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Abstract

Background: The heterogeneity of cells across tissue types represents a major challenge for studying biological
mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene
regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of
cells in distinct organs and tissues.

Results: Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene
set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and
downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks.
We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and
populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that
HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by
GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was
seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks
involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous
genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE
database.

Conclusions: HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for
transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can
lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.

Keywords: Gene set enrichment, Systems biology, Tissue specificity, Gene expression, Transcriptional networks,
Transcription factor binding motifs, Pathway analysis, Therapeutic targets, Endothelial cells, Endothelial
heterogeneity, Neurons, Neuronal heterogeneity, Vascular biology

Background
Computational analysis of microarray and RNA-Seq
gene expression data of a given cell type obtained
from distinct organs and tissues enables the unbiased
identification of gene candidates. Endothelial cells,
neurons, macrophages or fibroblasts that reside in dif-
ferent tissues or organs have distinct functions are
thus likely to have unique gene expression signatures
that reflect their tissue-specific adaptation and

function. Several recent publications addressing cellu-
lar heterogeneity have gained widely applicable bio-
logical insight in many areas including disease
subtypes [1], candidate biomarkers [2], and molecular
mechanisms of disease [3]. After generating gene ex-
pression data for different tissues, the goal is to iden-
tify the molecular heterogeneity characterizing the
tissues. The heterogeneous populations may represent
previously unidentified molecular profiles responsible
for tissue-specific function. Additionally, by studying
patterns of gene expression in different tissues, in-
sights into the regulatory landscape of each popula-
tion can be obtained. To characterize heterogeneous
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or differentially regulated genes, differential expression
analysis [4] and gene co-expression network analysis
[5] are commonly used. A limitation of these methods
however is that the single dimensional analysis of
genes does not identify the causal molecular mecha-
nisms that regulate them [6]. These methods rely on
ranking individual genes by differential expression and
subsequently inferring the underlying pathways or
transcription factors that maintain the heterogeneous
gene expression profiles. Importantly, deriving the ini-
tial rank-list of the most differentially expressed genes
using these conventional computational approaches
does not consider whether differential expression of
tissue-specific genes is concentrated within functional
groups. From a biological perspective, functionally re-
lated genes often have similar expression patterns
which match cell-specific phenotypes [7]. In order to
identify the molecular signature of distinct cell popu-
lations, new methods, in addition to existing methods
such as GSEA [8] and PGSEA [9], need to be devel-
oped to interpret dynamic changes within a group of
genes with common function. We therefore developed
a novel unbiased computational approach (Hetero-
Path) in which cell type specific gene expression was
analyzed from distinct tissues within the context of
pathways. Instead of ranking pathways by cumulative
gene expression of all individual genes, we ranked the
pathways from most heterogeneous to least heteroge-
neous, and applied this approach in two cell types:
endothelial cells and neurons that were freshly iso-
lated from distinct tissues. This novel method of
characterizing cells from distinct tissues based on the
heterogeneity of the pathways allows for the precise
identification of pathways which are uniquely upregu-
lated or uniquely downregulated in a given tissue.
Endothelial cells lining the intimal of vessels in

different organs have specialized functions and mor-
phological features [10]. Heterogeneous endothelial
cell (EC) populations also have distinct signature
gene expression patterns, which allow for tissue-bed
specific functional adaptation of the vasculature [11].
For example, microvascular endothelial cells in the
brain form a continuous, highly impermeable blood-
brain barrier (BBB) to maintain the selective meta-
bolic balance required for brain function and restrict
BBB permeability [12]. The lung endothelium, on the
other hand, forms a semipermeable barrier which is
apposed to the alveolar epithelium, thereby facilitat-
ing alveolar gas exchange which is essential for
maintaining lung fluid balance [13]. The endothelial
cells lining the heart vasculature also maintain a re-
strictive endothelial barrier while being exposed to
intense shear forces generated by the contracting
heart [11].

Similarly, neuronal specialization exists in different re-
gions of the brain due to their unique morphology, con-
nectivity, and electrophysiological properties [14]. It is
thought that this heterogeneity arose during evolution
for the “division of labor” and execution of specialized
tasks in the mammalian nervous system [15]. Even
though signature genes and proteins for distinct neur-
onal subpopulations have been established, a compre-
hensive transcriptomic analysis that would identify
signature pathways for each subpopulation would likely
help uncover novel subpopulation-specific functions and
mechanisms.
In the case of endothelial cells and neurons, cellular

heterogeneity is likely dictated by the niche and rooted
in the tissue-specific regulation of gene expression path-
ways. Therefore, identifying tissue-specific gene expres-
sion signatures is necessary to define the phenotypic
heterogeneity of the endothelium and of neurons.

Methods
Microarray data preprocessing
The statistical modeling algorithm we developed (Fig. 1)
was applied to microarray data sets downloaded from the
Gene Expression Omnibus (GEO) at http://www.ncbi.nlm.
nih.gov/geo/. The mouse endothelial cells (GSE47067)
were freshly isolated from mouse organs, which were
intravitally labeled, isolated via flow sorting and immedi-
ately processed for RNA extraction, amplification and
hybridization [4]. The mouse forebrain neurons (GSE2882)
were fluorescently labelled neurons isolated from five
different regions of the forebrain. Datasets of three of
the endothelial cell tissues (brain, lung, and heart) and
three of the neuronal cell tissues (hippocampus, cingulate
cortex, and amygdala) were used in this study.
After downloading the raw individual Affymetrix

Mouse Gene 1.0 ST Array CEL files, data analysis was
performed using software available from the Bioconduc-
tor Project (version 3.2) and the R Project for Statistical
Computing v. 3.2.1 [16, 17]. We performed the back-
ground correction and the normalization of the raw ex-
pression data using the robust multi-chip average
(RMA) from the affy package (1.24.2).

HeteroPath algorithm

1. For each of the N genes in the gene expression
matrix, calculate the t-statistic for each tissue by
performing an individual-gene analysis:

ti ¼ M1 ið Þ−M2 ið Þ
s ið Þ

Where M1(i) is the median expression level of gene i
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in an individual tissue, M2(i) is the median expression
level of gene i across all tissues, and s(i) is a pooled stand-
ard deviation over the two groups (individual tissue vs
median of all tissues).

2. Filter out genes which have less than a threshold
for fold-change (The value 2 is set as default).

3. Compute the Heterogeneity score (HS)
corresponding to pathway/set S:

a

b

Down-regulated

Median expression

Up-regulated
Fig. 1 a Tissue-specific transcriptomic profiling. First, the gene expression data is preprocessed and normalized. Then, the gene
expression data and gene set data are integrated together. Each KEGG pathway is statistically evaluated using the traditional
algorithms GSEA, PGSEA, and the novel HeteroPath algorithm to identify tissue-specific pathways. Next, the tissue-specific gene
regulatory networks are constructed by identification of heterogeneous genes and their regulatory transcription factors as determined
by motif enrichment analysis using the ENCODE database. b The HeteroPath algorithm for identifying heterogeneous pathways and
gene sets. HeteroPath aims to find the pathways/gene sets that are not only differentially expressed from the global median gene
expression value but also appear to be responsible for the regulation of distinct cell types
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HS ¼
X

i∈S

tij j

4. Permute the labels of the phenotype P in the data
matrix and repeat (1) and (2). Repeat until all
permutations are considered.

5. Compute empirical p-value for the association of S
and P as the fraction of the HSs from the permuted
datasets from (4) that is larger than the observed
HS statistic from (3).

6. Repeat the analysis for multiple gene sets and
estimate false discovery rates (FDRs) from
p-values of individual sets using the q-values [18].

To identify significant heterogeneous pathways, we ap-
plied our novel computational algorithm, HeteroPath in
which the heterogeneity of pathways for a cell type was
evaluated. We applied a fixed gene set enrichment ana-
lysis which combined the gene expression and pathway
data. We tested for bidirectionally perturbed pathways
in the KEGG database. We were specifically interested
in these bidirectionally perturbed pathways because they
are individual pathways which contain a significant
number of elements that are upregulated and a signifi-
cant number of elements which are downregulated. The
algorithm iterates through all KEGG pathways and as-
signs a heterogeneity score to each pathway. The hetero-
geneity score was generated by summing the absolute t-
statistics of genes with sufficient magnitude to determine
significant differences in gene expression across multiple
tissue types. The t-statistic was used as a distance metric
to quantify tissue-specific association between gene ex-
pression profiles on a per-gene basis. Therefore, the het-
erogeneity scores factor in both direction and magnitude
of perturbation. Although a t-statistic based heterogen-
eity score of 0.975 or greater is equivalent to a p-value <
0.05, it is not appropriate to calculate a p-value from this
statistic because of the small number of genes associated
with some pathways. Therefore, a permutation based p-
value was estimated in our algorithm. An adjusted p-
value is then calculated to control for the false discovery
rate. The stringent Benjamini-Hochberg correction
method [18] is applied to the raw p-values produced
from the permutation-based calculation.

Gene set enrichment analysis methods
To reveal the biological relevance of the gene expression
profiles obtained, a comparison study of the microarray
data was performed using GSEA [8] and parametric ana-
lysis of gene set enrichment (PGSEA) [9]. The GSEA al-
gorithm tests if the distribution of the ranks of genes in
the gene set differs from a normal distribution using a
weighted Kolmogorov-Smirnov test. PGSEA is an algo-
rithm used to analyze a gene expression data set for

enrichment in gene sets, often by testing whether the
average fold-change of a gene set is different from zero.
Gene enrichment scores for each of the KEGG pathways
within each tissue sample were calculated using both
GSEA and PGSEA. The GSEA procedure allows for se-
lection of a main parameter. The final output of
enriched pathways is affected by the ranking metric
which measures the level of difference in gene expres-
sion between phenotypes. Therefore, we compared the
GSEA results using different ranking parameters and ob-
served a strong overlap among the enriched pathways
when a t-test statistic (t-test) or the Pearson correlation
coefficient was used for quantitative studies. Since Het-
eroPath is a t-statistic based algorithm, using the t-
statistic quantitative measure for GSEA was more
appropriate.
To visualize the degree of heterogeneity identified by

different gene set enrichment analysis methods, GSEA,
PGSEA, and HeteroPath, we calculated a pathway z-score
for significantly differentially expressed pathways identi-
fied by the three independent algorithms and generated
heatmaps. The Z-score for each pathway was calculated
using the PGSEA method [9]. In both microarray data
sets, we first calculated the fold change values for every
gene by comparing each of the three tissues individually
with the median expression across all tissues. Using those
fold-change values we next calculated the mean of the
total fold change values (μ) and the standard deviation of
the total fold change values (σ). We denoted the mean of
fold change values for a given pathway as xp and the num-
ber of genes in a given pathway as p, and then calculated
the pathway Z score as

Z ¼ xp−μ
� � � p

1=2

σ

By calculating the pathway Z score for all significant
pathways, we were able to generate individual heatmaps
for each of the algorithms and visualize the degree of
heterogeneity identified by the significant pathways from
each respective algorithm.

HeteroPath performance evaluation
The performance of HeteroPath was evaluated by calcu-
lating receiver operating characteristic (ROC) curves and
area under the curve (AUC) values for each dataset at
varying fold-change thresholds (1.5, 2, and 3) using the
R package pROC [19]. We first defined a list of bona fide
true positive and true negative pathways in each dataset
by using the gene expression values to identify pathways
which either had a q-value < 0.01 (“positive”) or q-value
> 0.2 (“negative”) in GSEA and PGSEA. We then drew a
ROC curve for distinct fold change threshold values in
the HeteroPath algorithm. Since HeteroPath identifies
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significantly differentially expressed genes in each tissue
sample by comparing each tissue with the median gene
expression of all tissues, varying the fold change thresh-
old influences the number of genes included to calculate
the heterogeneity score for each pathway. Using the het-
erogeneity score, we identified the HeteroPath enriched
pathways and compared them to the true positives and
true negatives. By calculating the AUCs of the ROC
curves based on binary classification of the pathways to
the ground truth at three distinct fold change thresholds
we were able to evaluate the performance of HeteroPath.
We further evaluated the significance of the AUC values
by performing a permutation test. By randomly permut-
ing the class labels and running HeteroPath, we re-
corded AUC values. We repeated the process 1000 times
and recorded all the “random” AUCs. Finally, we com-
pared the observed AUC with the empirical distribution
of “random” AUCs from the permutation tests to obtain
a p-value which is defined by the fraction of “random”
AUCs greater than or equal to the observed AUC value.

Simulations
To further test the validity and performance of Hetero-
Path we designed a simulation study. The simulation
studies were designed using a linear additive model to
generate normalized microarray data on m genes and n
samples [20]. The samples were divided in three groups
representing a scenario involving gene set enrichment
analysis for three tissues:

yij ¼ αi þ β j þ ∈ij

where αi ~ N(μ = 0, σ = 1) is a gene-specific effect, such
as a probe-effect, with i = 1,…, m, βj ∼ N(μj, σj) is a
sample-effect with j = 1, 2, 3 and ∈ij ∼ N(μ = 0, σ = 1)
corresponds to random noise.
To assess statistical power and false positive rate

(type-I error), we designed a microarray gene expression
data set with m = 5000. Next, we simulated two differ-
ently sized differentially expressed gene sets. The first
containing 50 genes and the second containing 150
genes. We considered different numbers of samples, n =
10, 20, 40, 60, and varying conditions leading to different
simulation scenarios for each gene set size. We per-
formed the simulation study varying fractions of differ-
entially expressed genes in the gene set (25, 50 and 80%)
and varying the signal-to-noise ratio (the magnitude of
the mean sample effect in differentially expressed genes
for one of the sample groups).
In the differentially expressed genes scenario, for βj,

we set μ1 = 0.5, μ2 = μ3 = 0 for the weak effect; μ1 = 1, μ2
= μ3 = 0 for the strong effect; and σ1 = 0.5, σ2 = σ3 = 1 for
both cases. For the non-differentially expressed genes
case we set μ1 = μ2 = μ3 = 0 with σ1 = σ2 = σ3 = 1.

We simulated 500 independent data sets using these
parameters. For each of the gene set enrichment
methods we generated an enrichment score matrix for
both gene sets (differentially expressed and non-
differentially expressed). We then performed an ANOVA
on the score matrix for the two gene sets for a difference
in mean between the three groups of samples at a sig-
nificance level α = 0.05. Across the 500 simulations, we
estimated the statistical power as 1 minus the ratio of
non-rejections of the differentially expressed gene set
and the empirical type-I error as the ratio of rejections
of the non-differentially expressed gene set at a signifi-
cance level α = 0.05.

Annotated transcriptional regulators of heterogeneous
genes
To identify sets of unique transcription factors associ-
ated with heterogeneous pathways, we searched for
transcription factors that have been experimentally
proven by ChIP-seq to bind annotated motifs from the
ENCODE project [21] in the promoter regions of the
heterogeneous genes. Our goal was to assess whether
the motif is statistically over-represented in the set of
DNA sequences of the heterogeneous genes from a
single pathway. The method requires three steps. First,
we extracted 2.5 kb upstream of the transcription start
site for each of the heterogeneous genes and examined
enrichment for transcription factor binding sites
(TFBSs) based on the TRANSFAC [22] and JASPAR
[23] databases. We then derived a significance score
which is a comparison of the enriched motif found in
the set of upstream sequences as compared to a ran-
domly selected set of sequences. In order to calculate
significance, we first needed to identify the probability
distributions of TFBS for a single transcription factor
between the heterogeneous gene set and the randomly
selected genes in the mouse genome. Then, we derived
a p-value for the number of TFBS using the randomly
selected background sequence set, which explains the
probability of obtaining the number of TFBS observed
merely by chance. Low p-values (p < 0.05) suggested
that the motif was significantly over-represented and
likely has a biologically relevant function. By identify-
ing enriched motifs within each of the heterogeneous
pathways, we further uncovered the transcription
factors associated with tissue-specific endothelial cell
signaling pathways. We also confirmed that these
transcription factors were expressed in the respective
tissue.

Putative regulatory transcription factors
We further predicted which transcription factors regu-
late the heterogeneous gene expression between distinct
cell types by identifying transcription factors predicted
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to bind the overrepresented motifs. This was performed
by scanning the promoter regions of the heterogeneous
genes and assessing the propensity of a transcription fac-
tor to bind a given sequence based on the PWM scores
obtained from TRANSFAC [22] and JASPAR [23, 24].
We performed this analysis using the MATCH algorithm
[25]. This search algorithm uses a matrix similarity score
(MSS) and a core similarity score (CSS) to measure the
quality of the match between the PWM score and the
sequence. This score ranges between 0.0–1.0. If the
score is above 0.7, we consider these as putative regula-
tory transcription factors.
The MATCH algorithm has tunable cutoffs that allow

for minimizing the false negative rate (minFN), minimiz-
ing the false positive rate (minFP), and minimizing the
sum of both errors (minSum). We utilized the minSum
cutoff which computes a sum of both false positive and
false negative rates to find cut-offs that give an optimal
number of false positives and false negatives. The num-
ber of matches found in the exon sequences for each
matrix is computed using minFN cutoffs which define
100% of false positives. The sum of percentages for false
positives and false negatives is then computed for every
cut-off ranging from minFN to minFP. The minimum
sum cut-off is then defined as the minSum cut-off.

Constructing gene regulatory networks
The known and putative gene regulatory networks were
reconstructed in R using the RTN package [26] for
visualization. This computational framework establishes
interactions and structure of the network by mapping
the interactions between upregulated transcription fac-
tors identified through motif enrichment and their re-
spective heterogeneous genes identified by HeteroPath.

Pairwise differential gene expression
In a separate analysis, prior to applying our novel
method of identifying heterogeneous pathways, we first
performed hierarchical clustering and generated tree
plots to evaluate the differential expression across the
studied datasets (Additional file 1: Figure S1). Further, to
assess the level of heterogeneity among the tissues being
analyzed we identified individual differentially expressed
genes using limma. We compared the gene expression
among three of the endothelial cell tissues and among
three of the neuronal cell tissues to identify the hetero-
geneity of endothelial cells and the heterogeneity of
neuronal cells. To address the degree of differential ex-
pression, we assigned confidence intervals to the differ-
ential expression. The transcripts were ranked based on
the degree of differential expression using the fold-
change (FC) in expression level metric [27, 28]. These
statistics were computed using the biological replicates
and the variance between the replicates to assign a

probability value that indicates an incorrect classification
of a gene as being differentially regulated. These statis-
tical techniques allowed for a robust analysis that iter-
ates through the transcriptomic cohort to identify genes
that are differentially expressed. Gene expression differ-
ences were assessed in limma with false discovery rate
(FDR) correction for multiple testing [29]. Genes with
an adjusted p ≤ 0.05 and a FC ≥ 2 were considered sig-
nificantly differentially expressed. This analysis did not
allow us to sufficiently understand the underlying het-
erogeneity biology therefore we sought out to elucidate
characteristic pathways explaining the heterogeneity.

Results
Identification of heterogeneously expressed tissue-
specific pathways
First, we used a parametric and a non-parametric gene
set enrichment analysis, PGSEA [9] and GSEA [8] re-
spectively, as gene set enrichment methodologies
followed by our novel algorithm HeteroPath to analyze
organ-specific endothelial and tissue-specific neuronal
transcriptomics data (Fig. 1a). In both datasets we evalu-
ated three distinct tissues with a well-balanced coverage
of three samples per tissue. PGSEA identified differen-
tially expressed gene sets by testing whether the average
expression of genes in a gene set deviates from the over-
all expression of all genes in the sample. GSEA aims to
test the up- or downregulation of gene sets by testing
the expression levels of individual genes. In this type of
analysis, no threshold is set to select for significantly dif-
ferentially expressed genes, but rather all genes are used
to determine the differential expression of the pathway.
Furthermore, GSEA makes the assumption that the
more differentially expressed a gene is, the more bio-
logical relevance it has. We implemented our novel algo-
rithm HeteroPath which assigns a heterogeneity score to
each pathway based on how distinct its elements are
across all tissues versus a “virtual median cell type”, i.e.
the virtual endothelial cell that represents the median of
endothelial cells from all tissues. It attributes a higher
heterogeneity score to the pathways containing the most
heterogeneously expressed genes when comparing dis-
tinct tissues independent of cumulative upregulation or
downregulation (Fig. 1b). For example, if three elements
of a pathway are similarly upregulated and three ele-
ments of pathway are also similarly downregulated in a
given tissue when compared to the gene expression of
the virtual median cell, HeteroPath would rank this as a
highly heterogeneous pathway while PGSEA and GSEA
would not consider this as a significant pathway.

Metrics of the HeteroPath algorithm
Two comprehensive studies were conducted to assess
the performance of our novel pathway-based algorithm
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to detect tissue-specific gene regulatory networks. In the
first study, we analyzed endothelial cells from three out
of nine mouse organs. Each sample consisted of 28,815
probes that were mapped to the 186 KEGG pathways.
All of the KEGG pathways were evaluated in the analysis
to simulate the differential expression change for all an-
notated biological processes. More specifically, the fold
change in differential expression was drawn from a nor-
mal distribution with the mean set at 1.5, 2, 3 and the
standard deviation at 0.5. In the second study with neur-
onal cell populations, all of the parameters were the
same, with the only difference being that there were
22,690 probes representing the genome. The perform-
ance of the HeteroPath algorithm was evaluated by cal-
culating the receiver operating characteristic (ROC) and
area under the curve (AUC) values for each dataset
using the R package pROC.
In the endothelial cell heterogeneity study, the results

showed that all three algorithms identified significantly
enriched gene sets to distinguish the three endothelial cell
populations. Furthermore, HeteroPath identified the least
number of significant sets while PGSEA identified the lar-
gest number of significant sets (Fig. 2a). Of the significant
sets identified, only 20% of the significant sets identified
were unique to the GSEA algorithm while 25 and 29%
were unique to HeteroPath and PGSEA, respectively.
PGSEA demonstrated a less stringent functional class
scoring technique with significantly higher enrichment
scores and more significant p-values (Fig. 2a). In the study
of neuronal heterogeneity (Fig. 2b), HeteroPath obtained
the highest enrichment score, most significant p-values,
and highest percentage of unique significant sets (55%).
These results suggest that HeteroPath performs more op-
timally when the heterogeneity of pathways is not unidir-
ectional but includes upregulated and downregulated
genes when compared to the virtual median cell type and
may thus reflect a tight regulation of pathways.
The AUC values ranging from 0.7856 to 0.8633 in the

endothelial study (Fig. 2c) and 0.7192 to 0.9549 in the
neuronal study (Fig. 2d) indicate that the power of the
HeteroPath algorithm increased as the total proportion
of genes increased and the fold change increased. Im-
portantly, the HeteroPath algorithm increased in power
significantly in the neuronal dataset because it contained
a higher number of differentially expressed genes.

Comparison of methods using simulated data
HeteroPath is a pathway-based algorithm which yields
tissue-specific enrichment scores. Therefore, we evalu-
ated the statistical power and type I error of HeteroPath,
PGSEA and GSEA using simulated data. We simulated
microarray data using a linear additive model with sam-
ple and probe effects for 5000 genes and three groups of
samples (see Methods for details). Using simulated data

for each scenario, we calculated the pathway enrichment
scores using HeteroPath, PGSEA, and GSEA. For the
differentially expressed gene set, we estimated the statis-
tical power for each method as a function of the sample
size. At the same time, for the non-differentially
expressed gene set, we estimated the empirical type-I
error rate. The results of this simulation (Additional file
1: Figs. S2 & S3) illustrate that HeteroPath performs
with comparable statistical power while maintaining
similar control of the type-I error rate when compared
to GSEA and PGSEA.

Endothelial heterogeneity
In order to assess the degree of organ-specific endothe-
lial heterogeneity we applied the three distinct functional
class scoring algorithms to freshly isolated mouse endo-
thelial cells from several organs. The results obtained
from the HeteroPath algorithm display the most hetero-
geneous pathways in endothelial cells for three of the
nine vascular beds studied. The heterogeneous pathways
were ranked in the order of largest to smallest hetero-
geneity score where only top statistically significant
pathways are shown (Fig. 3a). The most prominent up-
regulated pathways identified using HeteroPath were the
“Wnt signaling” and “adherens junction” pathways in
brain endothelial cells; “focal adhesion”, “PPAR signal-
ing”, “PI3K-Akt signaling” pathways in lung endothelial
cells; and “cardiac muscle contraction” and “cytokine-
cytokine receptor interactions” pathways in heart endo-
thelial cells (Fig. 3a). The HeteroPath algorithm further
assigns tissue specificity to the heterogeneous pathways
when 60% of the heterogeneous elements of the pathway
have unique expression in a specific organ (Fig. 3a).
GSEA analysis primarily identified molecular pathways
involved in regulating global molecular function such as
RNA and protein synthesis, processing, and degradation
(Fig. 3b) which were statistically significant but often
represented minimal or moderate gene expression
changes when compared to the virtual median endothe-
lial cell. PGSEA analysis (Fig. 3c) also identified signa-
ture pathways that were greater in magnitude than
GSEA, but the pathways were distinct from those identi-
fied by the HeteroPath algorithm. For example, PGSEA
revealed amino acid metabolism pathways as being dif-
ferentially expressed in brain endothelial cells. This find-
ing likely reflects the importance of individual metabolic
enzymes required in brain endothelial cells [30].
Of the 186 KEGG gene sets assessed, PGSEA detected

96 gene sets as statistically significant at p < 0.05 in this
data set whereas GSEA detected 81 gene set at this sig-
nificance (Fig. 3d). The p-values obtained by PGSEA
were generally smaller than p-values of corresponding
gene sets obtained by GSEA. These methods specifically
target pathways cumulatively regulated in a single
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direction, but do not consider that tissue-specific hetero-
geneity which may involve both heterogeneous upregula-
tion and downregulation of elements within a single
pathway unlike HeteroPath which ranks overall hetero-
geneity of a pathway by assessing the cumulative gene
expression distance from that of the “virtual median
endothelial cell” for each gene within a pathway.
We performed comparative analysis to determine the

number of significant sets which were exclusive to a par-
ticular algorithm (Fig. 3d). For example, HeteroPath un-
covered 14 unique pathways. Furthermore, with
consistent thresholds applied to the different functional
class scoring techniques, HeteroPath identified the least

number of significant sets (56), while GSEA and PGSEA
identified 81 and 96 significant sets, respectively (Fig. 3d).

Neuronal heterogeneity
To assess the relative fidelity of neuronal heterogeneity
we applied HeteroPath, GSEA, and PGSEA to neurons
isolated from 12 regions of the mouse forebrain [31]. To
perform a comparison between the three algorithms, we
focused on three distinct regions namely the hippocam-
pus, the cingulate cortex, and the amygdala. The results
showed large statistical differences between the three in-
dependent algorithms which emphasizes the fundamen-
tal molecular difference between neurons at their basal

a

b

c d

Fig. 2 Comparison of enriched pathways a The significantly enriched experimental sets and canonical pathways in mouse endothelial cells were
inferred by HeteroPath, GSEA, and PGSEA. Top 10 enrichment scores, p-values, numbers of significant gene sets, and percentage of unique gene
sets are shown. b The significantly enriched experimental sets and canonical pathways in mouse neurons were inferred by HeteroPath, GSEA, and
PGSEA. Top 10 enrichment scores, p-values, numbers of significant gene sets, and percentage of unique gene sets are shown. c ROC curves for
the HeteroPath algorithm using the endothelial cell dataset. fc = fold-change; AUC= area under curve. d ROC curves for the HeteroPath algo-
rithm using the neurons dataset fc = fold-change; AUC= area under curve
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state in various regions of the brain. The HeteroPath al-
gorithm identified the most distinct tissue-specific path-
ways among the three neuronal populations. For
instance, hippocampal neurons exhibited an upregula-
tion of “oxidative phosphorylation” and “GABAergic
synapse”; cingulate cortex neurons basally upregulated
“Hedgehog signaling” and “regulation of autophagy”;
while, amygdala neurons upregulated “taste transduc-
tion” and “ribosome” (Fig. 4a). In the case of GSEA ana-
lysis, the subsets of neurons in distinct regions of the

brain exhibited similar molecular signatures (Fig. 4b).
Across entire gene sets, there were no tissue-specific path-
ways. In fact, the algorithm was unable to cluster the neur-
onal populations into distinct groups. PGSEA, on the other
hand, was able to differentiate the three different popula-
tions of neurons and identify pathways which contained
several upregulated genes in a single tissue (Fig. 4c). PGSEA
primarily identified pathways in which there was a signifi-
cant upregulation in one of the tissues relative to the down-
regulation in the other tissues. For instance, the entire fatty

a b

c d

Fig. 3 Endothelial cell heterogeneity. a Heat map of heterogeneous pathways identified by HeteroPath from Brain, Lung, and Heart endothelial
cells. The orange to yellow to white gradient represents increasing expression of the pathway with orange representing minimal expression while
the white represents high expression of the pathway. Upregulated tissue-specific pathways are highlighted in colored boxes. b, c The results of
enriched PGSEA and GSEA pathways from Brain, Lung, and Heart endothelial cells. The orange to yellow to white gradient represents increasing
expression of the pathway with orange representing minimal expression while the white represents high expression of the pathway. d A Venn
diagram displaying the number of overlapping and unique KEGG pathways identified by HeteroPath, PGSEA, and GSEA
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acid metabolism pathway was downregulated in the cingu-
late cortex and amygdala neuron populations and hence
upregulated in the hippocampal neurons (Fig. 4c).
In the analysis of neuronal cellular heterogeneity,

using the three independent algorithms showed that
identifying tissue-specific pathways requires prioritizing
the up- and downregulation of individual genes within a
single pathway. PGSEA and GSEA detected similar

numbers of significantly differentially regulated gene sets
while HeteroPath detected the least number of differen-
tially expressed pathways (Fig. 4d), but these pathways
were able to segregate the neuronal populations most
distinctively and thus elucidate pathways descriptive of
each neuronal subpopulation. In addition, more than
half of the significant sets identified by GSEA and
PGSEA overlapped while HeteroPath detected 17

a b

c d

Fig. 4 Neuronal heterogeneity a Heat map representation of heterogeneous pathways identified by HeteroPath from hippocampal, cingulate
cortex, and amygdala neurons. The orange to yellow to white gradient represents increasing expression of the pathway with orange representing
minimal expression while the white represents high expression of the pathway. Upregulated tissue-specific pathways are highlighted in colored
boxes. b, c The results of enriched PGSEA and GSEA pathways from hippocampal, cingulate cortex, and amygdala neurons. The orange to yellow
to white gradient represents increasing expression of the pathway with orange representing minimal expression while the white represents high
expression of the pathway. d A Venn diagram displaying the number of overlapping and unique KEGG pathways identified by HeteroPath, PGSEA,
and GSEA
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unique pathways which likely contributed to the dis-
tinctive clustering of the neuronal subpopulations
(Fig, 4d).

Tissue-specific gene regulatory networks
Based on the design of the HeteroPath algorithm, each
heterogeneous pathway reflected the simultaneous up-
regulation and downregulation of several member
genes within a pathway in each tissue. To visualize the
role of each significant heterogeneous element within
one of the brain endothelium-specific pathways and
one of the hippocampal neuronal pathways, we gener-
ated respective gene expression heat maps for Wnt sig-
naling and oxidative phosphorylation.
Using the heterogeneous elements in the Wnt sig-

naling pathway (Fig. 5a), we examined the role of
putative transcription factors responsible for the
brain endothelial cell specific gene expression signa-
ture by identifying transcription factors which have
been experimentally proven as identified by the EN-
CODE database [21] to bind motifs in the promoter
regions of the heterogeneously expressed genes
(Additional file 1: Figure S4A). For the Wnt signal-
ing pathway, lymphoid enhancer-binding factor 1
(LEF1) and friend leukemia integration 1 (FLI1)
were the top candidate transcription factors (Add-
itional file 1: Figure S4A). The Wnt signaling gene
regulatory network (Fig. 5b) contains upregulated
genes in brain endothelial cells such as LEF1, Wnt
family member 5A (WNT5A), transforming growth
factor beta receptor 2 (TGFBR2), and Axin-related
protein (AXIN2) as well as downregulated genes
such as cyclin D1 (CCND1) and cyclin D2 (CCND2)
(Fig. 4a).
By examining the tissue-specific neuronal pathways,

we identified oxidative phosphorylation as a key up-
regulated pathway in the hippocampal neurons. Ana-
lysis of the heterogeneous elements in the oxidative
phosphorylation pathway demonstrated that the high
heterogeneity score was driven by the significant up-
regulation of cytochrome c oxidase family genes as
well as mitochondrial ATP synthase genes in hippo-
campal neurons (Fig. 5c). Using analogous methods to
uncover regulatory transcription factors, we identified
three central transcription factors which may drive
the upregulation of oxidative phosphorylation in hip-
pocampal neurons: cAMP response element binding
protein (CREB), serum response factor (SRF), and
Dimethyladenosine transferase 1, mitochondrial (TFB1M)
(Additional file 1: Figure S4B). From these results, we
generated a hippocampal neuron specific gene regulatory
network which included the regulatory transcription fac-
tors and the oxidative phosphorylation heterogeneous
genes (Fig. 5d).

Conclusions
Organ-specific endothelial cells and tissue-specific neur-
onal cells display remarkable cellular heterogeneity in
both their genotypic and phenotypic characteristics [11].
Although it is well established that phenotypes of cell
populations in different regions are distinct, the unique
transcriptomic signatures that define cellular heterogen-
eity are less clear. Evaluating tissue-specific gene expres-
sion is critical for identifying tissue-specific mechanisms
of disease [32]. Here we used the transcriptomic analysis
of mouse endothelial cells from distinct tissues [4] and
neuronal cells from regions of the mouse forebrain to
identify signature gene regulatory networks.
Since endothelial cells are extraordinarily plastic

and are known to change their phenotype in culture
[33], the data from these freshly isolated endothelial
cell populations was particularly relevant for identi-
fying tissue-specific endothelial pathways [4]. It is
also known that regionalization in the brain is di-
rected by molecular gradients during development
[34]. The degree to which this regionalization causes
neurons to express genes heterogeneously was previ-
ously unknown. In our work, we observed that the
gene expression distance between hippocampal, cin-
gulate cortex, and amygdala neurons isolated from
mouse forebrain significantly surpassed the range of
the expression distances between replicate experi-
ments, thus indicating gene expression profile speci-
ficity for each of the studied brain regions. One of
the major challenges in neurobiology has been to
create signature gene regulatory networks which are
associated with cell type specific phenotypes such as
morphology, firing patterns, connectivity and synap-
tic transmission [31].
To address this challenge in both endothelial cells

and neurons, we developed the computational algo-
rithm HeteroPath which performs a contextual ana-
lysis by assigning a higher heterogeneity score if
multiple elements are heterogeneous within a single
pathway. Furthermore, this computational model sug-
gests experimentally testable predictions for under-
standing the general architecture of the gene
regulatory networks that establish how basal cellular
identity is maintained [35].
In this study, our objective was to design an algorithm,

which first identified heterogeneously expressed path-
ways in cell populations of unique organs or tissues. The
key principle in our analysis was that we determined a
pathway heterogeneity score which allowed for individ-
ual elements of the pathway to be either upregulated or
downregulated when compared to the median of all
tissues.
In order to show the application of identifying hetero-

geneous pathways, transcription factors and gene
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regulatory networks were generated for HeteroPath,
GSEA, and PGSEA. When comparing the novel Hetero-
Path analysis with PGSEA [9], which ranks genes ac-
cording to their relative expression levels without prior
identification of heterogeneous pathways, we found that
HeteroPath uniquely identified signature gene regulatory
networks for defining tissue specificity. Thus, the Het-
eroPath approach is well-suited for identifying tissue-
specific druggable signaling targets or regulatory signal-
ing pathways because it particularly identifies tissue-

specific regulated pathways. Furthermore, the Hetero-
Path analysis differs from GSEA because GSEA ranks
pathways by cumulative perturbation of genes in a path-
way but does not consider the extent of differential ex-
pression for each element within the pathway in
establishing or maintaining tissue-specific heterogeneity.
GSEA primarily identified minimally differentially
expressed pathways as tissue specific in some cases and
was unable to identify any tissue-specific pathways in
other cases. Therefore, GSEA analysis of tissue

a b

c

d

Fig. 5 Gene regulatory networks for HeteroPath tissue-specific pathways a The heat map shows the normalized mRNA expression level in Brain,
Lung, and Heart endothelial cells for the heterogeneous genes of the Wnt signaling pathway. b Wnt signaling gene regulatory network including
upregulated transcription factors which bind motifs in the promoter region of brain-specific heterogeneous elements. c The heat map shows the
normalized mRNA expression level in hippocampal, cingulate cortex, and amygdala neurons for the heterogeneous genes of the oxidative phos-
phorylation pathway d Oxidative phosphorylation gene regulatory network including upregulated transcription factors which bind motifs in the
promoter region of hippocampal-specific heterogeneous elements
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specificity may be more appropriate for assessment of
global cellular quiescence or activity as a function of
subtle gene expression changes in distinct tissues.
Traditional over-representation analysis (ORA)

methods such as Fisher’s exact test treat genes in a gene
set or a pathway simply as gene labels with equal im-
portance, and then test the significance of the over-
representation of the gene set among a list of interesting
genes. In this type of analysis, the magnitude and direc-
tion of change are not evaluated and used to identify
tissue-specific gene sets. To complement this approach,
we designed HeteroPath to calculate a pathway score
that factors in the magnitude and direction of change to
identify characteristic pathways segregating distinct pop-
ulations of cells.
A fundamental question in cellular heterogeneity is de-

fining the nature of interactions of cells from different
organs or tissues with the underlying parenchymal cells.
Recent studies have described an angiocrine mechanism
by which the signals from surrounding cell types influ-
ence functions of tissue cells such as their growth and
differentiation characteristics [36]. It is also likely that
specialized signals from a heterogeneous population of
cells influence interactions underlying cells such as in
the case of endothelial cells, vascular smooth muscle
cells and pericytes [37]. Including gene upregulation and
downregulation in the analysis along with the extent of
differential expression to define tissue-specific gene ex-
pression generates comprehensive tissue-specific signa-
tures as opposed to those obtained by existing gene set
enrichment analyses based only on cumulative unidirec-
tional gene regulation. Downregulation of specific genes
and pathways is essential for the development of tissues
such as during mesodermal differentiation when down-
regulation of Flk1 followed by a later induction of Flk1
expression is required for the formation of cardiac pro-
genitors [38]. In addition, downregulated genes can act
as “valves” which maintain low levels of baseline gene
expression and enable upregulation as a response to
stressors or stimuli.
In brain endothelium, we uncovered the Wnt sig-

naling pathway as being significantly heterogeneous
when compared to heart or lung endothelium. Ana-
lysis of regulatory transcription factors that could
maintain the brain EC specific upregulation of the
Wnt signaling pathways allowed us to identify the up-
regulation of Lef1, which is known to interact with β-
catenin and regulate brain vascularization as well
as differentiation of the BBB in vivo [39]. Addition-
ally, the Wnt-associated beta-catenin/TCF7 transcrip-
tional complex has been shown to regulate vascular
remodeling through the regulation of smooth muscle
cell proliferation and EC growth [40–42]. Similarly,
the Wnt pathway member and transcription factor

FLI1 was also upregulated in brain endothelial cells
and is thought to be among the earliest transcription
factors involved in endothelial cell development [43].
In hippocampal neurons, we showed the oxidative

phosphorylation biological process to be upregulated
in a tissue-specific manner compared to cingulate
cortex and amygdala neurons. We predicted that
CREB, SRF, and TFB1M are crucial transcription fac-
tors driving the upregulation of the oxidative phos-
phorylation process in a tissue-specific manner. In
neurons, CREB is known to be phosphorylated under
conditions of hypoxia and oxidative stress which sug-
gests that the CREB activation is a survival program
during harmful stimuli and may play a role as a cellu-
lar form of defense [44]. In addition, the molecular
mechanisms underlying SRF-dependent axon growth
have been reported in mouse hippocampal neurons
[45]. Furthermore, the mitochondrial transcription
factor TFB1M has been implicated in cellular systems
in which its upregulation induces mitochondrial
biogenesis [46].

Limitations
The identified tissue-specific gene regulatory networks
include regulated pathways that would otherwise be
overlooked by conventional analysis methods. Even
though HeteroPath shows promise in generating tissue-
specific gene regulatory networks, there are limitations
of our approach that need to be considered. To assess
the performance of HeteroPath, we randomly permuted
the class labels and ran HeteroPath to calculate confi-
dence intervals and p-values for each of the AUC values
at distinct fold-change cut-offs. However, the sensitivity
and specificity of these regulated pathways identified by
HeteroPath could not be compared with GSEA and
PGSEA using biological datasets since the method for
generating the ground truth relied on GSEA and
PGSEA. Therefore, we generated simulated microarray
datasets and applied HeteroPath, GSEA, and PGSEA to
detect differentially expressed gene sets. From this simu-
lation study, we found that the statistical power and type
I error rates for HeteroPath were comparable to existing
gene set enrichment analysis methods.
Similar to PGSEA and GSEA, the HeteroPath algo-

rithm relies on existing pathway databases. It is known
that the curated pathways share multiple genes or de-
scribe similar phenomena [47]. For instance, we found
occludin to be highly upregulated in the BBB, but it is
not officially curated as a member of the adherens junc-
tion pathway even though it is known that occludins
regulate adherens junction pathways in the brain endo-
thelium [48]. In the commonly used KEGG pathway
database, which we also employed as a pathway refer-
ence database for our analysis, pathways often
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significantly overlap on a molecular and functional level.
Therefore, one limitation of our analyses is the accuracy
and comprehensiveness of the underlying pathway data-
base curation. To resolve this issue, a dimension reduc-
tion machine learning technique could be implemented
to curate and filter the pathways from existing databases.
Furthermore, expanding existing annotations to include
condition-, tissue-, and cell-specific functions for genes
and pathways would allow for the prediction of system
variation due to factors such as stimuli, mutations, or
environmental change [49]. The goal of our analysis and
algorithm development was to develop tools that will
allow researchers to predict signature gene regulatory
networks for cell types, determine putative transcription
factors that could drive the heterogeneity and generate
novel biological hypotheses. It should be noted that the
biological significance of each signature network would
need to be confirmed using in vivo gene deletion or gene
depletion studies.
In conclusion, we describe herein a computational algo-

rithm which ranks pathways by assigning heterogeneity
scores. This technique allowed us to uncover additional
endothelial cell and neuronal signature gene regulatory
networks for each tissue that would not have been identi-
fied by traditional analyses such as GSEA or PGSEA. Even
though our analysis focused on comparing two cohorts of
cellular heterogeneity: three endothelial cell populations
and three neuronal populations, the algorithm can be
readily expanded to assessing pathway heterogeneity be-
tween several tissues and implemented in any cellular het-
erogeneity context. Thus, the described computational
approach identifying distinct regulatory pathways and
druggable therapeutic targets in endothelial and neuronal
populations may be of value in understanding the com-
plex heterogeneity of other tissues.

Additional file

Additional file 1: Figure S1. A) Hierarchical clustering of Endothelial
cells from 7 mouse organs Intra- and inter-tissue heterogeneity. Tree plot
generated via hierarchical clustering of 500 most variable genes across all
distinct tissue endothelial cell samples B) Hierarchical clustering of Neuronal
cells from 5 different regions of the mouse forebrain Intra- and inter-tissue
heterogeneity. Tree plot generated via hierarchical clustering of 500 most
variable genes across all distinct tissue neuronal cell samples. Figure S2.
Comparison of statistical power and type-I error rate between HeteroPath,
GSEA, and PGSEA for DE Gene Set size of 50 genes. The averaged results of
500 simulations are depicted as function of the sample size on the x-axis,
for each of the methods. On the y-axis either the statistical power or the
empirical type-I error rate is shown. GSE scores were calculated with each
method with respect to two gene sets, one of them differentially expressed
(DE) and the other one not. Statistical power and empirical type-I error rates
were estimated by performing an ANOVA on the DE and non-DE gene sets,
respectively, at a significance level of α = 0.05. Figure S3. Comparison of
statistical power and type-I error rate between HeteroPath, GSEA, and
PGSEA for DE Gene Set size of 150 genes. The averaged results of 500
simulations are depicted as function of the sample size on the x-axis, for
each of the methods. On the y-axis either the statistical power or the

empirical type-I error rate is shown. GSE scores were calculated with each
method with respect to two gene sets, one of them differentially expressed
(DE) and the other one not. Statistical power and empirical type-I error rates
were estimated by performing an ANOVA on the DE and non-DE gene sets,
respectively, at a significance level of α = 0.05. Figure S4. A) Enriched Wnt
Signaling Motifs from Brain endothelial cells The table shows the five most
enriched motifs in ChIP-seq peaks and the associated transcription factors.
Significance values and significant p-values (p≤ 0.05) are shown. B) Enriched
Oxidative Phosphorylation Motifs from Hippocampal Neurons The table
shows the five most enriched motifs in ChIP-seq peaks and the associated
transcription factors. Significance values and significant p-values (p≤ 0.05)
are shown. (PPTX 1265 kb)
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