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Abstract

Background: Finding common molecular interactions from different samples is essential work to understanding
diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific
interactions among genes. Therefore, identification of common coexpression network or modules may reveal the
molecular mechanism of complex disease or the relationship between biological processes. However, there has
been no quantitative network comparison method for coexpression networks and we examined previous methods
for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative
comparison methods for coexpression networks and to find common biological mechanisms between
Huntington's disease and brain aging by the new method.

Results: We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we
performed experiments using known coexpression networks. We showed the validity of two measures and
evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures
and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression
modules and found similar Huntington’s disease-aging coexpression module pairs.

Conclusions: We identified similar Huntington’s disease-aging coexpression module pairs and found that these
modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell
signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in
the pathophysiology of HD and normal brain aging in the frontal cortex.
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Background

Coexpression analysis and biological network
comparisons

Gene expression profiling is one of the best windows
that shows a snapshot of cellular activity. It shows what
activity is promoted and what activity is inhibited in the
certain condition [1]. Therefore, there have been numer-
ous approaches to understand gene expression data
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properly and they have used various traits of gene ex-
pression data [2]. For instance, statistical significance
and fold-change of each gene have been widely used to
find the difference between cohorts [3]. However, these
traits only focused on single gene so they were sensitive
to noise [4]. As a consequence, coexpression analysis
that provides more robust modular marker has risen [5].

Briefly, coexpression analysis is the method to extract
gene pairs that have positively or negatively coexpressed
[6]. And ‘coexpressed genes’ are mathematically defined as
gene pairs which have a correlation above the certain
threshold and they are known as genes which related to
similar biological functions [6]. Also, coexpressed genes in
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certain condition are not separated but closely interact
with each other and are called ‘coexpression module’.
Coexpression module is considered as a robust modular
molecular marker. Therefore, coexpression profile of gene
expression data can be represented as network form con-
sists of genes as nodes and coexpression as edges and this
network refers to ‘coexpression network’ [7]. Therefore,
there have been coexpression studies which compare
coexpression networks in different conditions such as spe-
cies, [8] tissue, [9] and disease states [10].

Among coexpression analysis, finding common coex-
pression profiles between different samples can be an
effective way to understand diseases or biological pro-
cesses. For example, we can infer molecular mechanism
of complex disease using common coexpression net-
works from well-known other diseases. Many previous
studies simply extract overlapping nodes and edges as
common coexpression networks because they dealt with
two or fewer networks. However, if there are multiple
sample groups or we perform modular analysis, we
should deal with several coexpression networks. Quanti-
tative network comparison can clearly provide similar
network pairs among multiple coexpression networks
and it leads to finding common coexpression profiles
among sample groups or modules.

For other biological networks, there are various
network comparison methods. Network comparison
methods for other networks can be divided into two cat-
egories: alignment-based methods and alignment-free
methods [11]. Alignment-based methods were developed
to align two or more homologous networks such as
protein-protein interaction networks. They assumed net-
works in the query that networks diverged from the
same network and they have homologous regions [12].
Due to this assumption, network alignment-based
methods align genes in a similar network topology.
However, coexpression analysis deals with genes from
same species so exact matching of networks (finding
same subnetwork) is more suitable than network align-
ment (finding similar subnetwork). The othercategory of
methods is the alignment-free method and it is divided
into graphlet-based methods and functionality-based
methods. Graphlet-based methods count small sub-
graphs called ‘graphlet’ and measures network similar-
ity based on graphlet frequency. However, these
methods only consider topological information of
graphlets and blind information of each genes. It
leads inappropriate comparison for coexpression net-
work. Functionality-based methods utilize functional
enrichment information of networks. So they can be
used for any networks consists of genes but it
provides only indirect comparison. Therefore, we con-
cluded that there is no proper network comparison
for coexpression network.
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Huntington ‘s disease and brain aging

Huntington’s disease (HD), also known as Huntington’s
chorea is neurological disorder famous for its autosomal
dominant inheritance. Previous findings suggest that HD
allele in chromosome four may cause the toxic gain of
function for HD-related genes such as Huntingtin
(HTT) and it leads to massive neuronal cell death [13].
Consequently, HD patients suffer from uncontrolled
movements, abnormal body postures, and changes in be-
havior, emotion, judgment, and cognition. However, the
molecular mechanism of HD is poorly understood so
there is no cure to slow, stop, or reverse HD yet [14].

Unlike many neurological diseases, HD is an inherited
disease. People who have the HD allele can have disease
onset anytime in their life (especially at age 30—50) and
usually die within 15-20 years [15]. In other words, pa-
tients can be suffer from HD regardless of their age.

Interestingly, many brain imaging studies suggested
that functional deficits in HD patients are strongly
correlated with aging-related functional deficits such as
dopamine receptors [16]. Since HD can arise in any age,
these HD-functional deficits are not a consequence of
aging. Therefore, we can infer that there may be com-
mon or similar mechanism between HD and brain aging.
We focus on the similarity in molecular mechanism
between HD and brain aging and we tried to find similar
molecular modules between HD and brain aging based
on quantitative coexpression analysis.

In this study, we applied quantitative coexpression
analysis to find common molecular features between HD
and brain aging. We proposed two similarity measures
for quantitative comparison of coexpression modules.
We then showed the validity of these measures and
determined the threshold similarity of similar coexpres-
sion module pairs using known coexpression networks.
Using these similarity measures and thresholds, we
quantitatively compared HD-specific and aging-related
coexpression modules and found similar HD-aging
coexpression module pairs. We inferred possible com-
mon molecular mechanisms from similar HD-aging
coexpression module pairs.

Methods

This study is divided into two parts. In the first part, we
proposed quantitative similarity measures for coexpres-
sion networks and performed validation of these
measures. We also evaluated the threshold value of
similar modules. In the second part, we extracted
HD-related coexpression modules and aging-related
coexpression modules and compared these modules
quantitatively based on coexpression network similar-
ities. Then we found similar HD — aging module pairs
and interpreted their biological significance.
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Coexpression network similarity measures

Coexpression networks can be interpreted as
weighted networks consisting of nodes (genes) and
edges (degree of coexpression between two genes).
Therefore, we can define similarity between two
coexpression networks based on node consistency
(‘how many common genes they have’) and edge
consistency (‘how many coexpressions they share’).
To utilize both sets of information, we developed
node-based similarity adjusted by edge information,
COEXsim and employed fuzzy set similarity as
edge-based similarity.

Node-based similarity: COEXpression-based similarity
(COEXsim)

We developed Coexpression-based network similarity
(COEXsim) to quantify the similarity between two coex-
pression networks based on their node consistency. As a
method to quantify network similarity, COEXsim has
the following two features: (1) It extracts common sub-
network from two networks to measure consistency
between two networks, (2) It shows coexpression signifi-
cance of common subnetwork relative to two networks
to reflect the nature of coexpression network. Therefore,
we defined COEXsim of two networks
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COEXsim = Sizeye * Sigcoex (1)

as relative size of common subnetwork (Size,.;) adjusted
by coexpression significance (Sig..r) of two networks
(Fig. 1). ‘Common subnetwork’ refers to the subnetwork
consists of genes and edges that are present in both net-
works and we extracted common subnetwork by exact
matching of nodes and edges.

We defined relative size of common network as node
size of common network normalized by node sizes of
two networks,

NScommon

VNSn1v/NSws @)

Sizepe =

where NSx1, NS, NScommon are node sizes of networkl,
network2, and common network respectively.

Also, we defined coexpression significance as rela-
tive coexpression power of common subnetwork rela-
tive to that of two networks. In coexpression
network, coexpression power of the network is repre-
sented by weights of edges. Hence, we defined coex-
pression significance between two networks as relative
value of mean weight of common subnetwork to that
of two networks

WNI =0.340

two networks

w =
N3 2

Sigcoex = 1.374
COEXsim = 1.374 + 0.447 = 0.614

Fig. 1 The Concept of COEXsim. COEXsim is determined by relative size and relative degree of coexpression of common subnetwork (Ns) of
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WN3 _ (Wn3n1 + W)

CE VWV 2VWaiVWN

(Wnsn1 + Wasnz)

where Wyz= 5

(3)

where W1, Wno, Whsni, Wasnz are mean weights of net-
workl, network2, common subnetwork from networkl
and network2 weight values, respectively.

From formula (1), (2), (3), COEXsim is mathematically
represented as

NS common (Wnsn1 + Wisna)

X
\/NSle/NSNz 2\/WNI\/V_VNZ

Therefore, we can understand COEXsim as a
node-based similarity of two coexpression networks ad-
justed by edge consistency. COEXsim is increased when
two networks shares more nodes or common subnet-
work has more powerful coexpression (weight) than
other parts of networks.

COEXsim =

(4)

Edge-based similarity: Fuzzy set-based similarity

In COEXsim, we focused on the number of overlapped
genes of two coexpression networks. However, the
consistency in gene expression profile is also important
information and weighted edges in coexpression network
reflect coexpression between genes so we defined
edge-based similarity. Weighted networks can be repre-
sented as fuzzy sets that edges are elements and weights
are corresponding degrees of membership (Fig. 2a).
Therefore, we employed the concept of the fuzzy set to
define edge-based similarity. In set theory, one of the
most solid similarity is following Jaccard’s index [17].
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|AnB|
|AuB|

Jaccard's index =

(5)

As a similarity between two fuzzy sets, we employed
following definition from previous work similar to Jac-
card’s index [18].

. NinN
| minfpy, (%), uy, (0)]|

| max[py, (%), py, ()] |

(6)

where py; (%), py, (x) are degrees of membership for net-
work 1 and network 2. Fig. 2b shows the example of
fuzzy set similarity.

Validation of similarity measures
Since this study is a first attempt to apply network simi-
larity to coexpression analysis, we performed validation
of COEXsim and fuzzy set similarity for coexpression
networks. For validation, we devised an experimental
framework in Fig. 3. As a validation dataset, we selected
20 Gene Ontology (GO) terms [19] and we computed
GO semantic similarity among them as a gold standard
set because GO semantic similarity reflects information
of manually curated gene ontology. As a GO semantic
similarity, we employed Schlicker’s method that utilizes
information content (IC) to gene ontology and it reflects
the relationship of two terms in ontology structure [20].
We used GOSemSim R package to measure GO seman-
tic similarity [21].

Then we constructed coexpression networks of each
GO term from GO annotated genes using GENEMA-
NIA [22]. We used GO annotated genes as seed genes

Fuzzy Set
Representation

!

Net ={A—B:0.19,A— C:0.64,A — D:
5,

—D:0.94,
B—C:0.79,B — D:0.25,C — D:0.74}

C—F:0.93,E—F:0.54}

SiMyyzzy (Ny,Np) = =

Fig. 2 The Concept of Fuzzy Set Similarity. b Coexpression network can be interpreted as fuzzy set. b The similarity between two coexpression
networks can be obtained by measuring fuzzy set similarity between two fuzzy sets
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Fig. 3 Validation Framework for Coexpression Network Similarity Measures

and set GENEMANIA to use reported coexpression net-
works and find a maximum of 150 connected genes
from seed genes. As a result, we constructed 20 coex-
pression networks for GO terms. Detailed GO terms
and network statistics are in Additional file 1.

As a previous method to compare, we employed
network comparison methods for other biological net-
works. We did not select alignment-based method be-
cause exact matching can replace it as we stated in
background section so we selected graphlet-based
method, Graphlet Correlation Distance (GCD) due to
its novelty (after 2013), and citations (citations > 20)
[23]. GCD utilizes information of correlation between
each graphlet and define distance as Euclidean dis-
tance between graphlet correlation matrix of two net-
works. We used 73 1~3 nodes graphlet for GCD
measures and transformed distance to similarity by
the following formula.

(GCD- max(GCD)
max(GCD)

(7)

simgep =

Then, we measured pairwise similarity among net-
works by COEXsim, fuzzy set similarity and GCD and
computed Spearman correlation coefficient between
similarity profile of each method and GO semantic simi-
larity to quantify the validation result.

Evaluation of similarity threshold

In this study, we had to find ‘similar’ module pairs
between HD samples and aging samples. Therefore, we
decided to evaluate the threshold that divides ‘similar
modules’ and ‘dissimilar modules’. For evaluation, we
selected ‘similar group’ and ‘control group’ then we com-
pared two similarities of two groups.

As a similar group, we manually selected two
groups that five GO terms related to innate immunity
and five GO terms related to angiogenesis. As a
control group, we selected five GO terms that are
known as not related to innate immunity or angio-
genesis. We selected GO terms that have at least 50
annotated genes to provide sufficient seed genes for
GENEMANIA. Then, we constructed coexpression
networks of each of 15 GO terms from GO annotated
genes using GENEMANIA. Detailed GO terms and
network statistics are in Table 1.

We measured pairwise similarity among 10 networks
(five similar group + five control group) by COEXsim
and fuzzy set similarity. Among 100 measured values,
we defined that 25 values from within similar group
pairs (in short, ‘similar group pairs’) are similarity of the
similar group and other values are similarity of the
dissimilar group (in short, ‘other pairs’) and we com-
puted median COEXsim and fuzzy set similarity of two
groups. We performed these procedures twice for innate
immunity group and angiogenesis group. Then, we
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Table 1 Selected GO Terms for Threshold Evaluation and Network Statistics

Gene Ontology ID Name # of Nodes # of Edges
Innate immunity group
GO:0002228 natural killer cell mediated immunity 147 144,859
GO:0002718 regulation of cytokine production involved in immune response 148 103,074
GO:0034121 regulation of toll-like receptor signaling pathway 150 126,327
GO:0034340 response to type | interferon 148 52,985
GO:0060333 interferon-gamma-mediated signaling pathway 148 154,173
Angiogenesis group
GO:0002040 sprouting angiogenesis 148 77,037
GO:0007229 integrin-mediated signaling pathway 149 86,185
GO:0045765 regulation of angiogenesis 244 46,229
GO:0048010 vascular endothelial growth factor receptor signaling pathway 149 59,105
GO:0048013 ephrin receptor signaling pathway 148 49,062
Control group
GO:0007632 visual behavior 149 26,563
GO:0016209 antioxidant activity 147 32,578
G0:0032922 circadian regulation of gene expression 150 32,855
GO:0046365 monosaccharide catabolic process 149 49,308
GO:1900076 regulation of cellular response to insulin stimulus 146 18,655

evaluated threshold for each similarity as an average of
two median similarities of similar group pairs.

For disease module analysis, we selected HD — aging
module pairs that exceed both COEXsim and fuzzy set
similarity thresholds as ‘similar modules’.

Disease datasets

To identify co-expression modules which were associ-
ated with HD and normal brain aging, the publicly avail-
able RNA-Seq raw data (FASTQ) files with accession
number SRP051844 1 were downloaded from the NCBI
short read archive database [24]. The data set consists of
RNA-Seq reads from the frontal cortex of 20 cases with
Huntington’s disease and 49 normal controls [25].

Coexpression module extraction
Quality control of the raw sequence data, mapping the
RNA-seq reads, and quantifying the mapped reads were
performed as previously described [26]. To identify the
potential confounding effects in the RNA-Seq data for the
HD study, we used surrogate variable analysis (SVA) [27].
For the normal aging study, we first divided the
RNA-Seq data into three age groups; young: <44, middle:
45-74 and old: > 75, as previously described [28]. The
age groups were used as the variable of interest then the
surrogate variables were obtained using the SVA package
[27]. Then the standardized residuals from the linear re-
gression including the surrogate variables were used to
generate gene co-expression networks using WGCNA
[29]. To construct a weighted co-expression network we

selected the power for which scale-free topology fitting
index (R2) is 0.9 [30]. Correlation analyses were per-
formed between co-expression modules and traits such
as diagnosis, age and descriptive variables to identify
modules that were associated with schizophrenia disease
status, age and/or confounding factors. To adjust for
multiple testing when we performed the correlation ana-
lyses, we used the MPTCorr.r package [31] as previously
described [26]. We used a trait as a criterion variable
and the eigengene values in all modules as multiple pre-
dictor variables. Adjusted p-values less than 0.05 were
considered significant.

Results

Validation of similarity measures

To show the validity of COEXsim and fuzzy set similar-
ity, we computed COEXsim and fuzzy set similarity for
GO term related coexpression networks then com-
pared them to GO semantic similarity. We measured
COEXsim, fuzzy set similarity and GO semantic simi-
larity of 400 network pairs from 20 GO terms. Then,
we computed Spearman’s rank correlation coefficient
of COEXsim and fuzzy set similarity to GO semantic
similarity because scales of three similarities are dif-
ferent (Table 2).

From the result, we examined that both COEXsim
and fuzzy set similarity show correlation coefficients
over 0.5 with the strong significance of correlation
(p-value ~ 10~?°). In addition, COEXsim and fuzzy
set similarity show higher performance than previous
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Table 2 Correlation of COEXsim and Fuzzy Set Similarity to GO
Semantic Similarity

COEXsim Fuzzy set GCD
similarity
Spearman Correlation 0.55397 0.52450 0.26712
Coefficient
Statistical Significance 1.5000% 11880 x10°%° 5.80710x10°®

10733

Note that null hypothesis for statistical significance is that the similarity is not
correlated to GO semantic similarity

(p-value)

network comparison method, GCD. Therefore, we
conclude that both COEXsim and fuzzy set similarity
are consistent to GO semantic similarity that reflects
expert’s knowledge.

Evaluation of similarity threshold
We tried to evaluate the minimum similarity of ‘similar
module pairs’ to select module pairs. We compared
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similarity profiles between similar group and control
group. We prepared two similar groups: innate immun-
ity group and angiogenesis group so we evaluated
thresholds twice separately.

As shown in Fig. 4, both COEXsim and fuzzy set simi-
larity show significantly higher values in similar group
pairs (red boxes of each heatmap) than other pairs from
both experiments. To evaluate thresholds, we had to
determine the representative value of similar group
pairs. Therefore, we computed the median of similar
group pairs and other pairs because distributions of two
similarities are not even.

The result in Table 3 shows clearly that both similar-
ities discriminate similar group pairs and other pairs.
Median COEXsim of similar group pairs are around
10-times higher than that of other pairs and median
fuzzy set similarity of similar group pairs are around
40-times higher than that of other pairs for both

a

040

32922 0016209 0007J2 0060333 0034340 0034121 0002228 0002718

G0:
19000

COEXsim:
¢ Innate immunity related group

005

34121 0002228 0002718

003

Fuzzy Set Similarity:
Innate immunity related group

Fig. 4 Similarity Measure for Similar Groups and Control Groups. These heatmaps show similarity difference between similar group pairs and
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Table 3 Median Similarity Comparison between Similar Group Pairs and Other Pairs

COEXsim Fuzzy set similarity

Innate immunity Angiogenesis Average Innate immunity Angiogenesis Average
Similar group pairs 0.15200 0.10554 0.12877 0.00720 0.00389 0.00554
Other pairs 0.01356 0.01355 0.01355 0.00012 0.00015 0.00013

Note that similar group pairs are similarity between two networks in similar group. COEXsim and Fuzzy set similarity are separately measured and two similar

groups (innate immunity and angiogenesis) are used separately

experiments. From this result, we determined average
median similarity from both experiments as thresholds
of similar module pairs. Therefore, we decided to select
coexpression module pairs that have both of COEXsim
>0.1288 and fuzzy set similarity >0.0055 as ‘similar
module pairs’ in disease data analysis.

Analysis of Huntington’s disease and brain aging data
We generated 15 co-expression networks using the
RNA-Seq data from frontal cortex of the HD cases and
normal controls. Of the 18 co-expression modules, eight
modules were significantly associated with HD (all ad-
justed p-values <0.05, Additional file 5A). Six of the
modules positively correlated with HD, indicating that
expression levels were upregulated in the frontal cortex
of the HD cases as compared to controls. On the other
hand, two modules were negatively associated with HD.
We also generated 20 co-expression networks using the
RNA-Seq data from frontal cortex of the normal con-
trols only. While five modules were significantly corre-
lated with age, three modules were negatively correlated
with age (all adjusted p-values < 0.05, Additional file 5B).
We then compared the modules that were associated
with HD to the modules that were significantly corre-
lated with normal aging using the COEXsim and fuzzy
set similarity to identify coexpression networks that may

be common to both HD and normal brain aging (Fig. 5).
Using similarity thresholds determined from preceding
section, we identified five similar HD-aging coexpression
module pairs (Table 4).

From five similar module pairs, the two most similar
pairs are enriched with known neurodegenerative dis-
ease mechanisms. HD-yellow module and Age-red mod-
ule pair showed the highest similarity score (COEXsim:
0.40267, Fuzzy set similarity: 0.07254). These modules
were positively associated with HD and normal brain
aging, respectively. Genes related to cell signalling, brain
development and cell death significantly enriched in the
common genes (Additional file 6A). HD-magenta mod-
ule and Age-yellow module pair showed high similarity
score (COEXsim: 0.37721, Fuzzy set similarity: 0.03934).
These modules were also positively associated with HD
and normal brain aging, respectively. Genes related to
immune and inflammation response significantly
enriched in the common genes (Additional file 6B).

Discussion

Aging is known to be a risk factor for several neurode-
generative diseases [32, 33]. However, common molecu-
lar networks between HD and normal aging is not
known. We therefore explored common coexpression
networks between HD and normal brain aging using the
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Table 4 Five Selected HD-Aging Coexpression Module Pairs

HD-specific module Aging-related COEXsim Fuzzy set
module similarity
HD-yellow Age-red 040267 0.07254
HD-magenta Age-yellow 037721 0.03934
HD-brown Age-blue 0.23878 001142
HD-blue Age-turquoise 0.16258 0.00569
HD-pink Age-blue 0.15155 0.00749

two similarity measures that we proposed in this study.
In our comparison analysis, HD_yellow module and
Age red module pair and HD_magenta module and
Age_yellow module pair showed high similarity scores
and the four modules were positively associated with
HD and normal brain aging, respectively. The results
suggest that up-regulated cell signalling related cell
death and immune/ inflammation response may be the
common molecular mechanisms in the pathophysiology
of HD and normal brain aging in the frontal cortex.As a
methodological issue, how to compare coexpression
networks from different species is important issue. To
apply the method in this study to different species,
two networks should be mapped to same species net-
work. We suggest matching two networks by using
orthologous genes that maximize the size of common
subnetwork by iteration.

Conclusions

In this study, we proposed similarity measures for
quantitative coexpression analysis, COEXsim and fuzzy
set similarity. Two similarities utilize gene and their
interaction information, respectively. To show validity of
two measures, we compared similarity profiles of each
method to GO semantic similarity. From the result, we
showed that our two measures have superior performance
for coexpression network than previous graphlet-based
method. Then, we compared similarity profiles between
similar network groups and other network groups and
evaluated thresholds of two similarities to determine simi-
lar coexpression pairs. We applied two similarities to HD
and brain aging data and we quantitatively compared
HD-specific coexpression modules and aging-related
coexpression modules. As a result, we identified five
HD-aging module pairs and two of these modules are
enriched to the known pathology of neurodegenerative
diseases such as brain development, cell death, and im-
mune response.

Additional files

Additional file 1: Selected GO Terms for Validation and Network
Statistics. GO 1D, name, number of nodes and number of edges of
selected GO terms are included in the file. (XLS 33 kb)
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Additional file 2: Similarity Profiles among 20 Coexpression Networks
for Validation. The file contains similarity profiles among 20 coexpression
networks used for validation. Similarity profiles from GO semantic
similarity, COEXsim, fuzzy set similarity and GCD are included in each
sheet of the file. (XLS 56 kb)

Additional file 3: Similarity Profiles for Threshold Evaluation. The file
contains similarity profiles of two network groups used for threshold
evaluation. First and second sheets are similarity profiles of innate
immunity group from COEXsim and fuzzy set similarity. Third and last
sheets are similarity profiles of angiogenesis group from COEXsim and
fuzzy set similarity. (XLS 34 kb)

Additional file 4: Similarity Profiles between HD-specific Modules and
Aging-related Modules. The file contains similarity profiles between HD-
specific modules and aging-related modules. Two sheets are similarity
profiles from COEXsim and fuzzy set similarity, respectively. (XLS 28 kb)

Additional file 5: Correlation Coefficient between Modular Expression
and Phenotypes. (A) First sheet contains correlation coefficient between
eigenvalue of each module and HD. (B) Second sheet contains
correlation coefficient between eigenvalue and age. (XLS 34 kb)

Additional file 6: GO Term Enrichment Analysis Results for Similar HD-
aging module pairs. The file contains enriched GO terms of common
genes from similar module pairs. (A) First sheet is the result of HD-yellow
and Age-red pair. (B) Second sheet is the result of HD-magenta and Age-
yellow pair. (XLS 69 kb)

Abbreviations

COEXsim: Coexpression-based network similarity; GCD: Graphlet correlation
distance; GO: Gene ontology; HD: Huntington’s disease; HTT: Huntingtin;
WGCNA: Weighted gene coexpression network analysis
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