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Abstract

Background: Administered drugs are often converted into an ineffective or activated form by enzymes in our
body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450.
However, there are more than thousands of different cellular enzymes that potentially convert administered drug
into other forms.

Result: We developed an in silico model to predict which of human enzymes including metabolic enzymes as well
as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical
similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed
using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of
enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly,
evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug
conversion and enzyme inhibition.

Conclusion: Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This
may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by

enabling the prediction of the potential conversion of administered drugs into active or inactive forms.
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Background

Enzymes are biological macromolecules that mediate
chemical reactions by lowering activation energy barrier.
Most of cellular processes including metabolism are
mediated by enzymes, and molecules from external en-
vironment (usually called as xenobiotics) are modified
by enzymatic reactions. In drug discovery, metabolic
conversion by cellular enzymes has been studied for
decades, because bioavailability, toxicity and pharmaco-
logical efficacy are easily affected by enzymatic reac-
tions. There have been many attempts to screen a large
number of drug candidates to assess potential modification
into an inactive compound by enzymes. For accelerated
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screening of such enzymatic modifications, computational
methods have been developed to predict enzymatic reac-
tions with the advance of computing hardware and effi-
ciency of various algorithms. Computational methods still
have limitations such as relatively low prediction accuracy,
but in silico approaches are advantageous over experimen-
tal approaches such as wide coverage, relatively low cost,
and fast prediction [1].

Cytochrome P450 (CYP450) family has been highlighted
in drug discovery, because the enzymes in this family are
involved in about 75% of drug metabolism [2]. For example,
the well-known xenobiotics such as caffeine [3], nicotine
[4] and alcohol [5] are substrates of CYP450 enzymes and
metabolized in human liver. Recently, various in silico
approach techniques have been applied to predict the
substrates of CYP450 enzymes [6, 7] and CYP450-mediated
metabolism [8]. However, there are other enzymes in human
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body (25% of the drug metabolism) that can modify
xenobiotic compounds in various organs, such as intes-
tine. It is, therefore, necessary to accurately predict the
enzymatic reactions that mediate the in vivo conversion
of drug compounds. For example, tamoxifen, that is a
well-known as anti-cancer agent for breast cancer, is
bio-activated by CYP2D6, 2C9 and 3A4 enzymes [9],
but is inactivated by flavin-containing monooxygenase
(FMO) [10]. Therefore, there is a demand for develop-
ing in silico methods to predict enzyme reactions cov-
ering most cellular enzymes to accurately assess drug
metabolism [11, 12].

In this study, we present an in silico model to predict
which of human enzymes are able to catalyze query mol-
ecules including not only CYP450 enzymes but also
other cellular enzymes. Our in silico model can be useful
in screening drug candidates and studying undiscovered
biochemical reactions.

Methods

Data preparation

Overall method pipeline is illustrated in Fig. 1a. Human en-
zymes and their known substrates were extracted from two
databases: Human Metabolome Database (HMDB) [13]
and BRaunschweig ENzyme DAtabase (BRENDA) [14].
HMDB is a database that contains chemical, clinical and
biological information on human metabolites. BRENDA is
a curated and a large enzyme database containing various
information on enzymatic reactions.

From HMDB 424 substrates and 1449 human enzymes
were extracted. From BRENDA 1667 substrates and 1326
enzymes were collected. The two databases were merged
and redundant reactions were removed. Accordingly, we
obtained 4187 enzyme reactions between 2118 enzymes
and 1879 substrates.

Descriptor calculation

We used PaDEL-Descriptor to calculate chemical and
physical properties of substrates [15]. As PaDEL accepts
an input molecule expressed in the format of Simplified
Molecular-Input Line-Entry System (SMILES), substrate
names were converted to SMILES [16]. As HMDB provides
substrate names as well as their SMILES, the SMILES were
used for PaDEL without modification. For the substrates
extracted from BRENDA, their names were firstly con-
verted to into the IUPAC International Chemical Identifier
(InChI) [17] and then converted again into SMILES by
using ChemSpider [18]. In this study, we used 1444 1-D
and 2-D descriptors of the substrates.

Dataset preparation for machine learning

In this study, we assumed if the physico-chemical proper-
ties of a query molecule are similar with those of a sub-
strate, they could be catalyzed by the same enzyme. We
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calculated the subtractions of 1444 descriptors of every
pair of substrates and thereby generated 1879x1878/2
subtracted descriptor values (features). For supervised
learning, a set of features calculated between two sub-
strates was labeled with 1 or 0. 1 denotes that the two
molecules are catalyzed by the same enzyme, otherwise 0.
In our dataset, 11,492 pairs were labeled with 1, and the
other 1,752,889 pairs were 0 (Fig. 1b). Each feature was
normalized before use.

Dimensionality reduction

To reduce the number of features in the dataset, we cal-
culated the correlations between a feature and a label
(point-biserial coefficient) [19] and then obtained 1444
correlation coefficients. The features were ordered by
their absolute value of coefficients and top n features
were used for training and cross-validation. The number
of top features (1) was optimized by exhaustive evalu-
ation of the training dataset.

For the correlation calculation, the dataset was divided
into two groups by the label. M; and M, are the aver-
ages of a given feature that was labeled as 1 and O, re-
spectively. n; and ny are the numbers of the values
labeled as 1 and 0, respectively. # is the total number of
values involved in the feature. s,, denotes a standard de-
viation, X; denotes each value, and X denotes the average
of all the values in the feature. A point-biserial coeffi-
cient r,, was calculated as below.

M, -M,
Sy n?

150400

rpb =

n

1 _
where standard deviation s,, = 4 /— E (X —X )2
n4
i=1

(1)

Supervised machine learning

To find the best model, we evaluated four machine
learning algorithms (neural network, multiple linear regres-
sion, naive Bayes, and random forest). We used the open
source library Orange for the machine learning [20].

Score-integration

The models firstly predicted whether the two given mol-
ecules are catalyzed by the same enzyme based on their
subtracted descriptor values. Thus, a query molecule may
obtain one or more prediction scores depending on the
number of substrates, since an enzyme may have more
than one substrates. Therefore, it was necessary to inte-
grate the obtained individual scores. The approaches are
an average of all the scores, a maximum score among
them, and probability-based scoring method [21]. These
scoring methods have their own drawbacks. For example,
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Fig. 1 Graphical description for Methods a. Entire pipeline to construct our prediction model. b. A brief graphical description about dataset preparation.
1444 molecular descriptors were calculated for substrates in training dataset, and the subtractions of descriptors were calculated for every substrates pair.
For supervised learning, a set of descriptor subtractions of substrates pair was labeled with 1 or 0. g, b and ¢ denote substrates in the training dataset. E1

a simple average may result in a dramatically low score
when there are many dissimilar substrates for an enzyme.
Thus, we developed an integrated scoring method and
compared its performance with other score-integrating
methods.

k _
p=5+) (875 x LinJimS) i(si_s)

N2 _
where] (5i75)" #si25
0 otherwise

(2)

p denotes an integrated score, s; denotes an individual
score between a query molecule and a substrate, k de-
notes the number of individual scores larger than the
average (s;>5).

Briefly, our integrated scoring method captures the
distribution of individual scores by giving a positive
weight to the scores higher than their average. For

example, a molecule A obtains two scores {Oa_s1), 1(a-s2)}
and B obtains two scores {0.5.51), 0.55.52)} With given two
substrates (S1 and S2) catalyzed by enzyme C. Simple aver-
age will result in the same integrated score, 0.5. However, it
is rational to predict that the molecule A rather than B is
catalyzed by the enzyme C due to the high score 1. Our
integrated scoring method gives a score of 0.75 and 0.5,
respectively, and which indicates that the molecule A is
catalyzed by the enzyme C with a higher probability than B.
In another example, molecules A and B obtained scores of
{Oa-s1y Lias2p Liassy Lia-sa} and {Og.s1) 0.2(8-52), 0.5(8-53)
1(p-sa)}, respectively, with the four substrates (S1 - S4) cata-
lyzed by enzyme C. Simple maximum may conclude that
the two molecules could interact with enzyme C with the
same possibility. Intuitively, the molecule A has a higher
possibility to react with enzyme C than B. In agreement
with the intuition, our method gives a score, 0.86 and 0.61,
respectively.
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Performance validation

We divided the dataset into subsets by enzymes, because
substrates mediated by the same enzyme would possess
very similar physico-chemical properties and therefore
substrate-based dataset separation into training and test
sets may result in over-fitting. We divided the dataset
into 20 subsets by enzymes for 20-fold cross-validation.
For further evaluation of the constructed model, we con-
structed a test dataset from DrugBank, which was not
used for the training [22]. DrugBank contains biochem-
ical information of drugs, substrates and their target
proteins and we used 872 substrates and 172 enzymes to
test our model.

To compare our model with other available prediction
methods, we also used the same test dataset: admetSAR
[23] and deepDTI [24]. The admetSAR predicts ADMET
features of a query molecule. For performance comparison,
we queried 872 substrates in our test dataset and obtained
their substrate probabilities for CYP2C9, CYP2D6 and
CYP3A4. The deepDTI is a deep-belief network-based
drug-target interaction prediction tool. As the publicly
available software of deepDTI requires training with our
own dataset, we firstly trained deepDTI with the training
dataset and then the trained model was evaluated on the
test dataset.

Results

Data construction

To construct a dataset, we compiled human enzymes
and their substrates from HMDB and BRENDA databases:
1879 substrates, 2118 enzymes, and 4187 substrate-enzyme
reactions. 1,444 molecular descriptors for each substrate,
reflecting physicochemical properties, were calculated. For
two given chemical compounds, their differences of the
1444 descriptors were calculated to generate features. Con-
sequently, descriptor difference values for 1,764,381 pairs of
the substrates were generated and these values were used
as features.

We optimized feature number using top 1000 features
of the 1444 features to construct the best-performing
model. The remaining 444 features were excluded in the
model construction due to their zero or very low correl-
ation coefficients < 0.01. In Table 1, the top 10 represen-
tative descriptors with high absolute coefficient values
are listed, and these descriptors played an important role
in the prediction of substrate similarity.

Model construction

We constructed prediction models using four different
machine learning algorithms (neural network, multiple
linear regression, naive Bayes, and random forest) with
increasing number of features from 100 to 1000. Their
performances were evaluated by 20-fold cross-validation
as described in Methods. Their AUCs with respect to
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Table 1 Top 10 features with a high correlation

Name Rob Category

minsssCH —-0.0674 Atom type electrotopological state
Hmax —0.0645 Atom type electrotopological state
SHsOH —0.0641 Atom type electrotopological state
EE_Dt —0.0635 Detour matrix

maxHCsatu —-0.0630 Atom type electrotopological state
XLogP —0.0624 XLogP

CrippenLogP —0.0619 Crippen logP and MR

Lipoaffinity Index -0.0618 Atom type electrotopological state
ETA_EtaP_F -0.0615 Extended topochemical atom
nsOH -0.0615 Atom type electrotopological state

the number of features used are shown in Fig. 2. The
four algorithms showed high performances and multiple
linear regression showed the highest performance when
500 features were used (AUC = 0.896). For the multiple
linear regression, when the number of features was over
500, the AUC decreased slowly because the model
started to over-fit to the training dataset. Thus, we con-
structed a reaction prediction model using multiple lin-
ear regression and 500 features.

Our model predicts which of human enzymes can
catalyze a query molecule. Firstly, a query molecule is
compared with each of the substrates to generate fea-
tures (descriptor differences) and the model predicts
whether the query molecule and the substrate can be
catalyzed by the same enzyme. Thus, for a given enzyme
the model generates one or more scores depending on the
number of its substrates. For the determination of the
reactability with the given enzyme, it was necessary to
integrate the individual scores. We evaluated four scor-
e-integration methods: simple arithmetic mean, simple
maximum, probability-based method [21] and our own
score-integration method. We compared the performances
of the score-integration methods. As explained in Methods
and as shown in Table 2, our score-integration method
showed better performance than other methods.

To further improve the prediction model, the cutoff of
integrated score to determine whether a query molecule
is catalyzed by a given enzyme was optimized. As the
threshold for integrated score increases, the Matthew’s
correlation coefficient (MCC) increases. Since most of
the data used in the training was biased to negative data
(non-reaction), MCC is an appropriate index to show an
accuracy of imbalanced dataset. When the threshold was
over 0.75, the MCC started to decrease (Fig. 3). There-
fore, the threshold of 0.75 was used in our model to de-
termine whether a query molecule is catalyzed by a
given enzyme. When this threshold was applied to the
training dataset, the model showed a specificity of 0.975,
sensitivity of 0.527, and MCC of 0.208 (Table 3).
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Fig. 2 Performances (AUC) of four machine learning algorithms with the increasing number of features. The four machine learning algorithms are
artificial neural network, random forest, naive Bayes and multiple linear regression. Their performances were calculated by 20-fold cross-validation.
Of the four algorithms, multiple linear regression model using 500 features showed the best performance (AUC = 0.897)

Evaluation of the constructed model

We further evaluated our model with a new test dataset
that was not used in the training. A test dataset was
constructed using DrugBank database and reactions in-
cluded in the training dataset were removed. The test
dataset includes 172 enzymes and 872 substrates. The
constructed in silico model was applied to the 872 sub-
strates and predicted which enzymes can catalyze the
substrates. The resulting performances are shown in
Table 3. Even a new test dataset was used, the model
showed reliable performances.

Performance comparison with other tools

We compared the performance of our model with other
tools: admetSAR and deepDTI. The admetSAR predicts
the substrate probability of a query molecule for CYP2C9,
CYP2D6 and CYP3A4. It should be noted that the admet-
SAR is a specialized predictor for CYP enzymes, while our

Table 2 Performance (AUC) results of four different score-
integration methods

Simple average  Simple maximum  Probability-based ~ Our method
method®
0.842 0.877 0.884 0.896

?Probability-based method is expressed as S = 1—H(1—S,-), meaning the
i

probability any of the given query-substrate pair is reacted by the
same enzyme

model predicts general enzyme-substrate reactability. We
used the same test dataset used to evaluate our model. As
admetSAR predicts the reactability only with CYP450
enzymes, we also evaluated our model only for CYP450
enzymes. The admetSAR showed a sensitivity of 0.331,
specificity of 0.760, and MCC of 0.100. Our model showed
a sensitivity of 0.213, specificity of 0.944, and MCC of
0.234. Our method showed significantly higher perform-
ance than the admetSAR in predicting molecule-CYP450
reactions.

We also compared our model with a deep-learning-based
drug-target interaction prediction tool, deepDTI. As the
publicly available deepDTT software requires training step
with our own dataset, we trained the tool with the training
dataset we used for our model. The performance of
deepDTI on the test dataset was significantly low:
sensitivity of 0.578, specificity of 0.424, and MCC of
0.0003. The low performance could result from the ex-
treme imbalance in our training and test datasets.

Further evaluation with literature data

We further evaluated our in silico model with new
enzyme-substrate reactions obtained from the literature.
There are reports in which non-natural molecules were
used for enzyme reactions and thus we used the
non-natural molecules (p-nitrophenyl acetate, methyl
salicylate, p-nitrobenzoic acid methylester, tamoxifen
and agmatine [10, 25, 26]) for this evaluation. As a
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result, our model successfully predicted four out of
the five chemicals. All reactions predicted by our
model are listed in Table 4.

Discussion
We constructed a model to predict which of human en-
zymes can catalyze the query molecule. As shown in
Table 2 and Table 3, the model showed overall high per-
formances even when evaluated with a test dataset: sen-
sitivity of 0.171, specificity of 0.976, MCC of 0.106 and
PPV of 0.089. The model showed low PPV on test data-
set, and which resulted from the large imbalance of the
dataset biased to negative data. When training, 1,764,381
all possible substrate-substrate pair combinations were
constructed, and only 11,492 (0.7%) pairs were positive
(they are catalyzed by the same enzymes) while the other
1,752,889 (99.3%) were negative (they do not share en-
zymes). Due to the extreme bias to negative data, it was
challenging to predict positive cases and this explains
the relatively low sensitivity and PPV. Generally, when
negative data size is extremely large, the performance of
predicting true positives decreases. On the other hand,
when the negative data size is reduced, the performance
increases [27].

Our model showed higher performance when com-
pared with previous tools for substrate prediction:
admetSAR and deepDTI. It should be noted that the

Table 3 Performance results of with a threshold of 0.75

SEN SPE MCC PPV
Training dataset 0527 0.975 0.208 0.088
Test dataset 0.171 0.976 0.106 0.089
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admetSAR is a specialized ADMET prediction tool spe-
cific to CYP enzymes, and deepDTI is for the prediction
of drug-target interaction. Instead, our method predicts
substrate-enzyme reactions, which is not restricted to
CYP enzymes and drug targets. Therefore, it may not be
fair to compare performances of the specialized tools
with our generalized model. Nevertheless, our method
showed higher performance than the admetSAR and
deepDTI. The deepDTI was evaluated on the test dataset
and showed MCC of 0.0003, while our model showed
MCC of 0.106. As the admetSAR was developed to pre-
dict substrates of CYP enzymes, for fair comparison we
used only the substrates of CYP enzymes from the test
dataset for evaluation. The MCCs of our model and
admetSAR were 0.234 and 0.100, respectively. These re-
sults indicate that our model can be used to for practical
prediction of substrate-enzyme reactions.

Predictability of our model was further proved using
five query compounds found from the literature. Of
the five molecules, as shown in Table 4, three mole-
cules (p-nitrophenyl acetate, methyl salicylate, and
p-nitrobenzoic acid methylester) are substrates of co-
caine esterase. Their predicted scores for cocaine es-
terase were 0.847, 0.787, and 0.719, respectively. As
we set the threshold as 0.75, p-nitrophenyl acetate and
methyl salicylate were successfully predicted to react
with cocaine esterase enzyme. Our model also pre-
dicted that these three molecules could react with
serum praxonase/lactonase 3 that mediates the hy-
drolysis of phenyl acetates. Since methyl salicylate and
p-nitrophenyl acetate contain phenyl acetate or similar
moiety, it is feasible for the two molecules to react
with serum praxonase/lactonase 3.

Our model was also used to predict the potential en-
zymes for tamoxifen that is known to be a substrate of
cytochrome P450 3A4. Our model successfully predicted
the reaction between tamoxifen and CYP3A4 (score =
0.853). Interestingly, the model also predicted that tam-
oxifen interacts with a protein with a higher score than
CYP3A4, intermediate conductance calcium-activated
potassium channel protein 4 (KCNN4, score =0.872).
Although KCNN4 is a potassium transporter, in HMDB
KCNN4 was annotated as an enzyme and quinine was
assigned as its substrate. However, quinine is an inhibitor of
the KCNN4 transporter [28]. Therefore, the annotation for
KCNN4 in HMDB was wrong. However, interestingly our
model predicted tamoxifen is a potential interacting mol-
ecule with KCNN4. We could also find a supporting indir-
ect evidence that tamoxifen affects the function of a
calcium-activated potassium channel in mouse [29]. This
result demonstrates that our model can predict new chem-
ical compounds that can interact with a query enzyme and
interestingly the prediction can be applied to substrates as
well as inhibitors/activators.
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Table 4 Top five proteins predicted to interact with the five molecules obtained from the literature®

Substrate UniProt Enzyme Name
Accession
p-nitrophenyl acetate P00915 Carbonic anhydrase 1
000748 Cocaine esterase
Q14524 Sodium channel protein type 5 subunit alpha
QouI33 Sodium channel protein type 11 subunit alpha
QIY5Y9 Sodium channel protein type 10 subunit alpha
060774 Putative dimethylaniline monooxygenase [N-oxide-forming] 6
Q15166 Serum paraoxonase/lactonase 3
p-nitrobenzoic acid methylester 060774 Putative dimethylaniline monooxygenase [N-oxide-forming] 6
P00915 Carbonic anhydrase 1
Q15166 Serum paraoxonase/lactonase 3
Q14524 Sodium channel protein type 5 subunit alpha
QouI33 Sodium channel protein type 11 subunit alpha
Q9Y5Y9 Sodium channel protein type 10 subunit alpha
methyl salicylate Q14524 Sodium channel protein type 5 subunit alpha
QouI33 Sodium channel protein type 11 subunit alpha
Q9Y5Y9 Sodium channel protein type 10 subunit alpha
060774 Putative dimethylaniline monooxygenase [N-oxide-forming] 6
000748 Cocaine esterase
Q15166 Serum paraoxonase/lactonase 3
Q01959 Sodium-dependent dopamine transporter
Q9NUWS Tyrosyl-DNA phosphodiesterase 1
tamoxifen 015554 Intermediate conductance calcium-activated potassium channel protein 4
P08684 Cytochrome P450 3A4
agmatine Q96F10 Diamine acetyltransferase 2
Q9HO15 Solute carrier family 22 member 4
P21673 Diamine acetyltransferase 1
Q8NE62 Choline dehydrogenase, mitochondrial
P19623 Spermidine synthase
Q9UMO1 Solute carrier family 7 member 7

?Known interactions are highlighted in bold

Solute carrier family 7 member 7 (SLC7A7) is not a
metabolic enzyme but a transporter of arginine. However,
this transporter was deposited in HMDB and thereby was
included in our training dataset. Due to the interaction
between SLC7A7 and arginine, our model predicted that
agmatine can be a potential chemical compound to be
transported by SLC7A7 (score = 0.840), and we could find a
supporting literature evidence for the interaction [26].
Interestingly, our model also predicted that SLC22A4, a
member of solute carrier family, is able to transport agma-
tine as well (score = 0.948). Although there is no evidence
about their interaction, agmatine is known to be trans-
ported by other members of solute carrier family 22,
SLC22A1 and SLC22A3 [30], and therefore the SLC22A4
would transport agmatine.

Our model successfully predicted the interaction of
SLC7A7 and agmatine, and SLC22A4 and agmatine. This
proves that our model can predict general interactions be-
tween molecules and proteins, and not limited to substrates
and enzymes.

Conclusion

In this study, we developed an in silico model to predict
which of human enzymes can catalyze a query molecule.
The model was based on the assumption that if the
physico-chemical properties expressed as descriptors of
a query compound and a known substrate were similar,
they would be catalyzed by the same enzyme. Our model
is not limited to substrate-enzyme interactions, but can
be generalized to the interactions between molecules
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and transporters, and interactions between inhibitors
and drug targets.

There are an increasing number of reports that drugs
can be modified by enterobacteria in human gut [31].
The same principle underlying in our model could also
be applied to predict the enzymatic reactions mediated
by human gut bacteria. In addition, the prediction can
be used with various other information, such as the distri-
bution of enzymes in human tissues. With this information,
it would be possible to predict tissue-specific enzymatic re-
actions and to analyze the effect of biotransformation. Fur-
thermore, it could be possible to predict unknown routes of
metabolic pathways by predicting undiscovered reactions.
Consequently, our in silico model should be a useful tool to
screen drug candidates to computationally assess drug
modifications and to predict unknown chemical reactions
in biochemical studies.
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