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Abstract

Background: Alignment-free sequence similarity analysis methods often lead to significant savings in computational
time over alignment-based counterparts.

Results: A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for
Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a
sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are
transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original
sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification.

Conclusions: Using two different types of applications, namely, clustering and classification, we compared SSAW
against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or
superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time
was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the
rapidly increasing volumes of sequence data required by most modern applications.
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Background
Efficient and accurate similarity analysis for a large
number of sequences is a challenging problem in compu-
tational biology [1, 2]. Alignment-based and alignment-
free sequence similarity analysis are the two primary
approaches to this problem. However, the huge compu-
tational time requirement of the traditional alignment-
based methods is a major bottleneck [3]. Alignment-free
methods have continued to grow in popularity, given their
high time efficiency and competitive performance with
respect to accuracy [3–5].
Over the years, alignment-free methods have been

used on various sequence analysis problems in biology
and medicine, including DNA sequences [6–8], RNA
sequences [9], protein sequences [10, 11], as well as in
detection of single nucleotide variants in genomes [12],
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cancer mutations [13], analysis of genetic gene trans-
fer [14, 15], and even in clinical practice [16]. Although
initially developed for problems in computational biol-
ogy [17–22], alignment-free methods have found sig-
nificant applications in many other application areas,
e.g., computer science [1, 2], graphics [23], and forensic
science [24].
Alignment-free approaches are broadly divided into two

groups [3]: word-based methods and information theory
based methods. Word-based methods commonly divide
sequences into words(also called k-mers, k-tuples, or
k-strings) in order to compare their similarity (/dis-
similarity) [25]. Information theory based methods usu-
ally evaluate the informational content of full sequences
[26–29]. According to Bonhamcarter et al. [25],the word-
based methods can be further divided into five categories,
namely, base-base correlations (BBC), feature frequency
profiles (FFPs), compositional vectors(CVs), string com-
position methods, and the D2-statistic family.
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Our proposed SSAW method is more closely related
to the feature frequency profiles under the word-based
methods [25]. Bonhamcarter et al. [25] surveyed 14 dif-
ferent alignment-free word-based methods [27, 29–37].
Many new approaches continue to emerge [3, 38–41].
Among them, the Wavelet-based Feature Vector(WFV)
model by Bao et al. [41] transformed DNA sequences into
a numeric feature vector for further classification. Our
work is inspired by this transformation.
The Fourier transform has been attempted to con-

vert DNA sequences to different feature vectors and was
reported to be efficient [42–45]. Although the Fourier
transformation is able to clearly characterize a sequence
in the frequency domain, it is not sensitive to the time
domain. The wavelet transformation has been used to
overcome this shortcoming [46, 47]. Haimovich et al.
[48] studied DNA sequences of different functions, and
found that the wavelet transform of the DNA walk con-
structed from the varied genome sequences (from short
to long nucleotide sequences) provides an effective rep-
resentation for sequence analysis. Nanni et al. [49] used
wavelet trees to combine different features to improve
classification performance.
The discrete and stationary wavelet transforms are pop-

ular approaches in signal analysis using wavelets [50]. Bao
et al. [41] proposed Wavelet-based Feature Vector (WFV)
model where DNA sequences were discretely transformed
into digital sequences according to the rules of A = 0,
C = 1, G = 2, and T = 3. The local frequency entropy of
the sequence based on the location distribution and word
frequency of the base is calculated. A feature vector with
fixed length representing a DNA sequence is extracted
by using the Discrete Wavelet Transformation (DWT).
The stationary wavelet transformation is reported to be
lossless [51] and provides a better performance in image
transformation than the discrete counterpart [52, 53].
The major reason is that the Discrete Wavelet Trans-
form (DWT) has a downsampling step which discards
information in the process. Because the stationary dis-
crete wavelet transform does not have a downsampling
step, the length of the approximation coefficients are the
same as the input signal after decomposition. Hence, the
stationary wavelet transformation is used in this study.
Thus, the proposed SSAW (Sequence Similarily Anal-

ysis using the Stationary Discrete Wavelet Transform)
model is based on the stationary wavelet transforma-
tion. The k-mers of different lengths are extracted from
the sequences and transformed into a feature vector
with complex numbers by mapping to an unit circle.
This process reduces the dimensionality of the data
and also improves the computation speed. The exper-
imental results show the effectiveness of the SSAW
approach, demonstrating improved accuracy and faster
running time, when compared with WFV, and other

recent approaches. Below, we provide a brief description
on the stationary discrete wavelet transform.

Stationary discrete wavelet transform
Given a function x(t), its continuous wavelet transforma-
tion, CWT(x) is obtained by applying a mother wavelet
function ψ∗( t−b

a
)
, as shown in Eq. 1:

CWTx(a, b) = 1
|√a|

∫ ∞

−∞
x(t)ψ∗

(
t − b
a

)
dt (1)

where, CWTx(a, b) is the wavelet transform for the signal
x(t), a is the scale parameter, b is the translation distance,
and ψ∗( t−b

a
)
is the mother wavelet function.

A common practive is to discretize the scale and trans-
lation parameters by the power series. Variables a and b
can be respectively discretized as follows:

a = aj0, b = nb0a
j
0; where j, n ∈ Z, a0, b0 ∈ Z, and a0 �= 1.

In general, a0 = 2, and b0 = 1. Then the mother wavelet
can be expressed as:

ψj,n(t) = 2
−j
2 ψ

(
2−jt − n

)

Thus, the corresponding discrete wavelet transform is
given by:

DWTx(j, n) = 2− j
2

∫ ∞

−∞
x(t)ψ∗

j,n

(
t
2j

− n
)
dt (2)

where, j is the scale parameter, and n is the translation
distance.
The wavelet transform has the ability to characterize the

local characteristics of the signal in both the time domain
and the frequency domain. It is a time-frequency localized
analysis method which can change the time window and
frequency domain window with multi-resolution analy-
sis. The wavelet transform obtains the time information
of the signal by translating the parent wavelet. The fre-
quency characteristics of the signal are obtained by scaling
the width of the parent wavelet.
With the discrete wavelet transform(DWT), each time

the signal is decomposed, it is also downsampled. This
means that the sampled signal has to be chosen from one
of even signal or odd signals (and not both). That is, with
one decomposition process, half of the data is lost. There-
fore, with increasing DWT decomposition steps, the
extracted signals will lose significant time-shifted infor-
mation in the original sequence. The stationary wavelet
transform (SWT) does not apply the downsampling pro-
cess. Thus, it preserves the information in the original
sequence better. The SWT decomposition method yields
the approximation coefficients and the detail coefficients.
The approximation coefficients preserves most of the
information and reflects the transformation characteris-
tics of the signal. The detail coefficients mainly preserves
the local and noise characteristics of the signal, and can
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be discarded. In this work, only the approximation coeffi-
cients are used in representing the input sequence.
The proposed SSAW model uses a simple Haar mother

wavelet to construct the feature vector. The Haar wavelet
has a tightly supported orthogonal wavelet with short sup-
port length. The Haar wavelet function ψH is defined as
follows:

ψH(x) =
⎧
⎨

⎩

1 0 ≤ x ≤ 1
2−1 1

2 < x ≤ 1
0 otherwise

⎫
⎬

⎭
(3)

Different mother wavelets have different time-
frequency characteristics. In the time-frequency analysis
window, the smaller the width of the time domain win-
dow, the better the performance of the parent wavelet
in time domain analysis. Similarly, the smaller the width
of the frequency domain window, the better the per-
formance of the parent wavelet in frequency domain
analysis.

Methods
Detailed steps
There are four steps in our proposed SSAW method.
First, k-mers are extracted from a sequence and their
corresponding frequencies are counted and standard-
ized/normalized. Second, each k-mer is transformed into
a complex by mapping the k-mers to an unit circle. Third,
the stationary wavelet transformation is performed on the
resulting sequence of complex numbers. Finally, cluster-
ing and/or classification is applied as needed, depending
on the specific application of interest.

Step 1: k-mer extraction and frequency standardization
Given a genetic sequence S of length M, k-mers are
extracted from the sequence by passing a sliding win-
dow of length k (varied from 2 to M − 1) over the
sequence. There are M − k + 1 total k-mers in a
sequence with length M. And there are at most |�|k
individual k-mers for a sequence with |�| alphabets.
For a fixed k, a unit circle is divided evenly into |�|k
parts. A DNA sequence consists of symbols from the
alphabetic � = {A,C,G,T}, then |�| = 4. A protein
sequence consists of symbols from a larger alphabet,
�={A,C,D,E, F ,G,H , I,K , L,M,N ,P,Q,R, S,T ,V ,W ,Y },
with |�| = 20.
Let Xt denote the frequency of the t-th k-mer in a

sequence and let St represent the standardization of Xt by
using z-score normalization, as shown in Eq. 4.

St = Xt − X
sd

(4)

where X represents the mean frequency of a k-mer
X occuring in all the sequences. The denominator sd

denotes the standard deviation of the frequencies of the
k-mer X in all the sequences.
Motivated by the work in [18, 54], we use the following

recommended length for k, given by:

k =
⌈
log|�|

(√|S|
)⌉

=
⌈ log|�|(|S|)

2

⌉
(5)

where |S| is the average of a sequence length.
Step 2: Transform k-mers to complex numbers
For a sequence with symbols from an alphabet�, there are
at most |�|k unique k-mers. First, sort all k-mers alpha-
betically. Given a unit circle, we evenly distribute all the
|�|k k-mers around the circumference of the unit circle,
moving counterclockwise. A k-mer is transformed into a
complex number as follows:

• The sine of the angle the k-mer resides in becomes
the real part of a complex number;

• the cosine of the angle the k-mer resides in becomes
the imaginary part of a complex number.

The angle of the t-th k-mer ϕt is given by:

ϕt = 360
|�|K × t (6)

where t denotes the position of the t-th k-mer in �k .
Thus, the complex number representation for the

t-th k-mer will be given by : < Realt , Imagt >=< sin(ϕt),
cos(ϕt) >, where Realt = sin(ϕt) is the real part, and
Imagt = cos(ϕt) is the imaginary part.

Step 3: Stationary wavelet transformation
After a sequence is transformed into a series of complex
numbers, the real and imaginary parts of the complex
numbers are multiplied by the corresponding standard-
ized frequency (St) of k-mers from the first step. And then,
the stationary wavelet transformation is performed. Given
an original string S, let CODES denote the series of com-
plex numbers which are the combination of the real part
and the imaginary part based on the sequence of k-mers.
We apply the Haar transformation on CODES as shown
in Eq. 7.

F(S) = HaarSDWTAC (CODES, L) (7)

where, F(S) denotes the feature vector representing
sequence S, and L is the decomposition level. The func-
tion HaarSDWTAC() denotes the SDWT using the Haar
mother wavelet, while retaining the AC coefficients. We
use the package SWT2 [55] in MATLAB for this trans-
formation. A feature vector F(S) is obtained after the
transformation.
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Step 4: Clustering/classification using the feature vectors.
After the above processing, a text sequence is trans-
formed into a feature vector. These feature vectors can
then be used in clustering and classification applications.
For proof of concept, we applied a simple clustering
technique(namely, the k-means clustering algorithm) on
the feature vectors. Similarly, for classification, we applied
simple classification approaches (namely, k-Nearest
Neighbor approach, using just k = 1). In the classification
experiment, the 1-Nearest Neighbour (1-NN) classifica-
tion algorithm is applied. Finally, the experimental results
are evaluated.

A simple example
Here, we discuss a simple example. Given two DNA
sequences, S1:AACAA and S2:CCGCC. Assume that the
sliding window length K is 2. There are |�|K=42 = 16
unique k-mers. The unit circle will be divided into 16 parts
in this case.
As shown in Table 1, all 16 k-mers are listed on the

first line. The frequency of a k-mer (Xt) for a sequence is
counted respectively. Many k-mers have a zero frequency
in this simple example. However, in real applications, this
is seldom the case, since the sequences are generally much
longer. Similarly, the the standard deviation sd in the
denominator are rarely zero. See Eq. 4. For the purpose of
this demonstration only, we assume a series of non-zero
values for sd which are shown on the last row in the table.
The similar assumption is applied to X which is listed on
the second last line.
Then, Eq. 4 is applied to calculate the corresponding

standard deviation (St) of a k-mer. For example, for the
first k-mer AA in sequence S1, the normalized value is
2−1.7
4.14 = 0.07.
In the second step, the unit circle is divided into 16

equal parts. Since length of k-mer is assumed to be 2
here, there are |�|K=42 = 16 possible unique k-mers.
These 16 k-mers are distributed on the unit circle in a
counterclockwise manner, as shown in the Fig. 1.
Each k-mer has a corresponding radian measurement.

For example, for the first k-mer AA, the radian is 360
|�|K ×

t=360
42 × 1=22.5. We have Realt = sin(22.5) = 0.38.

The imaginary part of the complex number value is:
Imagt = cos(22.5) = 0.92. Hence, the corresponding
k-mer AA in sequence S1 is represented as a complex
number (0.38, 0.92). Then, the standardized frequency St
(0.07) from the first step is multiplized to this complex
number (0.38, 0.92), resulting in the pair (0.0266, 0.0644).
After processing all the k-mers, a series of com-

plex numbers starting with (0.0266, 0.0644) are input
into the third transformation step. After the third step
(stationary wavelet transform), a feature vector will be
obtained which can then be used for clustering and/or
classification.

Distance measurement
The similarity between feature vectors is measured using
the Euclidean distance as follows.

Eud(S1, S2) =
√√
√
√

Vec∑

i=1
|Fi(S1) − Fi(S2)|2 (8)

where Vec is the length of the feature vector, F(S1) and
F(S2) denote feature vectors for sequences S1 and S2
respectively.

Themeasurement of clustering assessment
The F-score is used to evaluate the clustering results. Let
Ci represent the number of sequences in the family i; let
Cij represent the number of sequences belonging to clus-
ter j in family i. lb(j) represents the family tag of cluster j,
when clustering, the goal is to cluster a sequence in family
j to be in cluster lb(j).
The sequences in family i are decided to belong to the

cluster j by using dominating rule, the cluster that contains
the largest number of sequences is selected to be lb(j),
shown as in Eq. 9:

lb(j) = argmaxfmi=1
(
Cij

)
(9)

where fm is the number of all possible families.

Table 1 Length 2 k-mers and associated standardized frequencies (Eq. 4)

k-mers AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

S1 Xt 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

St 0.07 -0.84 -0.17 -0.38 -0.76 -0.76 -0.55 -0.38 -0.09 -0.76 -0.42 -0.14 -0.09 -0.35 -0.18 -0.3

S2 Xt 0 0 0 0 0 2 1 0 0 1 0 0 0 0 0 0

St -0.41 -1.13 -0.17 -0.38 -1.02 -0.23 -0.29 -0.38 -0.09 -0.48 -0.42 -0.14 -0.09 -0.35 -0.18 -0.3

X 1.7 3.9 0.9 1.3 3.9 2.9 2.1 1.3 0.3 2.7 1.5 0.7 0.3 1.2 0.7 1.1

sd 4.14 3.45 5.17 3.45 3.84 3.84 3.84 3.45 3.45 3.55 3.55 5.07 3.45 3.45 3.89 3.71
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Fig. 1 The distribution of 16 k-mers (AA, AC, . . . , TT) on the unit circle,
moving counterclockwise

For a given family i, the respective values for precision,
recall, and f-score are computed as follows:

precisioni =

∑

lb(j)=i
Cij

∑

lb(j)=i
Cj

(10)

where Cj represents the number of sequences in cluster j.

recalli =

∑

lb(j)=i
Cij

Ci
(11)

F − score(i) = 2 × precision(i) × recall(i)
precision(i) + recall(i)

(12)

The F-score for all families can be calculated as:

F − score =
fm∑

i=1

Ci
C
F(i) (13)

where C is the total number of sequences in the dataset.

Themeasurement of classification
We use the confusion matrix (see Table 2) to evaluate
the classification performance. The confusion matrix is
an N × N matrix, where N is the number of categories
in the classification. We use the predicted and original
categories to establish the confusion matrix.

Table 2 Confusion matrix

Predicted class

Positive Negative

Actual Positive True positives(TP) False negatives(FN)

class Negative False positives(FP) True negatives(TN)

Based on the above confusion matrix, the performance
indicators are defined as follows.

Accuracy = (TP+TN)/(TP+TN+FN+FP)
Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
F-score = 2*Precision*Recall/(Precision+Recall)

Results
A new alignment-free sequence similarity analysis
method, SSAW, is proposed. The performance of SSAW
is compared against those of two methods, namely, WFV
[41] and K∗

2 [18], which represent the current state-of-
the-art. Compared with WFV and K∗

2 , the SSAW method
demonstrates competitive performance in clustering
and classification, with respect to both effectiveness
(accuracy), and efficiency (running time).

Datasets
Three types of data are used in our experimental eval-
uation, namely, DNA sequences, protein sequences, and
simulated next generation sequences. The DNA datasets
are the same as those used in Bao et al.’s original paper
[41]. The longest sequence has 8748 characters and the
shortest sequence has 186 characters. The HOG datasets
used contained 100, 200, 300 families, with a corre-
sponding family size of 96, 113, and 93 DNA sequences,
respectively.
The protein datasets were obtained from [41] too, which

were randomly selected from HOGENOM by ourselves.
They are also from HOG100, HOG200, and HOG300.
The longest sequence has 2197 characters and the short-
est sequence has 35 characters. The HOG protein datasets
contained 100, 200, 300 families, with an average family
size of 9, 10, 11, respectively. Both protein and DNA
datasets were collected by the Institute of Biology and
Chemistry of Proteins (IBCP), using PBIL (population-
based incremental learning), and are available at:
ftp://pbil.univ-lyon1.fr/pub/hogenom/release_06/.
The third data set is our simulated DNA next-

generation sequences data with a total of 520 sequences
of length 47 base pairs each. There are eight classes, each
with 65 sequences. The original 8 sequences are ran-
domly selected from a next-generation sequence data set
(Illumina platform) for error correction [56]. During sim-
ulation, 8 sequences of length 47 with edit distance of 10
among them are randomly selected. These 8 sequences
are regarded as the 8 data centroids. For each centroid, 64
sequences are generated with edit distance ≤ 4 from the
centroid. These 8 centroids form our 8 cluster centers.

Experimental design
The experiments were performed on a machine running
Windows 7 Operating System (64 bit professional edition)

https://ftp://pbil.univ-lyon1.fr/pub/hogenom/release_06/
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with Intel Core i5-3470 (3.20 GHz) CPU and 8 GB RAM.
The experiments were performed on the three types of
data described, and their corresponding run times (in sec-
onds) are also recorded. The reported execution times are
averages, over several iterations.
Firstly, we check the validity of the proposed SSAW by

comparing it against the standard edit distance [1, 2] and
the global alignment identity score [5]. The edit distance
between two strings is defined as the minimum number of
edit operations required to transform one string into the
other. The edit distance is the basic standard used to com-
pare two strings [1, 2]. The Needleman-Wunsch align-
ment algorithm is the other golden standard in measuring
sequence similarity [57]. They both have a quadratic time
complexity with respect to the length of the strings which
are computed using dynamic programming [58]. Thus, we
randomly extract 100 sequences from the dataset for this
validity check.
For clustering, k-means [59] in RGui is used. Proposed

SSAW, WFV by Bao et al. [41], and K∗
2 by Lin et al.

[18] are assessed by using F-score, precision, and recall.
It is well known that, for k-means, the initial center is
important. To diminish the influence of initial centers, the
cluster center is selected randomly, and the experiment is
repeated 200 times. The average value is then reported.
For classification experiment, we used the 1-NN classifi-

cation algorithm (kNN method with k = 1). To reduce the
random selection effect caused by dividing training sets
and testing sets, the classification experiment is repeated
100 times and the average is reported. The stratification
sampling is applied to select 80 percent of data for train-
ing, and the remaining 20 percent of data is used for
testing.
The SSAW method has two parameters that need to be

set, namely, the k value for k-mers, and the decomposi-
tion level L in the wavelet transformation stage. The value
of k is determined by using Eq. 5, which is motivated by
earlier work [18, 54]. After running all possible decompo-
sition levels, our experiment showed that setting L = k is
the most suitable in our applications. Hence, in SSAW, the
recommended parameter values for k and L can be auto-
matically determined by using Eq. 5. For WFV, the vector
length is fixed at 32 which is recommended by the original
authors [41].

Validity of the proposed SSAW
Two groups of correlation measures are calculated on two
datasets, namely, DNA sequences, and protein sequence
data. One is the correlation between edit distance and the
respective results of the SSAW, WFV and K∗

2 methods.
The other is the correlation between the global alignment
identity score and the results of the SSAW, WFV, and
K∗
2 methods. The global alignment identity score is cal-

culated by using the Needleman-Wunsch algorithm [57].

100 sequences are randomly selected from one cluster of
DNA (and one family of protein sequences). Then, the
edit distance, the global alignment score, and the results
for SSAW, WFV and K∗

2 are calculated between pairs of
sequences. Finally, the Pearson correlation coefficient is
calculated between the edit distance and the respective
results from the three methods. The same correlation is
repeated using the global alignment identity score, rather
than the edit distance. The correlation results are shown
in Table 3.
Looking at Table 3, one may wonder why some correla-

tions is negative (positive). The reasons are as follows. The
edit distance, SSAW andWFV are calculated by using dis-
tance measurements. Thus, the correlation between any
two of these are positive. The global alignment identity
score and K∗

2 calculate the similarity between sequences.
Thus, the latter two are similar.
With the Pearson correlation coefficient, a value of 0

indicates no correlation; a value of 1 indicates positive
correlation, while a value of −1 indicates negative corre-
lation. For a comparison method, a value close to 1 or − 1
indicates its ability in measuring the similarity (/dissimi-
larity) between sequences. On the contrary, a value close
to 0 shows an inability to measure the similarity (/dissim-
ilarity) between the given sequences.
For Pearson correlation, we should consider their abso-

lute values, rather than the direct correlation values. With
this in mind, Table 3 shows that all the three methods
are strongly correlated with the edit distance, and also
with the global alignment identity score. This indicates
that the threemethods are all valid inmeasuring similarity
between DNA (protein) sequences.

DNA data
Table 4 shows the experimental results for clustering DNA
sequences using the three methods: SSAW, WFV, and K∗

2 .
The F-score is computed by combining values for preci-
sion and recall. Hence, for brevity, in the following, we will
focus on F-score comparison. However, values for preci-
sion and recall will also be listed for reference purposes.
From Table 4, we can find that SSAW has the best overall
performance on all the three DNA data sets.
Table 5 shows the classification results generated

from three models on DNA datasets. In the classifica-
tion, one measurement, accuracy which is known as a

Table 3 Correlations between edit distance (the global
alignment identity score) and three methods

DNA Protein

SSAW WFV K∗
2 SSAW WFV K∗

2

Edit distance 0.779 0.837 -0.67 0.852 0.861 -0.842

Identity score -0.741 -0.742 0.799 -0.841 -0.822 0.789



Lin et al. BMC Bioinformatics  (2018) 19:165 Page 7 of 11

Table 4 Comparison of the clustering results on DNA dataset

DNA-Data Model F-score Precision Recall

HOG100 SSAW 0.6099 0.5953 0.6648

HOG100 WFV 0.5724 0.5569 0.6227

HOG100 K∗
2 0.5551 0.5112 0.6073

HOG200 SSAW 0.5982 0.5841 0.6508

HOG200 WFV 0.5635 0.5610 0.6214

HOG200 K∗
2 0.5788 0.5364 0.6285

HOG300 SSAW 0.5961 0.5869 0.6421

HOG300 WFV 0.5359 0.5434 0.5800

HOG300 K∗
2 0.5466 0.5081 0.5915

comprehensive indicator, is evaluated. Studying Table 5,
the first impression is that three models have similar
values which are very close to each other. Using the accu-
racy measure, SSAW was slightly better on two datasets,
HOG200 and HOG300, while K∗

2 was slightly better on
HOG100. If we compare the F-score values,WFVwas bet-
ter on two datasets (HOG100 and HOG200), while SSAW
was better on HOG300. Practically, we can say that these
three models have similar performance, and that SSAW is
competitive in this experiment.
Table 6 shows the corresponding running times for the

three analysis methods in clustering and classification on
DNA datasets. From Table 6, we can observe that for clus-
tering, SSAW is the fastest method among the three. It
runsmuch faster thanWFV by asmuch as 3, 5, and 10 fold
increases in speed. For classification of DNA sequences,
WFV was the fastest method among these three methods.
K∗
2 was faster than SSAW on two of the three data sets,

but slower on one dataset.
Combining the performance of these three models, we

can note the following: (1) For clustering, the recom-
mended method is SSAW, it not only has the best per-
formance, but also has the fastest running time. (2) For

Table 5 Comparison of the classification results on DNA datasets

DNA-Data Model Accuracy F-score Precision Recall

HOG100 SSAW 0.9576 0.9315 0.9326 0.9305

HOG100 WFV 0.9574 0.9426 0.9475 0.9447

HOG100 K∗
2 0.9587 0.9335 0.9472 0.9202

HOG200 SSAW 0.9548 0.9256 0.9366 0.9149

HOG200 WFV 0.9544 0.9355 0.9430 0.9350

HOG200 K∗
2 0.9439 0.9320 0.9331 0.9309

HOG300 SSAW 0.9509 0.9311 0.9354 0.9268

HOG300 WFV 0.9402 0.9208 0.9286 0.9219

HOG300 K∗
2 0.9328 0.9255 0.9229 0.9282

Table 6 Running time for clustering and classification on DNA
datasets. The fold improvement from a given method to the
proposed SSAW approach is listed inside the parenthesis

DNA-Data Model Total Total
clustering time classification time

HOG100 SSAW 19.8000 16.8159

HOG100 WFV 55.4619(3) 10.4614

HOG100 K∗
2 39.676(2) 11.3421

HOG200 SSAW 50.9515 51.5956

HOG200 WFV 238.5061(5) 26.8309

HOG200 K∗
2 104.327(2) 37.8473

HOG300 SSAW 63.9960 77.7017

HOG300 WFV 640.1409(10) 31.4625

HOG300 K∗
2 238.712(4) 94.8274

classification, WFV would be the best choice which has
the advantage of performance plus running time. How-
ever, SSAW demonstrated competitive performance, with
respect to both accuracy and running time.

Protein data
Table 7 shows the clustering results on the protein
sequence data. In all three data subsets, SSAW was the
best.
Table 8 shows the classification results generated using

these three methods on protein data sets. Using accuracy
for performancemeasurement, SSAWwas the best on two
data sets (HOG200 and HOG300), while K∗

2 performed
best on the other data (HOG100). Using F-score, SSAW
was best on HOG300 and K∗

2 was the best on the other
two data subsets. Generally speaking, SSAW and K∗

2 were
quite competitive in this experiment, while WFV gener-
ated inferior results. Table 9 shows the running time in
clustering and classification on protein datasets. In all pro-
tein data sets and two applications, SSAW outperformed

Table 7 Comparison of the cluster results on protein data set

Protein-Data Model F-score Precision Recall

HOG100 SSAW 0.7651 0.7497 0.8001

HOG100 WFV 0.5874 0.5687 0.6382

HOG100 K∗
2 0.6604 0.642 0.6798

HOG200 SSAW 0.7746 0.7573 0.8103

HOG200 WFV 0.6410 0.6195 0.6913

HOG200 K∗
2 0.6435 0.5969 0.6979

HOG300 SSAW 0.7246 0.7088 0.7653

HOG300 WFV 0.5016 0.4826 0.5551

HOG300 K∗
2 0.6429 0.6111 0.6782
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Table 8 Comparison of the classification results on protein data

Data Model Accuracy F-score Precision Recall

HOG100 SSAW 0.8158 0.6274 0.6225 0.6644

HOG100 WFV 0.6741 0.5092 0.5012 0.5518

HOG100 K∗
2 0.8329 0.6540 0.6248 0.6861

HOG200 SSAW 0.8222 0.5626 0.5441 0.6174

HOG200 WFV 0.7051 0.4454 0.4359 0.4902

HOG200 K∗
2 0.8061 0.6279 0.5875 0.6743

HOG300 SSAW 0.8690 0.7345 0.7466 0.7642

HOG300 WFV 0.5685 0.3468 0.3551 0.3774

HOG300 K∗
2 0.8098 0.6308 0.5983 0.6670

the other two methods overwhelmingly. WFV was the
runner up, while K∗

2 could not compete on this dataset.
Taken together, we can make a few notes on working

with protein datasets: (1) SSAW generally has the best
performance on clustering and classification using the
protein datasets. (2) SSAW also has the fastest running
time. (3) The K∗

2 was better than WFV on some cases,
however, the required execution time was higher than that
of WFV. (4) For WFV, the running time was second to
SSAW, however, the accuracy was not as good. Overall,
it appears that, when the alphabet size is increasing, the
proposed SSAW method with its initial stage of mapping
the k-mers to complex numbers based on the unit circle,
produces superior results than the state-of-art.

Simulated data
Table 10 shows the results for clustering using the simu-
lated datasets. We can see from Table 10, K∗

2 is the best
one among these three methods. Comparing SSAW to

Table 9 Running time for clustering and classification on protein
datasets. The fold improvement from the a given method to the
proposed SSAW is listed inside the parenthesis

Protein-data Models Total clustering Total classification
time time

HOG100 SSAW 0.1638 0.1262

HOG100 WFV 5.5554(34) 0.4164(3)

HOG100 K∗
2 10.964(67) 1.3780(11)

HOG200 SSAW 0.3542 0.2738

HOG200 WFV 11.5037(32) 0.9362(3)

HOG200 K∗
2 49.016(138) 3.091(11)

HOG300 SSAW 0.6965 0.5077

HOG300 WFV 27.2514(39) 1.7460(3)

HOG300 K∗
2 126.984(182) 5.284(10)

Table 10 Comparison of the clustering results on simulated
dataset

Model F-score Precision Recall

SSAW 0.8151 0.8085 0.8467

WFV 0.8211 0.8056 0.8587

K∗
2 0.8584 0.8750 0.8425

WFV, WFV is slightly better than SSAW, although their
performance numbers are quite close.
Table 11 compares the classification results of these

three methods using the simulated data. WFV is the best
one among the three. SSAW is second, performing better
than K∗

2 .
Table 12 describes the running times for these three

methods on simulated data. Comparing three models,
SSAW was the fastest. K∗

2 is the slowest in clustering.
For clustering, the running times for K∗

2 and WFV were
respectively, 18 and 15 times slower, than those of SSAW.
In classification, the running time ofK∗

2 andWFVwere 11
and 2 times slower, respectively.
Combining the performance and speed, we can note the

following with respect to the simulated data: (1) SSAW
and WFV can be recommended methods for clustering.
The running time of K∗

2 is relatively high – 18 times
more than SSAW and 1.2 times more than WFV. (2) For
classification, SSAW is a good choice, with competitive
performance and the fastest running time. WFV is the
most accurate method, however, it has longer running
time (11 times more than SSAW, and 5.4 times more
than K∗

2 ).
Considering the three types of data used in the experi-

ments, and the two applications considered, we can draw
some overall conclusions. Table 13 summarizes the overall
results of our analysis.

Discussion
The proposed SSAW is inspired by the work WFV
reported in [41]. In Bao et al.’s work [41], WFV was com-
pared to five state-of-the-art methods, namely, k-tuple
[4, 30], DMK [31], TSM [36], AMI [29] and CV [32] on
DNA data set. WFV demonstrated overwhelming superi-
ority over each of these methods. Because the proposed
SSAW are better than WFV in clustering on each of
the three types of data considered, we can expect that

Table 11 Comparison of the classification results on simulated
data

Model Accuracy F-score Precision Recall

SSAW 0.9789 0.9789 0.9804 0.9789

WFV 0.9992 0.9992 0.9993 0.9992

K∗
2 0.9607 0.9662 0.9696 0.9628
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Table 12 Running time for three methods on clustering and
classification using simulated data

Models Total clustering Total classification
time time

SSAW 0.0632 0.0810

WFV 0.9288(15) 0.9313(11)

K∗
2 1.123(18) 0.172(2)

SSAW will have competitive (if not better) performance
(with respect to both accuracy and speed) when compared
against these five state-of-the-art methods. Classification
performance was not examined in the original Bao et al.’s
work [41].
Similarly, in [18], the K∗

2 method was compared to over
9 other alignment-free algorithms, especially, those that
consider sequences in a pairwise manner (such as the gen-
eral D2-family). The K∗

2 was shown to outperform most
of the methods in this category. Thus, we expect that the
relative performance of the proposed SSAWmethod over
K∗
2 gives us an idea on how it will perform when com-

pared with the D2-family, and other methods investigated
in [18].
SSAW generally outperformed WFV with respect to

accuracy, and the F-score measure. The performance
improvement of SSAWoverWFV can be attributed to two
key factors: (1) the use of the stationary discrete wavelet
transform which is able to keep information better dur-
ing the transformation process than the standard discrete
wavelet transform used in [41]; (2) The use of an improved
representation for the k-mers, based on the initial map-
ping to complex numbers using the unit circle, before
performing the wavelet transformation.
For clustering, SSAW outperformed K∗

2 . This could be
due to several reasons, for instance, the two points already
mentioned above. Further, while K∗

2 needs to compare
sequences pair by pair, SSAW and WFV do not need to
compare two sequences in a pairwise manner. Rather, they
generate a series of numbers to represent all sequences
together which are then transformed into a feature vector.
Hence, these two wavelet-based methods are more suit-
able for clustering than K∗

2 .
Comparing WFV and SSAW in classification on DNA

sequences, for short sequence (less than 1000 bp), SSAW

Table 13 Recommended methods for clustering and
classification given three datasets. Model inside parentheses is
competitive

Data Cluster Classification

DNA SSAW WFV(SSAW)

Protein SSAW SSAW

Simulated SSAW(WFV) SSAW

produced better results. SSAW was slower on DNA clas-
sification which had relatively longer sequences (i.e, DNA
data with an average sequence length of 1495 bp). It
appears that SSAW is not suitable for long sequences,
from a small alphabet. However, for larger alphabets, such
as protein sequences (with an average sequence length of
497 bp), SSAW showed superior performance over both
WFV and K∗

2 .
SSAW did not perform well in generating the phyloge-

netic tree and in evaluating functionally related regulatory
sequences. This is not too surprising, given the observed
performance of WFV on these problems (see [18] for
comparison with K∗

2 ).
The distance measurement used in SSAW is based

on the simple Eucliean distance between two vectors.
Luczak et al. [5] provided a recent comprehensive sur-
vey using different statistics to evaluate sequence simi-
larity in alginment-free methods. After studying over 30
statistics (more than 10 basic measurements and their
combinations), Luczak et al. [5] showed that simple sin-
gle statistics are sufficient in alignment-free k-mer based
similarity measurement. The Eucliean distance approach
used in this work is thus just one approach to the dis-
tance measurement. Certainly, other distance measures,
such as the earth mover distance, can be considered to
further improve the proposed SSAW approach. Similarly,
classification and clustering were performend using sim-
ple algorithms. Further improvementmay be realized with
more sophisticated analysis methods, e.g., using random
forests for classification.
One of the main advantages of SSAW is the running

time. SSAW is much faster than the other two methods,
showing orders of magnitude improvement in execution
time, while maintaining competitive (if not better) accu-
racy. Considering the huge volumes of data involved in
most modern applications, and the rate at which these
datasets are being generated, the rapid processing speed
of alignment-free methods becomes a key factor. The pro-
posed SSAW provides very rapid processing, without an
undue loss in accuracy. This makes SSAW an attractive
approach in most practical scenarios.

Conclusions
A new alignment-free model for similarity assessment is
proposed.We call it SSAW– Sequence Similarity Analysis
using the Stationary Discrete Wavelet Transform. Three
types of data are used in the study, DNA sequences, pro-
tein sequences, and simulated next-generation sequences.
Two different applications, clustering and classification
are considered. Compared with state-of-the-art methods,
WFV, and K2∗, the proposed SSAW demonstrated com-
petitive performance (accuracy, F-score, precision, and
recall) both in clustering and classification. It also exhib-
ited faster running times compared with the other
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methods. These make SSAW a practical approach to
rapid sequence analysis, suitable for dealing with rapidly
increasing volumes of sequence data required in most
modern biological applications.
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