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Abstract

Background: We propose rigorously optimised supervised feature extraction methods for multilinear data based
on Multilinear Discriminant Analysis (MDA) and demonstrate their usage on Electroencephalography (EEG) and
simulated data. While existing MDA methods use heuristic optimisation procedures based on an ambiguous Tucker
structure, we propose a rigorous approach via optimisation on the cross-product of Stiefel manifolds. We also
introduce MDA methods with the PARAFAC structure. We compare the proposed approaches to existing MDA
methods and unsupervised multilinear decompositions.

Results: We find that manifold optimisation substantially improves MDA objective functions relative to existing
methods and on simulated data in general improve classification performance. However, we find similar classification
performance when applied to the electroencephalography data. Furthermore, supervised approaches substantially
outperform unsupervised mulitilinear methods whereas methods with the PARAFAC structure perform similarly to
those with Tucker structures. Notably, despite applying the MDA procedures to raw Brain-Computer Interface data,
their performances are on par with results employing ample pre-processing and they extract discriminatory patterns
similar to the brain activity known to be elicited in the investigated EEG paradigms.

Conclusion: The proposed usage of manifold optimisation constitutes the first rigorous and monotonous
optimisation approach for MDA methods and allows for MDA with the PARAFAC structure. Our results show that MDA
methods applied to raw EEG data can extract discriminatory patterns when compared to traditional unsupervised
multilinear feature extraction approaches, whereas the proposed PARAFAC structured MDA models provide
meaningful patterns of activity.
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Background
Linear Discriminant Analysis (LDA) is a widely used
method for feature extraction, dimensionality reduction,
and classification [1, 2]. When the number of observa-
tions is substantially larger than the number of observed
variables, LDA often obtains high classification rates ([2],
p. 111), especially taking its relatively simple formulation
and estimation into account. However, there are cases in
which each observed entity is not a vector, but rather a
matrix or a higher-order array (tensor), for example EEG
data [3–6]. A tensor can be seen as a generalisation of
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a matrix such that a first-order tensor is a vector and
a second-order tensor is a matrix. The term “mode” is
important when describing a tensor, and the number of
modes corresponds to the order of the tensor. In a matrix,
i.e. a second-order tensor, the row number increases along
the first mode while the column number increases over
the secondmode. The simplest way to handle higher order
data is to vectorise it. However, this may lead to obser-
vation vectors longer than the number of observations.
In such situations, LDA runs into singularity problems.
Instead, the intrinsic multilinear structure can be retained
and analysed.This is the aim of Multilinear Discriminant
Analysis (MDA) methods which leverage the multilin-
ear structure in order to find discriminatory subspaces.
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Unfortunately, current MDA approaches [4–14] are based
on heuristic optimisation approaches that do not rig-
orously optimise the MDA objectives according to the
imposed multilinear structure. In particular, they do not
maintain the desired Tucker structure and constraints on
interactions between modes throughout the optimisation,
but resort to alternating heuristics.

Contributions
In this paper, we set out to investigate:
What are the gains from optimisingMDA rigorously over

existing alternating heuristics?
We investigate whether rigorous optimisation on the

cross-product of Stiefel manifolds results in better solu-
tions as quantified by the MDA objective function and
classification performance than the existing heuristic
optimization procedures. In particular, we consider trace-
ratio optimisation of matrices and compare them to exist-
ing trace-ratio optimisation procedures that have been
used for MDA. We note that other procedures for opti-
mising the trace-ratio exist [15, 16]. However, none of
these procedures incorporate the cross-product of Stiefel
manifolds structure of matrices presently considered.
Is the more flexible Tucker structure necessary in MDA

or does the PARAFAC structure suffice?
While the Tucker models are subject to rotational

invariance, the PARAFAC structure is more constrained
and may thereby provide unique representations, making
interpretation of the PARAFAC model more meaningful.
We consider MDA with the PARAFAC structure, which
is not possible with the existing MDA optimisation meth-
ods. For completeness, we further consider the logistic
regression framework proposed in [3], both with the orig-
inally described PARAFAC structure and with the Tucker
structure.
How do classification performances using features

extracted by MDA compare to features extracted using
unsupervised multilinear decompositions?
When extracting features via supervised methods, it

is only possible to use observations whose class is
known. On the other hand, unsupervised feature extrac-
tion methods learn from all available data, regardless of
whether observations’ classes are known. Hence, if fea-
tures extracted via unsupervised methods are as infor-
mative as those extracted in a supervised manner, then
the features used for classification can be learned based
on all data, making them more robust. This makes it
relevant to investigate whether the use of labels during
feature extraction yields substantially better classification
results. To investigate the utility of MDA over existing
unsupervised multilinear feature extraction approaches,
we compare the performance of features extracted via
MDA to the classification rates obtained when features are
extracted using unsupervised multilinear decomposition

approaches; PARAFAC [17, 18], PARAFAC2 [19, 20],
Tucker, and Tucker2 [21]. In effect, we compare to pre-
viously proposed approaches with an unsupervised step
followed by a supervised step [22–30].

Methods
Multilinear Discriminant Analysis
For clarity of exposition, we limit our presentation to
matrix observations. Let X̄ be the mean of all N observa-
tions and X̄c be the mean of observations from class c. The
operator vec(X) vectorises the matrix X column-wise.
Similar to the objective of LDA, that is, to find

projections that optimally discriminate between vec-
tor observations from different classes, the objective
of Multilinear Discriminant Analysis (MDA) is to find
mode-specific projections that optimally separate tensor
observations from different classes. Hence, MDA aims
to find projection matrices that project tensor observa-
tions

(
Xn ∈ RJ1×J2×...×JP

)
into a maximally discrimina-

tive lower dimensional representation,RK1×K2×...×KP with
Kp ≤ Jp, p = 1, 2, . . . ,P. The projection matrix for mode
p thus has the dimensions Jp × Kp.
We generalise the within- and between-class scatter

matrices from LDA to matrix observations, respectively:

W =
C∑

c=1

∑

n∈Cc
vec

(
Xn − X̄c

)
vec

(
Xn − X̄c

)�

B =
C∑

c=1
Ncvec

(
X̄c − X̄

)
vec

(
X̄c − X̄

)� . (1)

These can be generalised to general tensors, Xn, by sub-
stituting all occurrences of the matrices Xn, X̄c, and X̄ by
their tensor counterparts Xn, X̄c, and X̄ .
By substituting the projection matrix in standard LDA

by the Kronecker product U = U(2) ⊗ U(1), the objec-
tive function used in LDA becomes directly applicable to
matrix observations. The Kronecker product repeats the
second matrix as many times as there are elements in the
first matrix, scaling each repetition by the corresponding
element in the first matrix [31]. A further generalisation
to observations with Pmodes is straight-forward by defin-
ingU = U(P) ⊗U(P−1) ⊗ . . .⊗U(1). This expression of the
projection matrix U makes it clear that it lies on a cross-
product manifold, with each mode-specific projection
matrix corresponding to one of the manifold factors in the
cross-product. These individual manifolds determine the
constraints on each projection matrix. The Stiefel man-
ifold contains the set of all matrices whose columns are
mutually orthogonal, i.e. U(P)�U(P) = I. Hence, orthogo-
nality constraints are enforced on all modes by optimising
over a cross-product of Stiefel manifolds. Existing MDA
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methods [7–13] ignore this cross-product manifold struc-
ture, and most optimise mode-specific projection matri-
ces one at a time using alternating optimisation heuristics
between the modes.
Once optimal projection matrices for each mode are

found, an observation, Xn, can be projected into the vec-
tor yyyn = (

U(P) ⊗ U(P−1) ⊗ . . . ⊗ U(1))� vec(Xn), where
yyyn = vec(Yn). The elements in yyyn may be given as input
to a classification algorithm, e.g. logistic regression. In the
case that we focus on, where each observation is a matrix,
the projection to the lower-dimensional space can be writ-
ten: Yn = U(1)� × XnU(2). Notice that the element in row
i and column j of Yn gives the strength of the interaction
between factor (column) i from mode 1

(
U(1)) and factor

(column) j from mode 2
(
U(2)). When all elements of Yn

are allowed to be non-zero, we refer to the MDAmodel as
having the Tucker structure. It is natural to also consider a
structure in which each factor only interacts with one fac-
tor in the other modes. This is enforced by only allowing
diagonal elements of Yn to be non-zero, and we refer to
such MDA models as having the PARAFAC structure. In
suchmodels, the ith columns of all projectionmatrices can
be viewed as expressing how a discriminative pattern for
classification is expressed in eachmode. A consequence of
an algebraic operation necessary for the existing heuristic
optimisation methods is that the existing MDA methods
implement the Tucker structure and do not allow for the
PARAFAC structure.

Heuristic solutions tomultilinear discriminant analysis
The methods Discriminant Analysis with TEnsor Rep-
resentation (DATER) [8] and Constrained Multilinear
Discriminant Analysis (CMDA) [11] aim to optimise
the “scatter ratio” objective function [8, 11] (see Eq. 5).
Another existing MDA method [13] is similar to DATER,
but solves the Generalised Eigenvalue problem during
optimisation instead of the standard formulation.We refer
to this method as DATEReig. All three methods are based
on an alternating optimisation procedure estimating each
mode iteratively. When updating mode p, they project W
and B unto all modes except mode p:

Wp̃
proj =

C∑

c=1

∑

n∈Cc

(
Xn − X̄c

)
(p) U

p̃�Up̃ (
Xn − X̄c

)�
(p)

Bp̃
proj =

C∑

c=1
Nc

(
X̄c − X̄

)
(p) U

p̃�Up̃ (
X̄c − X̄

)�
(p) , (2)

whereUp̃ = U(P) ⊗ . . .U(p+1) ⊗U(p−1) . . .U(1). Note, that
X(p) denotes matricisation along mode p.
CMDA then updates U(p) by setting it equal to the

first Kp singular vectors of
(
Wp̃

proj

)−1
Bp̃
proj which was

proven in [11] to result in an asymptotically bounded

sequence of objective function values of the scatter-
ratio objective function. Since a matrix defined by sin-
gular vectors is orthonormal, CMDA in effect uses the
orthonormality constraint. DATER instead uses the first
Kp generalised eigenvectors of the Generalised Eigenvalue
Problem: Bp̃

projU(p) = Wp̃
projU(p)�k , which leads toWp̃

proj-
orthogonality (U(p)�Wp̃

projU(p) = �, where� is a diagonal
matrix [32]). Since the matrix Wp̃

proj is different for each
mode, this means that the projection matrices for the
different modes are constrained differently by DATER.
DATEReig instead solves the Standard Eigenvalue Prob-
lem, defined as:

(
Wp̃

proj

)−1
Bp̃
projU(p) = DU(p), where D

is a diagonal matrix. Hence DATEReig is also subject to
orthonormal constraints on the projection matrices. The
algorithm Higher Order Discriminant Analysis (HODA)
[33] also iterates over modes in a similar fashion. HODA
was seen to not be competitive on simulated data, and
was not included in the comparisons on EEG data. Finally,
the method Direct General Tensor Discriminant Analysis
(DGTDA) [11] optimises the difference between the scat-
ter matrices. It does this by iterating over each mode once,
independently for each mode without projection, setting
ζ equal to the largest singular value of

(
W(p)

)−1 B(p)
when solving for mode p. The projection matrix for mode
p is then set equal to the first Kp singular vectors of
B(p) − ζW(p).
Rather than optimising a measure of class-separability,

it may be advantageous to optimise classification
performance directly. Bilinear Discriminant Component
Analysis (BDCA) implements this idea through logistic
regression with a PARAFAC structure [3, 34]. The log-
likelihood for BDCA is:

N∑

n=1
yn(w0 + ψPARAFAC(Xn))

− log(1 + exp(w0 + ψPARAFAC(Xn)),

(3)

such that the probability that observation Xn belongs to
class one is 1

1+exp(−(w0+ψPARAFAC(Xn)))
, where

ψPARAFAC(Xn) = Tr
(
U(1)�XnU(2)

)

=
K1∑

k=1

[(
U(1) � U(2)

)�
vec(Xn)

]

k
.

Thus, the number of components is the same in both
modes (K1 = K2) and there are no constraints on the
projection matrices. Despite the PARAFAC type of struc-
ture, the model is not unique. For two square matrices
satisfyingQ(2)Q(1)� = I, we have:
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Tr
((

U(1)Q(1)
)�

Xn
(
U(2)Q(2)

))

= Tr
(
Q(2)Q(1)�U(1)�XnU(2)

)
= Tr

(
U(1)�XnU(2)

)
,

hampering model interpretation unless additional con-
straints are imposed.
For comparison, we introduce a Tucker-structure ver-

sion of the above logistic regressionmodel, resulting in the
following log-likelihood:
N∑

n=1
yn(w0 + ψTucker(Xn))−log(1+exp(w0+ψTucker (Xn)) ,

where

ψTucker(Xn) =
K1∑

k1=1

K2∑

k2=1

[
U(1)�XnU(2)

]

k1,k2
Vk1,k2 ,

with Vk1,k2 = 1 for k1 = k2 to remove scaling ambiguities
between the projectionmatrices and thematrix of interac-
tion coefficients,V. As for BDCA, there are no constraints
on U(1) and U(2).

MDA based onmanifold optimisation with PARAFAC and
Tucker structures
The existing MDA approaches rely on heuristic optimi-
sation procedures based on either eigenvalue or singular
value decompositions. Instead, we propose to exploit the
manifold optimisation in the recently released ManOpt
toolbox [35]. This toolbox implements rigorous optimi-
sation of arbitrary objective functions on a variety of
manifolds, as long as their gradients are known. Amongst
others, the toolbox has implementations of optimisation
over the Stiefel manifold, which consists of orthonor-
mal matrices [36]. By optimising over a cross-product of
Stiefel manifolds, one for each mode, all projection matri-
ces are optimised simultaneously under orthonormality
constraints. Notably, other constraints can be enforced
on some or all modes by changing the manifolds in the
cross-product manifold.
We propose four new MDA methods by optimising the

scatter ratio objective [8, 11] and three new MDA objec-
tive functions rigorously. We impose orthonormality con-
straints through optimisation on a cross-product of Stiefel
manifolds and optimise the model parameters using the
conjugate gradient method. The three new objective func-
tions are a PARAFAC version of the scatter ratio objective
and a PARAFAC and Tucker version of the trace-ratio
objective [1].
The orthonormal projection matrices with the Tucker

and PARAFAC structures are defined through the
Kronecker and Khatri-Rao products, respectively:

UTucker = U(P) ⊗ U(P−1) . . .U(1)

UPARAFAC = U(P) � U(P−1) . . .U(1). (4)

The Khatri-Rao product is the column-wise Kronecker
product [31]. The objective functions and the names we
refer to the methods by are:
Manifold Tucker/PARAFACDiscriminant Analysis with

the scatter ratio objective (ManTDA_sr/ ManPDA_sr):

Tr
(
U�
s BUs

)

Tr
(
U�
s WUs

) . (5)

Manifold Tucker/PARAFACDiscriminant Analysis with
the trace of matrix ratio objective (ManTDA/ManPDA):

Tr
((

U�
s WUs

)−1
U�
s BUs

)
, (6)

where the structure variable s is either Tucker or
PARAFAC. Another proposed objective function uses
determinants [13, 37]. The solution to this objective has
the same stationary points as (6) (see Additional file 1:
Appendix A).
While the scatter ratio objective (5) maximises the ratio

of energy in between-class observations relative to within-
class observations, the trace of matrix ratio objective (6)
maximises the ratio of the volume spanned by between-
class observations to the volume spanned by within-class
observations.

Logistic regression for classification
For all methods, we use logistic regression for classifica-
tion. For the MDA methods, discriminative projections
are first found, and then used to project observations onto
low-dimensional spaces, and the scalar values in these
representations (matrices) are used for classification. For
BDCA and BDCATucker, the logistic regression classi-
fication step is an integral part of the method. For the
unsupervised methods (PARAFAC, PARAFAC2, Tucker,
and Tucker2), data is decomposed and the estimated fac-
tors for the trial mode for each observation are used as
features for logistic regression.While logistic regression is
perhaps the most simple classifier, we use it to compare
the degree of linear separability of classes obtained using
each of the methods.

Uniqueness of MDA
MDA based on the Tucker structure is not unique when
considering the objective functions given above. In fact,
the projection matrix for each mode can separately be
multiplied by any orthonormal matrix R without chang-
ing the value of the objective function, as shown in the
(Additional file 2: Appendix B).
For the PARAFAC version of MDA (for P = 2) we can

consider alternative representations of U = U(2) � U(1)

by multiplying two orthonormal matrices R(1) and R(2)

to form Ũ = (
U(2)R(2)) � (

U(1)R(1)). Exploiting the
property [38]:
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(
U(2)R(2)

)
�

(
U(1)R(1)

)
=

(
U(2) ⊗ U(1)

) (
R(2) � R(1)

)
,

we obtain for the term used separately in the numer-
ator and denominator of the scatter ratio objective
function (5):

ŨŨ� =
(
U(2) ⊗ U(1)

) (
R(2) � R(1)

)

(
R(2) � R(1)

)� (
U(2) ⊗ U(1)

)�
,

and for the trace of matrix ratio objective (6):

Tr
((

Ũ�WŨ
)−1

Ũ�BŨ
)

=Tr
(((

R(2)�R(1)
)�(

U(2)⊗U(1)
)�

W
(
U(2) ⊗ U(1)

) (
R(2) � R(1)

))−1

(
R(2) � R(1)

)� (
U(2) ⊗ U(1)

)�
B

(
U(2) ⊗ U(1)

) (
R(2) � R(1)

))
.

(7)

Due to the Khatri-Rao product structure it is no longer
given that the above objective functions for Ũ can be
reduced to the objective functions based on U except for
the trivial situation in which R(2) and R(1) are identical
permutation matrices. We empirically tested the objective
functions where R(2) = R(1), R(2) =R(1)� , and R(2) �= R(1)�

and found that the random orthonormal matrices we gen-
erated indeed did not provide equivalent objective func-
tion values. Note that the case R(2) = R(1) would result in
the same log-likelihood for BDCA.

Data
In data with a temporal and a spatial mode, such as EEG
data, the PARAFAC structure assumes that each spatial
pattern has one associated prototypical time series, and
vice versa. On the other hand, the Tucker structure allows
for each spatial pattern to be active according to any of the
temporal patterns, and vice versa. Depending on the phe-
nomenon under investigation and previous knowledge,
one of these assumptions on interactions between spatial
and temporal patterns is likely to be more probable than
the other. Hence we expect tensor models to represent
probable hypotheses of EEG data generation, and com-
pared the methods on simulated data and on two EEG
data sets.

Simulated data
We simulated one core with the Tucker structure for
each of two classes. We then added noise to these
cores when generating each observation. This was done
by adding noise to the cores to simulate noisy reali-
sations of the underlying cores, drawn from i.i.d. nor-
mal distributions. We then multiplied the noisy cores
by simulated components to get observations in the
observation space, for which we simulated observations

with the dimensionionality of 10 rows and 80 columns.
Finally, a non-discriminative core the same size as the
discriminative core was simulated for each observa-
tion. These non-discriminative cores were multiplied by
non-discriminative components, and added as structured
noise consituting non-discriminative signal components
shared across the two classes. The code we used for sim-
ulation is available at https://github.com/laurafroelich/
tensor_classification/tree/master/code/simulation.

Stekelenburg & Vroomen data
This data set consists of data from Experiment 2 in a set of
three experiments performed and described by Stekelen-
burg and Vroomen [39] containing data from 16 subjects.
For our analyses, we used control trials (gray box shown
on computer, no sound) and non-verbal auditory trials
(clapping (103-107ms) and tapping of spoon on cup (292-
305ms), gray box on screen). Trials containing values
exceeding 150μV or lower than -150μV 200ms prior to
or 800ms after stimulus onset were removed. The baseline
of trials, defined as themean of the 200ms before stimulus
onset, were subtracted. Trials were defined as lasting from
stimulus onset until 500ms after stimulus onset. These
data were recorded at 512Hz. We balanced the trials so
that there were equally many from each class (2604 tri-
als in total over all subjects and both classes). To make
leave-one-subject-out cross-validation possible, we used
50 electrodes common to all subjects.

BCI competition data
This is Data Set II [40] from BCI competition III [41]1
from a P300 speller paradigm. These data were recorded
from two subjects at 240Hz from 64 electrodes and band-
pass filtered during recording between 0.1-60Hz. We
extracted trials from stimulus onset until 667ms after
stimulus onset. For each subject, a training data set con-
taining single-trial labels was available. The test data con-
sisted of EEG recordings and the true spelled letters, but
not single-trial labels.
These two data sets represent different challenges.

While there are many trials in the BCI data set (15,300 per
subject for training), this data set is unbalanced, with one
target trial for every five non-target trials. On the other
hand, we balanced the Stekelenburg&Vroomen data set
but have far fewer trials for this data set.
Since compression of the temporal mode extract the

temporal signature relevant to classification, we avoid
pre-processing steps such as down-sampling, band-pass
filtering, and spectral decomposition.

Empirical analyses
We compared the classification performance of logis-
tic regression using features extracted by four existing
supervised tensor methods (DATER [8], DATEReig [13],

https://github.com/laurafroelich/tensor_classification/tree/master/code/simulation
https://github.com/laurafroelich/tensor_classification/tree/master/code/simulation
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CMDA [11], and DGTDA [11]) and the proposed
manifold MDA approaces (ManTDA_sr, ManPDA_sr,
ManTDA, and ManPDA). Standard Linear Discrimi-
nant Analysis [1] and HODA [33] were also included
in the simulation study. We used logistic regression to
compare the performance of features extracted using
these supervised methods to features extracted by the
unsupervised methods Tucker, Tucker2 [21], PARAFAC
[17, 18], and PARAFAC2 [19, 20]). For comparison, we
further included BDCA [3] as well as our extension
of BDCA to the Tucker representation (BDCA_Tucker),
both of which combine feature extraction and logistic
regression in one step.

Classification
All classifications were performed within the logistic
regression framework and the Area Under the Receiver
Operating Curve (AUC) ([2], Section 9.2) was used to
quantify the classification performances when single-trial
labels were available. To calculate the AUC, the proba-
bilities predicted by the logistic regression models were
compared to the true single-trial labels. For the BCI data,
the final classification performance was evaluated as the
proportion of letters spelled correctly, as in the original
competition.

Simulated data We simulated data with three levels of
signal and three components in each of two modes. The
tensor decomposition methods (both the supervised and
unsupervised methods) were estimated using three com-
ponents.

Stekelenburg&Vroomen data For the Stekelenburg&
Vroomen data, we used leave-one-subject-out cross-
validation (CV) to estimate the between-subject
performances of the models. Each subject was left out in
turn to serve as test data for model evaluation, and the
models were trained on the remaining 15 subjects. To see
how well each model fits the training data, we inspected
classification performances when the models classified
trials from the 15 CV folds that they were trained on.

BCI data For each of the two subjects from the BCI data,
we performed 5-fold CV using the training data contain-
ing single-trial labels. Each of the following steps were
performed for each subject.We inspected themodels’ per-
formance both on training data (classifying trials form
the four CV folds used for training) and on validation
data (classifying the trials from the CV fold left out dur-
ing training). We used the CV performance to choose the
number of components for each model. Each model was
then trained on the entire training data set using this num-
ber of components. The resulting model was applied to

the test data for which single-trial labels were not avail-
able. In a final step, these single-trial classifications were
used to predict the letters spelled, and these were com-
pared to the correct letters. Hence, our results on the
letter classification task are comparable to those from the
competition since we did not use the test data to choose
or train models, which was also the procedure in the
competition.

Number of components
The supervised tensor classification methods find projec-
tion matrices that compress multilinear observations into
lower-dimensional representations. With K components
in each mode, the size of the lower-dimensional space
becomes K × K for matrix observations

(
U(1)�XnU(2)

)
,

as for our data sets. Hence, each observation leads to K2

features in the lower-dimensional discriminative space.
We investigated performances for one, three, and five
components for the Tucker-structure projection meth-
ods (Tucker2, CMDA, DATER, DATEReig, DGTDA,
ManTDA, ManTDA_sr, and BDCA_Tucker). For the
PARAFAC variants of the projection methods, only
the diagonal elements are used, i.e. diag

(
U(1)�XnU(2)

)
.

Hence, to get the same number of features as input to
logistic regression for all methods, we also included 9
and 25 components for the PARAFAC-structure meth-
ods. Likewise, the methods PARAFAC, PARAFAC2, and
Tucker only yield one feature for each mode-3 compo-
nent. Hence, we also estimated thesemodels with 9 and 25
components. Note that a Tucker structured model with a
core of size K in all pmodes could equivalently be written
as a PARAFAC structured model of rank Kp. However, a
PARAFAC model with rank Kp cannot be guaranteed to
have an equivalent Tucker structure representation with
core of size Kp. By including the higher number of com-
ponents for PARAFAC structure models, we quantify the
effect of allowing the model to be at least as flexible as
the Tucker representation also passing the same number
of features to the classifier.

Model implementations
We used the nway [42] toolbox to estimate the PARAFAC,
PARAFAC2, Tucker, and Tucker2 models. These models
were initialised with the best of 10 short runs, which were
themselves initialised with random matrices. The BDCA
methods were initialised with random normal values. The
components for the trial mode (i.e., mode 3) were con-
strained to be orthogonal for PARAFAC and PARAFAC2.
For Tucker and Tucker2, all projection matrices were
constrained to be orthogonal. Due to the rotational ambi-
guity between the core and the projection matrices in the
Tucker, the Tucker model’s fit is not impacted by these
constraints. In principle, constraints are not necessary on
the PARAFAC model. However, in practice, degeneracy
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can be an issue, which constraints preempt. Since we do
not believe orthogonality constraints imposed on the spa-
tial mode (scalp maps) or temporal mode are plausible, we
chose to constrain the trial mode to be orthogonal.
The existing MDA methods (DATER, DATEReig,

CMDA, HODA, and DGTDA) were optimised by Mat-
lab code that we wrote based on the pseudo-code in the
papers describing these methods [8, 11, 13, 33]. CMDA,
DATER, HODA, and DATEReig were initialised with ran-
dom orthogonal matrices while DGTDA does not need
initialisation.
To avoid the log-likelihood from overflowing in the first

iteration for the BDCAmethods, the standard deviation of
the initial random values for the Stekelenburg&Vroomen
data was set to 0.01 while a lower value, 10−5, was neces-
sary to avoid overflow for the BCI data.
Our proposed MDA methods were optimised using the

ManOpt [35] toolbox for Matlab. The models were ini-
tialised both with random orthonormal matrices and with
projection matrices obtained from short runs of CMDA.
Results from the two initialisation methods were similar,
so we only show the results from random initialisation.
It was originally recommended to use the Damped

Newton procedure in the immoptibox [43] to optimise
the BDCA log-likelihood objective [3]. We optimised
BDCA using both the suggested Damped Newtonmethod
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) opti-
misation, also available in the immoptibox. These two
optimisation methods achieved very similar classification
rates. The BFGS method was slightly faster despite it only
requiring gradients.We therefore used BFGS optimisation
to optimise the BDCA methods.
All iterative methods were started three times and run

for up to 5000 iterations or until convergence for the
Stekelenburg&Vroomen data and for 1000 iterations for
the BCI data. The best of the three solutions was chosen
for further analysis to minimise the risk of analysing solu-
tions from local minima. The convergence criteria used
for CMDA, DATER and DATEReig were those originally
proposed for CMDA and DATER [8, 11].

Visualisation
The projection matrices found by the supervised methods
act as dimension-reducing filters that maximise the class-
discriminative information in the filtered data. However,
such filters are not suited for visualisation for model inter-
pretation purposes [44]. Instead, the interesting spatial
properties of the estimated sources consist of how their
activity is expressed on the scalp. This can be derived from
the filters by pre-multiplying the data covariance matrix
of electrodes onto the filter (projection) matrix if sources
are assumed uncorrelated. We extrapolated this visuali-
sation approach established for the spatial domain to the
temporal domain by pre-multiplying the data covariance

of temporal samples onto the temporal filter matrices to
visualise the time courses of the sources. Since the MDA
models with Tucker structure and BDCA are rotationally
invariant, they do not have straight-forward interpreta-
tions, except in the one-component case.
On the other hand, each column in a projection

matrix can only interact with one column from pro-
jection matrices for the other modes when using the
PARAFAC structure. Also, we empirically observed
that the PARAFAC formulations of MDA objectives
were not invariant to rotations via random orthogo-
nal matrices, making their interpretation more intu-
itive. For these reasons, we limit visualisations to
one-component Tucker models and PARAFAC-structure
MDA models.

Results
Classification performance on simulated data
Figure 1 shows the classification performances of the
tensor decomposition methods on simulated data with
the medium level of signal strength that we simulated.
The figure shows the mean AUC plus/minus the stan-
dard deviation of the mean across 25 simulations. As on
the EEG data, we observe low performances from the
unsupervised methods.While standard LDA outperforms
the unsupervised tensor methods, the supervised ten-
sor decomposition methods (except HODA and DGTDA)
obtain higher AUCs than LDA. As expected, all methods
improve with more training observations. Both DATER
and DATEReig outperform LDA. CMDA is comparable in
performance to the manifold methods for most numbers
of training observations, but there seems to be a trend that
the manifold method ManTDA is better able to leverage
the addition of more training observations for large num-
bers of training observations. Additional plots are given
in Additional file 3: Appendix C, for each of three noise
levels.

Objective function values on EEG data
Figure 2 shows the objective function values obtained
by CMDA, DATER, DATEReig, and our proposed mani-
fold optimisation of the scatter-ratio objective with Tucker
structure, the objective function these four methods aim
to optimise. The values obtained for the scatter-ratio
objective are shown as full lines. Objective function val-
ues for the trace of matrix ratio objective are also shown
since the heuristic methods, during optimisation, use this
objective as an approximation to the scatter-ratio objec-
tive. CMDA, DATEReig, and the manifold methods share
the same constraints on the projection matrices and are
hence directly comparable. Each iteration for DATER,
DATEReig, and CMDA corresponds to an update of the
projection matrix for one of the modes. Each iteration for
the manifold optimisation corresponds to one update in
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Fig. 1 Performance on simulated data. Classification performance obtained through the tensor decomposition methods on simulated data with the
medium level of simulated signal as a function of the number of training observations. Vertical lines denote plus/minus the standard deviation of
the mean of 25 simulations

Fig. 2 Objective function values. Objective function values for one, three, and five components. Scatter ratio objective function (5) values are shown
as full lines while the matrix ratio objective (6) is shown as dashed lines for three random initialisations. Top: Stekelenburg&Vroomen data for the CV
fold with subject 5 left out. Bottom: subject B from the BCI data. Note the log scale of the y-axis in the upper row and the linear scale in the bottom row
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all modes since all modes are optimised simultaneously in
this approach.
The top of Fig. 2 shows a randomly chosen case of the

optimisation for the CV fold with subject 5 left out in the
Stekelenburg&Vroomen data. All optimisation runs were
very similar to the example shown here. The bottom part
of the figure shows the optimisation for CV fold num-
ber 1 for subject B. This is similar to the other CV folds,
including those for subject A.
One observation from this figure is that the convergence

of CMDA and DATEReig is not monotone, increasing
rapidly to begin with, followed by a decline before stabilis-
ing. The alternation between optimising the two modes is
seen as a sawtooth pattern of objective function values ris-
ing and falling between iterations in the initial part of the
optimisation. Although more difficult to see, DATER also
exhibits these characteristics. This shows that CMDA,
DATEReig, and DATER do not optimise the scatter-ratio
objective consistently.
Secondly, we observe that the manifold methods obtain

the highest values. That is, the dashed line for ManTDA
dominates the other dashed lines, while the full line for
ManTDA_sr dominates the other full lines, from a certain
number of iterations and onwards. DATEReig and CMDA
reach the same value of the matrix ratio objective, with
DATER also reaching a similar value. Since the matrix
ratio is a simple, but inexact, approximation to the scatter
ratio objective, it is reassuring that the iterative methods
reach similar values for the inexact problem. However,
their differences on the exact scatter ratio objective reveal
that the inexact approximation combined with iterating
over modes to optimise does not suffice to obtain the best
solution to the exact problem.

Cross-validated classification performance on EEG data
Figure 3 shows the AUC when evaluating on training data
for Stekelenburg&Vroomen data (top) and for the two BCI
subjects (A in themiddle and B at the bottom).When eval-
uating on training data, all methods improved with more
components, as expected.
On the Stekelenburg&Vroomen training data,ManTDA,

BDCA and BDCA_Tucker outperform the other meth-
ods, even obtaining perfect classification performances
(AUC value of one) whereas the other MDA methods,
except DGTDA, are very close to these best perfor-
mances. The PARAFAC-structure and Tucker-structure
formulations of the objective functions have very simi-
lar performances but the PARAFAC-structure versions of
MDA do not improve to perfection, as BDCA does for
the largest component numbers. The performances are
nearly identical, and low, for the unsupervised PARAFAC
and Tucker models, even when allowed a large num-
ber of components. The Tucker2 method, which projects
each trial into a lower dimensional space analogously to

the MDA methods, performs substantially better than
the other unsupervised methods, even outperforming
DGTDA.
On the BCI training data, the two BDCA methods also

outperform ManTDA. Here, the performance of BDCA is
substantially higher than all other methods. With 25 com-
ponents, BDCA again obtains AUC values of one, for both
BCI subjects. On the BCI data, we observe some perfor-
mance differences between ManPDA and ManTDA, with
ManTDA performing best. For subject A, Tucker2 again
outperforms DGTDA while it is on the same (low) level as
PARAFAC and Tucker for subject B.
Figure 4 shows the classification performances obtained

when evaluating on test data. Again, the results from
the Stekelenburg&Vroomen data are shown in the top of
the figure, with BCI subjects A and B in the middle and
bottom, respectively.
When evaluating on Stekelenburg&Vroomen test data,

ManTDA and the BDCAmethods performworse than the
other supervised methods, especially for high component
numbers. With five components, they and DGTDA are
even outperformed by Tucker2. The other MDA meth-
ods still obtain the highest performances, with Tucker,
PARAFAC, and PARAFAC2 only obtaining low AUCs
until 25 components. At this point, Tucker and PARAFAC
approach the MDA performances.
On the BCI data, ManTDA and the BDCAmethods per-

form at the same level as the MDA methods while the
unsupervised feature extractionmethods do not reach this
level, with any component number. With four and five
components (also with three for subject A), DGTDA is
somewhat better than the unsupervised methods with-
out coming close to the other supervised methods. While
the performances of CMDA, DATER, and ManTDA
are slightly better, all the MDA methods perform
similarly.

BCI data letter classification performance
Table 1 shows average classification rates of letters across
the two subjects in the BCI data. The first column gives
the classification rates when each row/columnwas flashed
15 times to spell a character. The second column shows
the results for five flashes. The average classification rates
obtained by the five teams with highest performances
in the competition are also shown, reproduced from the
competition website2. DATEReig obtains the best perfor-
mance, closely followed by CMDA, DATER andManTDA,
with only small differences between the PARAFAC and
Tucker structures of the MDA methods.

Model interpretation
We now show the temporal and spatial patterns of several
of the fitted models. The components were derived and
arranged in no particular order. Since the performances
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Fig. 3 Performances on training data. Testing on training data (data from each CV fold that was also used to train on). Top: Stekelenburg&Vroomen
data.Middle: BCI data, subjet A. Bottom: BCI data, subjet B. The methods are grouped by type such that first four methods plotted are the
unsupervised decomposition methods, followed by the four heuristic supervised decomposition methods. The next four methods are the
supervised manifold methods, which are followed by the two methods performing decomposition and classification in one step. Finally, the six
methods that produce fewer features for classification are plotted again with 9 and 25 components

of the unsupervised methods are very low, we focus on
visualising the supervised methods.
Figure 5 shows the scalp maps and corresponding tem-

poral signatures extracted by one-component models of
the Stekelenburg&Vroomen data. With only one compo-
nent, the PARAFAC and Tucker versions of each objective
function are identical, making BDCA and BDCA_Tucker

equivalent. Also, the trace of matrix ratio is the same
as the scatter ratio in this case, making all the methods
optimised on manifolds equivalent. We included one-
component models from each of the equivalent models
in Fig. 5. Except for different scaling in DATER, the
components fitted by CMDA, DATER, and ManTDA are
identical. This is reflected in the nearly identical logistic
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Fig. 4 Performances on test data. Testing on validation data (data left out from each CV fold). Top: Stekelenburg&Vroomen data.Middle: BCI data,
subjet A. Bottom: BCI data, subjet B

regression coefficients (shown above the spatial patterns)
found for CMDA and ManTDA. The magnitude of the
temporal pattern found by DATER is lower than that
in CMDA and ManTDA, which is accounted for by the
higher logistic regression coefficient. Since the BDCA
model uses the projection into a lower dimensional space
directly in the logistic regression model, no coefficient
is displayed for this model. Although the patterns found
by BDCA are not identical to those found by the other

methods, they are very similar. The temporal pattern of
the component is very similar to the difference wave found
by Stekelenburg and Vroomen between the two condi-
tions [39]. The centrally located scalp map is also in good
accordance with their analysis of the central Cz electrode
[39]. The logistic regression model was trained to predict
probabilities for the auditory class. All shown components
are well in line with this training since the positive logistic
regression coefficients means that centrally located scalp
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Table 1 Mean letter classification rates for data set II from BCI
competition III from the compared methods (top) and best five
competition participants (bottom), copied from http://www.bbci.
de/competition/iii/results/index.html

15 flashes 5 flashes

DATEReig 0.930 0.695

CMDA 0.925 0.695

DATER 0.925 0.670

ManTDA 0.915 0.660

ManPDA 0.910 0.645

BDCA 0.895 0.645

ManPDA_sr 0.890 0.555

BDCATucker 0.890 0.655

ManTDA_sr 0.880 0.555

Tucker2 0.605 0.260

DGTDA 0.595 0.320

Parafac 0.315 0.105

Tucker 0.300 0.090

Parafac2 0.025 0.005

Alain Rakotomamonjy 0.965 0.735

Li Yandong 0.905 0.550

Zhou Zongtan 0.900 0.595

Ulrich Hoffmann 0.895 0.530

Lin Zhonglin 0.875 0.575

activity with temporal activity like the difference wave in
[39] indicates that a trial is from the auditory class.
Figure 6 shows the spatial and temporal patterns

corresponding to the extracted filters for supervised
MDA PARAFAC-structure models with three compo-
nents, trained on four of the five CV folds from subject
A’s training data. All models extract a waveform similar to
the P300 ERP, which is the theoretical foundation of P300
BCI systems. The three components extracted by Man-
PDA look almost identical, with the characteristic P300
temporal signature and a centrally focused scalp pattern.
The component on the right for ManPDA_sr has the same
characteristics as the ManPDA components. The logistic
regression model for the BCI data was trained to pre-
dict the probability of the target class, i.e. the class that
should contain the P300 response. The estimated compo-
nents’ logistic regression coefficients are in line with this
since the estimates show that central scalp activity exhibit-
ing the P300-like waveform increases the probability of an
observation being from the target class.
The two components shown on the left for ManPDA_sr

are difficult to interpret since their spatial patterns are
not smooth and their temporal patterns are very high fre-
quent. These two components might represent random

noise in the data. Hence, we would not expect these com-
ponents to contribute to classification performance. This
is aligned with the observation from Fig. 3 that classifica-
tion performance is not improved substantially for higher
component numbers.

Discussion
We saw that supervising the feature extraction step
resulted in better classification rates. When feature
extraction is not supervised, some directions of the data
space that contain class-discriminative information but
have low variance, and so explain only a small data pro-
portion, may be lost since unsupervised feature extraction
focuses on data directions that best explain data variance.
Even when including a large number of components, the
unsupervisedmethods did not obtain competitive classifi-
cation performances, emphasising the need for supervised
feature extraction methods.
Although the manifold optimisation approach obtained

substantially higher objective function values than exist-
ing heuristic optimisation provides, we did not observe
large classification performance differences between the
supervised methods on the EEG data. With the same
number of components, the Tucker and PARAFAC ver-
sions of the methods performed similarly. On the sim-
ulated data, though, it was evident that the manifold
optimisation approach delivered better classification per-
formance, both for the PARAFAC and Tucker objective
functions. Keeping in mind that the simulated data was
endowed with a Tucker structure, this seems to indicate
that the PARAFAC structured models are robust to devi-
ations from the PARAFAC structure assumption. Both
CMDA and the PARAFAC structured manifold methods
outperformed the Tucker structured trace-of-ratio man-
ifold method (ManTDA) when low numbers of training
observations were used. However, it seems that ManTDA
was better able to learn from the available data, over-
fitting when too few observations were available, but
performing better with sufficient training data, whereas
the other methods’ performances plateaued and were not
able to further improve. Notably, the PARAFAC-versions
proposed for MDA are also attractive due to their inter-
pretability.
Combining feature extraction and learning the classi-

fier in one step by BDCA led to the best performance
on training data. However, as was also a problem for the
ManTDAmethod, the performance dropped on Stekelen-
burg&Vroomen test data, especially with many compo-
nents. This pattern is a sign of overfitting. On BCI data,
the performance of ManTDA and BDCA did not drop
on the test data as these data sets had substantially more
trials.
As was originally recommended, regularising the BDCA

methods would probably improve their performance [3].

http://www.bbci.de/competition/iii/results/index.html
http://www.bbci.de/competition/iii/results/index.html
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Fig. 5 Interpretation of components from the Stekelenburg&Vroomen experiment. Spatial and temporal patterns corresponding to the extracted
spatial and temporal filters found from the training data without subject 5 in the Stekelenburg&Vroomen data by the following (from top to
bottom) one component models: CMDA, DATER, ManTDA, BDCA. Logistic regression coefficients are shown above the spatial patterns. a CMDA
b DATER cManTDA d BDCA

Regularisation could be done in an unsupervised manner
by using a Tucker2 compression of the temporal and spa-
tial modes before applying the supervised methods. The
regularisation originally recommended was a smoothing
function [3], making the estimated spatial and temporal
filters smoother. Alternatively, such a smoothing con-
straint could be applied to the patterns to make them
resemble expressions of neural activity more. Other reg-
ularisation options are also possible. For example, L1 or
L2 regularisation could be incorporated in the logistic
regression model in the BDCA methods.
Likewise, regularisation of the manifold-optimised

MDA methods would also protect against the problem
with overfitting, that became apparent with the Stekelen-
burg&Vroomen data. One explanation for the high perfor-
mance of the existing MDA methods could be that their
sub-optimal optimisation induces regularisation, albeit
uncontrolled. By optimising overmanifolds rigorously, the
manner and degree of regularisation can potentially be
controlled systematically.
For our manifold optimisation, we used conjugate gra-

dient as provided in the ManOpt toolbox [35]. However,
more efficient optimisation using newer, more advanced
manifold optimisation methods [45, 46] might be benefi-
cial. In order to minimise the amount of pre-processing,
we used the raw EEG trial data as input to the compared

methods. In view of the lack of pre-processing, the high
classification rates are surprising and indicates that the
tensor methods are able to extract the temporal, as well
as spatial, characteristics of data. Hence, these methods
might also be useful for extracting neural phenomena
without prior knowledge.

Conclusion
We set out to investigate whether the performance of
Multilinear Discriminant Analysis (MDA) methods could
be improved through rigorous optimisation instead of
existing optimisation heuristics in the context of single-
trial EEG classification. We found that rigorous optimi-
sation does obtain substantially higher objective function
values than the existing optimisation procedures. This,
however, did not lead to better classification performance
on EEG data, while performance improvements were seen
on simulated data. Additionally, we compared PARAFAC-
and Tucker formulations of objective functions and did
not observe large differences between these formulations.
However, for model interpretation, we found that the pro-
posed PARAFAC MDA models, which the existing MDA
methods do not allow for, are attractive. Finally, we inves-
tigate whether it is necessary to use supervised methods
when searching for subspaces suitable for classification.
Our results showed that supervised feature extraction

Fig. 6 Interpretation of components from the BCI data. Spatial and temporal patterns corresponding to the extracted filters from the PARAFAC
models ManPDA and ManPDA_sr, trained on four of five CV folds from subject A’s BCI data. Fitted logistic regression coefficients are shown above
the spatial patterns. aManPDA bManPDA_sr
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methods perform substantially better than unsupervised
methods, indicating that it is advisable to use observa-
tion labels when performing feature extraction. For inter-
pretability, PARAFAC formulations are preferred. Using
these methods, we were able to extract spatial and tempo-
ral patterns resembling spatial activation and waveforms
known to be characteristic of the investigated paradigms.
This was achieved without usual pre-processing steps
such as filtering. That is, the MDAmethods were directed
solely by data and the labels of trials when extracting
these patterns. Our Matlab implementations are available
at https://github.com/laurafroelich/tensor_classification.

Endnotes
1 http://www.bbci.de/competition/iii/
2 http://www.bbci.de/competition/iii/results/index.

html
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