with up to 4% of the read length as error
threshold for simulated datasets and up to 3% for real
datasets.
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Index construction and index size
We have tested the index construction time for hg19
for the hash-based mappers BitMapper, BitMapper2,
Hobbes3, and FEM (using lstep = 2). Mappers based on
BWT and the FM-index usually require significantly more
construction time compared to hash-based mappers.
Using a single thread, FEM requires 202.7s, BitMapper
requires 627.6s, BitMapper2 requires 519.8s, andHobbes3
requires 558.6s. Thus, FEM is fastest with a speedup of
3.1, 2.6, and 2.8 compared to Hobbes3, BitMapper, and
BitMapper2, respectively.
Among these mappers, only FEM and Hobbes3 sup-

port parallel index construction. Using 32 threads, FEM
requires 52.9s and Hobbes3 requires 249.9s to build
the hg19 index. Index construction of FEM with mul-
tiple threads is thus an order-of magnitude-faster than
BitMapper/BitMapper2 and 4.72 times faster than multi-
threaded Hobbes3. The index construction time of FEM
can be further reduced by increasing the value of lstep; e.g.
it takes 28.1s to build the the index for lstep = 3.
In terms of index size, Bitmapper uses 15 GB, BitMap-

pers2 uses 4.9 GB, Hobbes3 uses 11 GB, and FEM uses 5.3
GB and 3.5 GB for lstep = 2 and 3, respectively. Thus, the
index size of FEM is smaller than that of BitMapper2 when
lstep = 3 and much smaller than that of BitMapper and
Hobbes3. Users can configure lstep to a reasonable value
when they have limited memory or use very large refer-
ence genomes. Table 1 summarizes the results for index
construction.

Performance on simulated datasets
In order to evaluate the accuracy of the mappers, we used
the Rabema benchmarking method [28], which is widely
used in recent studies including [3, 4, 26]. Firstly, RazerS3
has been run in its full-sensitive mode to build the gold
standard that contains all mapping locations with up to
four errors. The gold standard is then used by Rabema to
evaluate the accuracy of each mapper. The categories of
sensitivity scores provided by Rabema benchmark include
all, all-best, any-best. All represents all mapping loca-
tions within a given edit distance, all-best represents all

Table 1 Index construction times (C-Time) and index sizes for
hg19

Mappers C-Time C-Time index size

1 thread (s) 32 threads (s)

FEM (lstep = 2) 202.7 52.9 5.3 GB

FEM (lstep = 3) 133.6 28.1 3.5 GB

Hobbes3 558.6 249.9 11 GB

Bitmapper 627.6 - 15 GB

Bitmapper2 519.8 - 4.9 GB

mapping locations with the lowest edit distance, and any-
best represents anymapping locations with the lowest edit
distance.
Table 2 shows the number of mapped reads and accu-

racy of read mappers for 100,000 simulated reads with
edit distance threshold 4. In the accuracy column, total
denotes the accuracy of total mappings within the thresh-
old and ED i denotes the accuracy of those mappings
with edit distance i. FEM-vl and FEM-g denote FEM with
variable-length seeding and group seeding, respectively.
Both use lstep = 2.
Both FEM-vl and Hobbes3 achieve the highest accuracy

score of 100.00%. BitMapper and BitMapper2 also return
most of the mapping locations but are slightly worse than
FEM-vl andHobbes3. FEM-g only loses a few locations for
the all category but maintains 100.00% accuracy scores for
both all-best and any-best. Masai, GEM, and BWA can-
not return mappings for all reads. Masai loses mappings
in the all-best and any-best categories. GEM loses nearly
30% mapping locations for large edit distances. BWA
performs worst and rarely returns mappings when edit
distance is 4. Thus, we have decided to omit the inclusion
of GEM and BWA for the performance evaluation on real
datasets.

Performance on real datasets
To test the mappers on real datasets, we extracted the
first 5 million reads from SRR826460 and SRR826471
and mapped them against hg19. Table 3 and 4 show the
results on 150 bps and 250 bps reads with the edit distance
threshold set to 4 and 7, respectively. We have tested each
mapper using 1, 8, 16, and 32 threads except for Masai,
since it does not support multi-threading.
When mapping 5 million 150 bp reads against hg19

with the edit distance 4, BitMapper is slightly faster than
FEM-g and FEM-vl when using less than or equal to 16
threads, but slower when using 32 threads. FEM-g is the
fastest with 32 threads. BitMapper2 is around three times
slower than BitMapper and returns incorrectly mapped
reads across chromosome boundaries as mentioned in
[26]. FEM-vl, FEM-g, BitMapper, and Hobbes3 return
almost the same number of mapped reads. Masai loses 36
mapped reads, which is 0.00078% of mappable reads.
Whenmapping 5million 250 bp reads against hg19 with

edit distance 7, FEM-g is the fastest followed by FEM-vl.
When using 32 threads, FEM-g and FEM-vl are 2.8 and 2.4
times faster than BitMapper and an order-of-magnitude
faster thanHobbes3 and BitMapper2.Masai is the slowest.
The numbers of mapped reads of different mappers are
close together. FEM-g and Masai only lose one mappable
reads and BitMapper2 loses 3.
In order to further compare scalability to bigger

datasets, we have randomly extracted 20 million reads
from SRR826460 and mapped them against hg19 using
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Table 2 Rabema benchmarking results for mapping 100k simulated reads of length 100 bps to hg19

Mappers

Mapped
Accuracy

(

total
ED 0 ED 1 ED 2

)

ED 3 ED 4

reads All[%] All-best[%] Any-best[%]

FEM-vl 99997 100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0

FEM-g 99997 99.9705
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

99.99 99.25 100.0 100.0 100.0 100.0

Hobbes3 99997 100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0

BitMapper 99997 99.9999
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0

BitMapper2 99997 99.9998
100.0 100.0 100.0

100.00
100.0 100.0 100.0

100.0
100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0

Masai 99995 99.9493
100.0 100.0 100.0

99.998
100.0 100.0 100.0

99.998
100.0 100.0 100.0

99.97 98.73 100.0 97.33 100.0 97.33

GEM 99994 98.6008
100.0 99.99 99.80

99.994
100.0 99.99 99.98

99.997
100.0 100.0 100.0

89.97 70.24 100.0 96.00 100.0 96.00

BWA 99990 92.2433
98.66 96.79 85.80

97.5195
97.46 97.70 97.35

99.985
100.0 99.97 99.93

36.11 1.83 98.03 96.15 99.74 97.33

FEM, BitMapper, BitMapper2 and Hobbes3. Table 5
shows the results on mapping 150 bps reads with the edit
distance threshold set to 4 and the number of threads set
to 32. FEM-g and FEM-vl are still the fastest ones among
the state-of-the-art all-mappers.
In addition, we have quantified the percentage of time

spent on the different stages of FEM using the two
datasets with read reads. The results shown in Fig. 6 show
that the time on verification dominates the overall run-
time. The filtration time of FEM-vl is slightly longer than
it of FEM-g since seed extension is more expensive.
In terms of thread scalability, both FEM-vl and FEM-g

are scalable for up to 32 threads on our machine. BitMap-
per2 and Hobbes3 only scale well for less than 16 threads.
The runtime of BitMapper even increases when using 32
threads.

Effects of the step size parameter
The step size to scan the reference when building the suc-
cinct hash index affects the performance of read mapping.
By using a large step size, we can retain a small index
size. Since both group seeding and variable-length seeding
utilize the additional prefix algorithm [24] which selects
e+ 2 seeds, then the upper bound of seed length kmax of a
reads R is

kmax =
⌊ |R|
e + 2

⌋

. (6)

Thus, the upper bound of step size lmax is determined by
the maximal seed length kmax and window size k for hash
index as follows:

lmax = kmax − k + 1. (7)

Table 3 Results for mapping 5 million real reads of length 150 bps to the hg19 (ED 4)

Mappers 1-thread time 8-thread time 16-thread time 32-thread time Mapped reads

(s) (s) (s) (s) (#)

FEM-vl 1370 195 101 78 4615727

FEM-g 1224 176 91 71 4615701

Hobbes3 2965 405 213 171 4615730

Bitmapper 1123 137 83 82 4615730

Bitmapper2 3405 467 250 232 4615829

Masai 6556 - - - 4615694
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Table 4 Results for mapping 5 million real reads of length 250 bps to the hg19 (ED 7)

Mappers 1-thread time 8-thread time 16-thread time 32-thread time Mapped reads

(s) (s) (s) (s) (#)

FEM-vl 1085 150 78 56 4014477

FEM-g 893 126 64 48 4014476

Hobbes3 8442 1160 594 529 4014477

Bitmapper 1089 149 134 135 4014477

Bitmapper2 4957 680 353 310 4014474

Masai 11363 - - - 4014476

We run an experiment to evaluate the effect of the value
of lstep on performance. In the experiment, we set the k-
mer size (window size) as 12 and build the succinct hash
index with different step sizes ranging from 2 to 16. We
then measure the 32-thread run time for mapping 5 mil-
lion 250 bp reads from real datasets that we have used to
evaluate the speed. Figure 7 shows the results.
We can observe that the runtime of FEM with variable-

length seeding becomes longer when increasing lstep. This
is because a larger step size reduces the search space when
finding least frequent sub-seeds within each extended
seed. Nevertheless, FEM-vl still outperforms BitMapper
when the step size is less than or equal to 6, which
means FEM-vl can reduce the index size by nearly 6 times
without increasing the mapping time.
Furthermore, the runtime of FEM with group seeding

is less affected by the step size. In order to analyze the
reason, we comprehend the seeding algorithm as to select
shorter q-mers from a read of length r′ called sub-read,
where

q =
⌈

k
lstep

⌉

(8)

and

r′ =
⌊ |r| − (lstep + k − 1)

lstep

⌋

. (9)

The step size for q-mers in r′ is

l′step = 1. (10)

We can observe that the running time drops when the
step size equals to 6 or 12. When the step size is half
or equals to the window size, according to Eq. 8, group
seeding does not waste base-pairs to avoid overlap when
selecting seeds in each seed group.

Table 5 Results for mapping 20 million real reads of length 150
bps to the hg19 (ED 4)

Mappers FEM-g FEM-vl BitMapper2 BitMapper Hobbes3

32-thread time/s 467 520 770 722 1189

Number of generated candidate locations
To analyze the filtration efficiency of our proposed seed-
ing algorithm, we have counted the total candidate loca-
tions under different error thresholds varying from 0 to
7 when mapping 5 million 250-bp reads from the real
dataset used in our speed evaluation. Since seeding algo-
rithms adopt the seed selection algorithm in Hobbes2
[24], we have compared the total candidate locations gen-
erated by FEM-g, FEM-vl, and Hobbes2 (see Fig. 8).
We can observe that FEM-vl generates the least num-

ber of candidates when the error threshold is less or equal
than 3. This is because the variable-length seeding algo-
rithm extends seeds to choose sub-seeds with less total
frequency than the frequency of fixed-length seeds cho-
sen by FEM-g and Hobbes2. When the error threshold
is greater than 3, the total number of candidate locations
generated by FEM-g is the smallest. Since group seeding
allows seeds in different seed groups to be overlapped, it

a

c

b

d

Fig. 6 Percentage of runtime spent on different stages of FEM.
a, b: When mapping the 150-bp real read dataset with FEM-g (a) and
FEM-vl (b). c, d: When mapping the 250-bp real read dataset with
FEM-g (c) and FEM-vl (d)
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Fig. 7 The mapping time of FEM-g and FEM-vl with different indexing step size lstep

is less effected by more limited seed pools. Thus, FEM-g
can generate fewer candidates by choosing less frequent
overlapped seeds in different seed groups.

Discussion
FEM is an all-mapper that can return all mappings of a
read with respect to a given edit distance. FEM achieves
high speed at a low memory footprint by introducing a
number of technical novelties:

1 A succinct hash index that significantly reduces the
memory footprint compared to a classical q-gram
index. The design and implementation of an efficient
parallel algorithm allows us to build this index for a
human reference genome within one minute.

2 The efficient seed selection algorithm called
group-seeding is tailored towards the succinct hash
index. It guarantees to return all mapping locations
when only considering mismatches and maintains
high accuracy if there are insertions or deletions.

3 To further tolerate indels, we propose another novel
seed selection algorithm, variable-length seeding.
Based on a seed length extension strategy, it achieves
a high filtration efficiency and guarantees
comprehensive accuracy in any cases.

Based on the specific seed selection algorithm, we
have distinguished FEM as FEM-vl and as FEM-g. From

our comprehensive evaluation of FEM compared to sev-
eral state-of-the-art read mappers using both simulated
and real genomic data, we can observe that FEM-vl
returns all mapping locations and FEM-g can miss a few
locations when considering insertions and deletions. As
for the speed, FEM achieves a 2.8-fold speedup against
BitMapper and an order-of-magnitude speedup against
BitMapper2 and Hobbes3 while occupying significantly
less memory. Furthermore, FEM is highly scalable and
achieves a speedup of over 20 when using 32 threads on
two Intel Xeon E5-2620 processors. Due to its low mem-
ory footprint and inherent parallelism, the FEM approach
is a good candidate for implementation on modern accel-
erators such as CUDA-enabled GPUs and many-core
architectures.

Conclusion
Propelled by the continuing development of NGS
technologies, the handling of large sequence datasets
becomes increasingly challenging. Short read mapping is
a performance-critical and compute-intensive step for a
variety of NGS pipelines. In this paper, we have shown
how a succinct hash index can be used as an efficient data
structure for read mapping. Based on this data structure
we have presented FEM, a fast and efficient read mapper
designed to return all mapping positions of a read in
a reference genome sequence with respect to an error

Fig. 8 The number of candidate locations for FEM and Hobbes2 under different error thresholds
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threshold. Tailored towards the succinct hash index, FEM
integrates two novel seed selection algorithms for gener-
ating a set of candidate locations. The group seeding algo-
rithm can retrieve all mapping locations under hamming
distances while the variable-length seeding algorithm
additionally supports insertion and deletion. Our experi-
mental results show that FEM substantially improves the
performance of all-mappers in terms of both speed and
accuracy. Furthermore, FEM scales when using multi-
threading on common multi-core CPUs.
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