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Abstract

Background: After decades of identifying risk factors using array-based genome-wide association studies (GWAS),
genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large
sample sizes for statistical power and has brought up questions about whether the current variant calling practices
are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different
pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines.
Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume
that false negative calls are a small percent of total.

Results: We analyzed 10,000 exomes from the Alzheimer’s Disease Sequencing Project (ADSP) using multiple
analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified
by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding
single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000
samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with
sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC
variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low
frequency (minor allele frequency [MAF] 1–5%) and rare (MAF < 1%) variants, which are the very type of variants of
interest. In 660 Alzheimer’s disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare
pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline
approach but recovered by the multi-pipeline approach.

Conclusions: Identification of the complete variant set from sequencing data is the prerequisite of genetic
association analyses. The current analytic practice of calling genetic variants from sequencing data using a single
bioinformatics pipeline is no longer adequate with the increasingly large projects. The number and percentage of
quality variants that passed quality filters but are missed by the one-pipeline approach rapidly increased with
sample size.
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Background
The identification of genetic risk factors in complex dis-
eases has shifted to rare variants discovery by large
sequencing-based studies in search for the substantial
missing heritability despite decades of GWAS. Unlike
the array-based GWAS, where a pre-defined list of vari-
ants are “seeded” on the array surface and called in every
sample, variant calling from sequencing data relies on
bioinformatics algorithms for variant discovery and qual-
ity filtering to obtain a final set of variants for associ-
ation analyses. The read-to-variant analytic pipelines,
such as the most popular Genome Analysis Toolkit
(GATK) [1, 2] (Fig. 1a) and other well-accepted analytic
workflows [3, 4], have been routinely used for
sequencing-based germline variant discovery. However,
these workflows were established for much smaller sam-
ple sizes and need to be re-examined for today’s increas-
ingly large sample sizes.
A variant calling pipeline typically includes two main

steps [5]. First, the reads are mapped to the human ref-
erence genome using one single selected alignment tool.
Different aligners are designed to optimize the detection
of different types of variants while balancing speed, sen-
sitivity, and specificity [6, 7]. Studies have shown that
the performances of most aligners are similar [8], and
the impact of aligner choice on the consequent variant
call is small [9], while the read alignment is computa-
tionally expensive and time-consuming. Therefore, the
use of any one of several popular alignment tools

including Bowtie [10], BWA-MEM [11], and NovoAlign
(Novocraft Technologies Sdn Bhd, Selangor, Malaysia) is
currently accepted. However, performance analysis of
the different aligners has been done on very small num-
bers of simulated or real sequencing samples and the
conclusions may not apply to larger sample sizes. For
example, the differences in mapping accuracy between
Bowtie, BWA, and NovoAlign are well below 1% using
one single simulated sample [7], but the cumulative dif-
ferences in accuracy may increase significantly if the
rare alleles within a larger population of individuals are
considered collectively. Consequently, the impact on
genotype calls of using one aligner vs. another might be
more substantial for sequencing projects with larger
sample sizes.
The second step of genetic variant discovery is variant

calling, which includes variant identification, variant
quality control (QC) and filtering. Currently the GATK
best practices analytic guidelines recommend using Hap-
lotypeCaller, followed by multi-sample-joint genotyping
(which genotypes a group of samples together) instead
of single-sample genotyping (which genotypes variants
in individual samples independently without making use
of information from other samples) [12, 13]. The bene-
fits of multi-sample-joint genotyping include: (i) greater
sensitivity for low-frequency variants due to the ability
to call variants at sites where a carrier has low coverage/
quality but other samples within sample group have a
confident variant at that location, and (ii) greater ability

Fig. 1 The variant analysis workflow. a The default variant calling workflow recommended by GATK (b) The workflow to test the benefit of an
additional sequence aligner. c The workflow to test the benefit of both single-sample and multi-sample-joint genotyping
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to filter out false positives because the statistical models
for variant quality estimation work better with larger
amounts of data. However, this practice also calls for a
closer examination of variant calling performance with
increasingly large sample sizes. The small proportion of
variants missed by not performing single sample geno-
typing on the small numbers of individuals used for
most performance evaluation studies is likely negligible.
However, the use of large sample sizes may lead to the
collective loss of a substantial number of valid but low-
frequency variants using the statistical models applied in
multi-sample-joint genotyping.
Here, we used the publically available Alzheimer’s Dis-

ease Sequencing Project (ADSP) exome dataset [14]
which was generated to study AD, a common neurode-
generative disease which usually affects individuals at
old age; however, about 10% of patients have onset of
symptoms before 65 (early-onset AD; EOAD). Research
over the past two decades established that mutations in
3 genes: the amyloid precursor protein gene (APP, NM_
000484), presenilin 1 gene (PSEN1, NM_000021) and
presenilin 2 gene (PSEN2, NM_000447) can cause auto-
somal dominant forms of EOAD. Using the ADSP data-
set, we discovered that the choices of alignment and
variant calling strategies had substantial impact on the
number of variants called in a sample size-dependent
manner. We further identified a large number of good-
quality variants from the ADSP exome data that were
missed by the commonly used “best practices” of calling
variants by one single pipeline. Our findings revealed rela-
tionships between the bioinformatics pipelines employed
by the researchers and the discovery of disease variants,
and suggested that comparison studies and alternative
variant calling strategies may be beneficial for optimal
variant discovery from large datasets.

Methods
Dataset description
We downloaded Sequence Read Archive (SRA) files of
10,933 ADSP individuals (5787 Alzheimer’s Disease
(AD) cases and 5146 controls) from dbGap and con-
verted to FASTQ files using the SRA Toolkit [15].The
FASTQ files were processed using the Mayo Clinic Gen-
omeGPS DNA Analysis Pipeline (v3.0.2) (formerly
named as TREAT) [16]: reads were aligned to human
reference genome GRCh37 using NovoAlign; after local
realignment and base quality recalibration, the variants
were called using GATK HaplotypeCaller and multi-
sample-joint genotyping. The variant quality control
(QC) was performed using GATK Variant Quality Score
Recalibration (VQSR).
The sample- and population-level QC was performed

using an in-house tool kit and PLINK2 [17]. The
sample-level QC removed samples not meeting the

following criteria: (1) ≥10× coverage for at least 90% of
targeted exome regions, and ≥ 40× coverage for at least
30% of targeted regions (26 samples removed); (2) mini-
mum variant call rate of 95% per sample (29 samples re-
moved); (3) average variant Transition/Transversion (Ti/
Tv) ratio of least 2.8 (0 sample removed); (4) sample
contamination as estimated by FREEMIX statistics > 0.
02 [18] (143 samples removed); (5) sex check (gender
error is defined as PLINK F estimate < 0.7 for males
and > 0.3 for females) (68 samples removed); and (6)
APOE genotypes match between the exome data and
the sample meta-data (337 samples removed). In
addition, the population-level QC removed 146 1st and
2nd degree relatives, 265 non-Caucasian, and 34 samples
due to batch effect. Note that some samples failed more
than one criterion. We retained a total of 10,033 samples
post-QC, which served as the pool from which different
sample sizes were selected for this manuscript (the de-
tails of sample and population level QC are described in
a separate manuscript).

Testing the benefit of additional sequence aligners
We selected a total of 1952 samples from the 10,033
sample pool for the aligner test, including 660 EOAD
cases and 1292 age and gender matched controls. This
sample set was part of an on-going EOAD project, and
chosen with the limitation of available computational re-
sources for performing read alignments using multiple
aligners in mind. We aligned the FASTQ files from these
1952 samples to the human reference genome GRCh37
twice, using BWA-MEM and NovoAlign at default set-
tings, respectively (Fig. 1b). After each alignment, dupli-
cate reads were marked using Picard (v1.119). The BAM
files were re-aligned around INDELs using the GATK
IndelRealigner and recalibrated using the GATK BaseRe-
calibrator programs (v3.3–0). After realignment, variant
calling and multi-sample-joint genotyping were performed
using GATK HaplotypeCaller (v3.3–0) and Genoty-
peGVCFs (v3.4–46) for the following sample sizes: 50,100,
200, 500, 1000, and 1952. The GATK VQSR was used for
variant quality score calculation. Functional annotations
of variant sites were performed using ANNOVAR (version
2016Feb01) [19]. For this proof-of-principle study, only
bi-allelic single nucleotide variants (SNVs) that received
VQSR PASS scores with variant call rate of at least 90%
across samples were included in the analyses (Fig. 1b).

Testing the benefit of both single-sample and multi-
sample-joint genotyping
We randomly selected 10,000 samples for the genotyping
strategy comparison test. The FASTQ files of the 10,000
samples were aligned to the human reference genome
GRCh37 using NovoAlign at default settings. After align-
ment, duplicate reads were marked using Picard (v1.119).
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The BAM files were re-aligned around INDELs using the
GATK IndelRealigner and recalibrated using the GATK
BaseRecalibrator programs, respectively (v3.3–0). Single-
sample variant calling and single-sample genotyping were
performed using GATK HaplotypeCaller (v3.3–0) and
GenotypeGVCFs (v3.4–46) for all 10,000 samples. Joint
genotyping was performed for the following sample sizes:
50, 100, 500, 2000, 5000 and 10,000. Functional annota-
tions of variant sites were performed using ANNOVAR
(version 2016Feb01). Only bi-allelic SNVs that received
VQSR PASS scores were used in the analyses. Minimum
variant call rate was not required here because it cannot be
properly calculated for single-sample genotyping (Fig. 1c).

Variant quality assessment
In addition to VQSR, the quality of variants was assessed
by the following metrics when applicable: 1) B Allele
proportion (BAP), calculated as the percentage of reads
supporting the alternative allele; 2) B allele frequency
(BAF), calculated as the frequency of the alternative al-
lele in given sample sizes; 3) number of samples with the
B allele, calculated when BAF calculation is not applic-
able; 4) Genotype Quality (GQ) scores provided by VCF
files; 5) Depth of sequencing (DP) calculated as the total
number of reads at the variant position; 6) average GC
content of 100 bases flanking variants of interest; 7) vari-
ant distribution across chromosome; and 8) overlap of
the variant position with genomic regions with mapping
difficulties including the low complexity region (LCR)
[20] and segment duplication regions (SDR) [21].

Results
Discovery of additional variants by using two different
alignment methods
We compared variants called from BAM alignment files
generated by either BWA-MEM or NovoAlign from the
ADSP dataset at samples sizes of 50, 100, 200, 500, 1000,
and 1952. For each sample size except for the largest, we
randomly sampled 5 times and compared the average. We
found that the shared variants identified by both BWA-
MEM and NovoAlign decreased substantially from 91.

59% to 73.76% when sample sizes increased from 50 to
1952 (Fig. 2a). At sample size of 1952, 63,474 variants
were uniquely identified by BWA-MEM, accounting for
15.76% of total variants, and 42,204 variants were uniquely
identify by NovoAlign, accounting for 10.48% of total vari-
ants (Fig. 2b).

The quality metrics of aligner-specific variants
The large discrepancy between the sets of variants iden-
tified from alignments by BWA-MEM and NovoAlign in
this dataset led us to investigate whether the variants
uniquely identified by one aligner but not the other were
of reliable quality. We investigated several main variant
quality metrics, including B allele proportion (BAP),
genotype quality (GQ), read depth (DP), and B allele fre-
quency (BAF), and compared them among the three
groups of variants: variants uniquely identified from
BWA-MEM alignments(BWA-unique), variants uniquely
identified from NovoAlign alignments(Novo-unique),
and variants identified from alignments by both aligners
(shared). At our largest sample size (n = 1952), we found
that BWA-unique, Novo-unique and shared variants had
similar distributions of BAP, centering at 0.5 and 1 (Fig.
3a), consistent with the characteristics of diploid ge-
nomes. The three groups of variants also demonstrated
similar distribution of high GQ (Fig. 3b) and DP (Fig.
3c), indicating comparable genotype confidence and
depth of coverage. Interestingly, a larger difference
among the three groups of variants was shown in BAF
(Fig. 3d): 98.99% of BWA-unique and 97.31% of Novo-
unique variants had BAF < = 0.5%, higher than that of
the shared variants (77.80% variants had BAF < =0.5%),
suggesting that more of the aligner-specific variants are
rare in the population.

The genomic location and GC content of the aligner-
specific variants
In order to further characterize the aligner-specific vari-
ants, we compared the genomic regions in which the three
groups of variants are located. Specifically, exons from
genomic regions such as the Low Complexity Region

a b

Fig. 2 Using two sequence aligners identified overlapping and unique variants. a The percentage of overlap in variants identified by BWA-MEM and
NovoAlign decreased substantially with increasing sample sizes. b Comparison of variants identified by BWA-MEM and NovoAlign in 1952 samples
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(LCR) and Segment Duplication Regions (SDR) are known
to have mapping difficulties, which can be reflected in dif-
ferent calling sensitivities resulting from different aligners.
At sample size 1952, we found that BWA-unique, Novo-
unique, and shared variants were distributed similarly
across chromosomes (Fig. 4a). Less than 0.2% of variants
from each variant group were located inside of the LCR.
However, compared to shared variants (which had only 2.
95% variants located inside of SDR), 6.78% of BWA-
unique variants and 12.76% of Novo-unique variants
mapped to the SDR (Fig. 4b, Table 1). This result indicates
that some unique variants may have been missed by one

of the two aligners due to the different ability of alignment
algorithms to properly map reads in difficult genomic re-
gions. The fact that a higher percentage of Novo-unique
variants are located in the SDR is consistent with previous
reports that NovoAlign has better mapping sensitivity [22].
The three variant groups had similar average GC content
in flanking regions (Fig. 4c, Additional file 1: Table S1).

Biological relevance of the aligner-specific variants
Because the impact of a genetic variant often relies on
its impact on protein function, different levels of re-
search priority are often given to variants with different

a b

c d

Fig. 3 The quality metrics of BWA-unique, Novo-unique and shared variants at sample size 1952. a The distribution of BAP in BWA-unique (red), Novo-
unique (green) and shared variants (blue). b The distribution of GQ in BWA-unique (red), Novo-unique (green) and shared variants (blue). c The distribution
of DP in BWA-unique (red), Novo-unique (green) and shared variants (blue). d The distribution of BAF in BWA-unique (red), Novo-unique (green) and
shared variants (blue)
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functional impacts. We therefore categorized variants
identified in the 1952 samples into three tiers based on
their functional importance: Tier 1 includes variants that
disrupt the start or stop codon, or cause splicing events;
Tier 2 includes variants that cause amino acid changes
(non-synonymous), and Tier 3 includes all other types of
SNVs. We annotated BWA-unique, Novo-unique and
shared variants using ANNOVAR, and compared the
composition of Tier 1, 2, and 3 in the three groups of vari-
ants based on the annotation. Our results showed that the
tier composition was comparable among the three groups
of variants (Fig. 4d, Additional file 2: Table S2).
We next evaluated whether some of the aligner-specific

variants have been recorded in public databases. We
searched the three groups of variants in the following data-
bases: dbSNP build 147, Exome Sequencing Project (ESP),
ClinVar, the 1000 Genomes Project (1000G), The Exome

Aggregation Consortium (ExAC), Kaviar Genomic Variant
Database (Kaviar), and the Haplotype Reference Consor-
tium (HRC). At a sample size of 1952, 77.53% of the BWA-
unique and 76.7% of Novo-unique variants were found in
public databases, suggesting that the majority of aligner-
specific variants are likely true positives. In addition, 8.85%
of BWA-unique, and 9.4% of Novo-unique variants were
novel variants that had a Combined Annotation Dependent
Depletion (CADD) score (PHRED-like) of at least 20 [23],
indicating that these variants are amongst the top 1% of
deleterious variants in the human genome and likely bio-
logically relevant (Fig. 4e, Additional file 3: Table S3).

Single-sample genotyping added variants not identified
by joint genotyping
In order to assess the contribution of single-sample geno-
typing, we compared variant call-sets generated by single-

a

b c

d e

Fig. 4 Characteristics of the aligner-specific variants. a The chromosome distribution of BWA-unique (red), Novo-unique (green) and shared variants (blue).
b The percentage of variants in the LCR, SDR and other regions among BWA-unique, Novo-unique, and shared variants. c The average GC content of
BWA-unique (red), Novo-unique (green) and shared variants (blue). d The composition of different functional tiers in BWA-unique (red), Novo-unique
(green) and shared variants (blue). Tier 1 includes variants that disrupt the start or stop codon, or cause splicing events; Tier 2 includes variants that cause
non-synonymous changes, and Tier3 includes all other types. e The composition of known and novel variants in BWA-unique, Novo-unique and
shared variants
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sample genotyping and those generated by multi-sample-
joint genotyping at sample sizes of 50, 100, 500, 2000,
5000 and 10,000. For each sample size except for the
largest, we randomly sampled 5 times and compared the
average. We found that the percentage of variants
uniquely identified by single-sample genotyping dramatic-
ally increased with sample size (Fig. 5a). At a sample size
of 10,000, single-sample genotyping added 811,242 vari-
ants, accounting for 55.9% of total called variants. Multi-
sample-joint genotyping, on the other hand, identified
12,003 variants that were not identified by single-sample
genotyping, accounting for 0.83% of total called variants
(Fig. 5b).

The quality metrics of variants uniquely called by single-
sample genotyping
In order to learn about the quality of the variants
uniquely identified by single-sample genotyping, we
compared BAP, GQ, DP and the number of samples with

the B allele among the three groups of variants: variants
uniquely identified by multi-sample-joint genotyping
(multi-unique), variants uniquely identified by single-
sample genotyping (single-unique), and variants identi-
fied by both strategies (shared). We found that the three
groups of variants had similar BAP and GQ distribution
(Fig. 6a, b). However, compared to shared variants, both
multi-unique and single-unique variants showed lower
depth of coverage (Fig. 6c), suggesting that variants with
lower coverage may be more sensitive to genotyping
strategies. Due to the fact that we cannot differentiate
between no call and a same-as-reference call in single-
sample genotyping, we were unable to properly plot BAF
for single-sample genotyping. Instead, we compared the
number of samples with the B allele among the three
variant groups (Fig. 6d). Interesting, we discovered that
94.5% of single-unique variants were present in less
than 5 samples (73.81% were singletons), and 93.4%
of multi-unique variants were present in less than 5
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Fig. 5 Single-sample genotyping added variants not identified by multi-sample-joint genotyping. a single-sample genotyping added increasing
percentage of variants with increasing sample size (b) comparison of variant call-sets between single-sample genotyping and joint genotyping at
sample size of 10,000

Table 1 Previously-published pathogenic and protective variants detected in known EOAD genes using the default and alternative
approaches

Gene Protein change Publication GnomeAD EUR
non-Fin BAF

Called by
default pipeline

APP p.V717F [25] 0 Yes

APP p.I716T [26] 0 No

APP p.A673T [27, 28] 0.0003632 No

PSEN1 p.A79V [29, 30] 0.00002369 Yes

PSEN1 p.G206A [31, 32] 0 Yes

PSEN1 p.H214Y [33, 34] 0.000008952 No

PSEN1 p.P218L [35] 0.0000179 Yes

PSEN1 p.L262F [36] 0 Yes

PSEN1 p.R269H [37, 38] 0 Yes

PSEN1 p.A396T [34] 0 Yes

PSEN2 p.A85V [24] 0.000008955 Yes

PSEN2 p.L238P [39] 0.00002687 Yes

PSEN2 p.R284G [40] 0.000008952 No
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samples (73.51% were singletons), higher than that of
the shared variants among which 64.5% were present
in less than 5 samples (40% singletons), suggesting
that single-sample genotyping has higher sensitivity to
rare variants.

The genomic location and GC content of variants
uniquely identified by single-sample genotyping
We next compared the genomic regions in which the
three groups of variants are located. We found that the
three groups of variants are distributed similarly across
chromosomes (Fig. 7a). The three groups of variants

have a similarly low percentage to the aligner-specific
variants located inside of the LCR and SDR (Fig. 7b,
Additional file 4: Table S4). Interestingly, the average
GC content flanking multi-unique variants are slightly
higher than single-unique and shared variants (Fig. 7c,
Additional file 4: Table S4). These data suggest that var-
iants added by single-sample genotyping have compar-
able characteristics to the shared variants, and that the
some of the multi-unique variants may not have been
identified by single-sample genotyping due to the char-
acteristics of the DNA sequence surrounding these
variants.

a b

c d

Fig. 6 The quality metrics of 3 groups of variants at sample size n10,000. a The distribution of BAP in multi-unique (red), single-unique (green)
and shared variants (blue). b The distribution of GQ in multi-unique (red), single-unique (green) and shared variants (blue). cThe distribution of DP
in multi-unique (red), single-unique (green) and shared variants (blue). d The distribution of the number of samples having the B allele in multi-
unique (red), single-unique (green) and shared variants (blue)

Ren et al. BMC Bioinformatics  (2018) 19:139 Page 8 of 12



Biological relevance of variants uniquely identified by
single-sample genotyping
As we did for the aligner comparison above, we catego-
rized variants identified in the 10,000 samples into three
functional tiers and compared the composition of Tier 1,
2, and 3 among single-unique, multi-unique and shared
variants. Our results showed that the tier composition was
similar among the three groups (Fig. 7d, Additional file 5:
Table S5). In addition, we compared variants from
each group to public databases including dbSNP build
147, ESP, ClinVar, 1000G, ExAC, Kaviar, and HRC.
We found that 61.98% of single-unique variants were
recorded in public databases, suggesting that at least
this proportion of these variants are likely true positives
(Fig. 7e, Additional file 6: Table S6). Also, 15.36% of
single-unique variants identified are novel variants that
had a CADD score (PHRED-like) of at least 20, indicating
that these variants were amongst the top 1% of deleterious

variants in the human genome. Again, this strongly indi-
cates biological relevance of a substantial proportion of
the single-unique variants detected.

Discovery of additional pathogenic and protective EOAD
variants using multiple aligners and genotyping
strategies
To demonstrate the benefit of using multiple aligners to-
gether with multiple genotyping strategies, especially in
the context of rare variants, we evaluated whether
additional pathogenic or protective mutations could be
identified in the 3 established autosomal dominant
EOAD genes (APP, PSEN1 and PSEN2), by using these
alternative approaches. In our EOAD patient cohort, the
default strategy (BWA-MEM followed by multi-sample-
joint genotyping) identified nine known pathogenic mu-
tations in the three genes: one in APP, six in PSEN1, and
two in PSEN2. One of the PSEN2 mutations, p.A85V,

b c

d e

a

Fig. 7 Characteristics of multi-unique, single-unique and shared variants. a Chromosome distribution of multi-unique (red), single-unique (green) and
shared variants (blue). b The percentage of variants in the LCR, SDR and other regions among multi-unique, single-unique and shared variants. c The
average GC content flanking of multi-unique (red), single-unique (green) and shared variants (blue). d The functional tiers in multi-unique (red), single-
unique (green) and shared variants (blue). Tier 1 includes variants that disrupt the start or stop codon, or cause splicing events; Tier 2 includes variants that
cause non-synonymous changes, and Tier3 includes all other types. e The composition of known and novel variants in multi-unique, single-unique and
shared variants
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was found in an 89-year old control individual; however,
this mutation is known for its large clinical variability and
late age at onset [24]. Importantly, by adding NovoAlign
as an alternative aligner and by performing single-sample
genotyping in addition to multi-sample-joint genotyping,
we identified four additional previously-published patho-
genic or protective variants: two in APP (p.I716T and p.
A673T), one in PSEN1 (p.H214Y), and one in PSEN2 (p.
R284G) (Table 1). Overall, our alternative strategies identi-
fied 4 out of 13 (31%) previously-published rare patho-
genic or protective mutations in APP, PSEN1, and PSEN2
genes that were undetected by the default variant calling
approach, which are likely true positives. The full list of
variants identified in APP, PSEN1 and PSEN2 by each
workflow is shown in Additional file 7: Table S7.

Discussion
The multi-pipeline approach can rescue a substantial
amount of variants with potential biological significance
Our aligner comparison between BWA-MEM and
NovoAlign identified a large number of variants that
would have been missed by using either one of the two
aligners compared. In a cohort of 1952 individuals, using
BWA-MEM alone would have led to the identification
of 42,204 fewer variants, or 10.48% fewer total variants,
and using NovoAlign alone would have missed 63,474,
or 15.76% of total variants. The two aligners were
chosen among other top aligners in this study because
they were shown to have good balance between speed
and alignment accuracy [6]. Read alignment is the most
computationally expensive step, and using these two
aligners we were able to demonstrate the necessity of
aligning reads using multiple aligners and its impact in
identifying missing variants. It is likely that including
additional aligners will rescue even more variants in our
cohort since different aligners have different preferences
that may favor different types of variants.
Similarly, by adding single-sample genotyping on the

ADSP WES dataset, we have identified 55.9% additional
variants at sample size of 10,000. Furthermore, we
showed that a large percentage of the recovered variants
had low frequencies in the population, and thus may be
extremely valuable in rare variant studies. In experi-
ments with large populations, a variant that only exists
in one or a few individuals (private variants) are more
likely to be missed by multi-sample-joint genotyping be-
cause the reads supporting the alternative allele may be
deemed statistically insignificant in the context of thou-
sands of samples, while single-sample genotyping has
better sensitivity to such variants. In circumstances
where using multiple aligners is impractical due to limi-
tations in financial or computational resources, single-
sample genotyping provides a time- and cost-effective al-
ternative to gather more complete variant call-sets.

Quality and reliability of rescued variants
Because the ADSP dataset is a public dataset, we do not
have access to the DNA samples to validate in-lab the
variants we identified, which would have been especially
informative for the recovered variants identified by our
multi-pipeline approach. However, by requiring all res-
cued variants to pass VQSR, investigating various add-
itional variant quality measures, distribution across the
genome, local GC content, overlap with public databases
and previous publication, we found that the recovered
variants had comparable characteristics to the ones
jointly identified by using both aligners or by using both
genotyping strategies. What’s more, the majority of re-
covered variants are known variants in the human popu-
lation, which gave us confidence that a large number of
them are likely true positives. However, we are aware
that using multiple approaches inevitably introduces
more noises into the final variant call-sets, and that not
all recovered variants are true positives even if they
demonstrate all normal characteristics. We therefore
strongly recommend that researchers take caution when
using multiple pipelines for variant discovery, and that
additional filtering based on other statistical models or
prior biological knowledge may be necessary to control
false discovery. At the same time, the assumption that
the variants called uniquely/exclusively by a single pipe-
line are of lesser quality is not sustained by evidence. In
fact, all aligners and variant callers have their own
biases; therefore the variant call sets by different pipe-
lines complement each other in theory. In experiments
with large sample sizes designed to capture rare variants,
even a small percentage of missed variants can result in
hundreds and thousands of missed opportunities to
identify meaningful disease-related genes. The multi-
pipeline approach warrants a more complete variant
call-set, which is extremely valuable for large scale WES
experiments in search of rare variants.

The unprecedented increase of data volume requires
more tool- and parameter- testing to achieve optimal
variant discovery outcome
The rapidly increasing sample sizes of sequencing-
based genetic studies of complex disease pose new
challenges to the read-to-variant analytics. The identi-
fication of a complete set of genomic variants, com-
mon and rare, is of paramount importance before
association analyses.
While our study demonstrated the benefit of using

multiple variant calling pipelines for WES data, it is
important to note that other types of NGS data may
have optimal outcomes from different combinations
of tools and parametric settings to those described
here, contingent on sample sizes. Comparison studies
of multiple variant-calling methods on datasets from
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whole genome sequencing, whole transcriptome se-
quencing, and targeted sequencing are now necessary.

Conclusions
After decades of genetic research, there are still substantial
amount of missing heritability to be identified in complex
disease such as the Alzheimer’s. Our study strongly sug-
gested that limitations from current bioinformatics prac-
tices might be one of the culprits. Using the ADSP exome
data, and by comparing multiple aligners and genotyping
strategies, our study showed that today’s common analytic
practice of using a single read-to-variant pipeline missed
substantial percentage of good quality variants, including
previously published pathogenic and protective rare AD
variants, in a sample size dependent manner (more loss in
larger cohorts). Furthermore, the missed variants are dis-
proportionally of low and rare frequencies, which are the
variants of interest for all large sequencing projects. A case
study of 660 EOAD patients from ADSP showed that
current default pipeline missed 4 out of 13 (31%) of previ-
ously published rare pathogenic and protective mutations
in three genes known to associate with the disease. Our
results support the utilization of multiple analytic ap-
proaches in search of rare genetic risk factors in large ex-
ome sequencing projects.
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