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Abstract

Background: Identifying protein functional sites (PFSs) and, particularly, the physicochemical interactions at these sites
is critical to understanding protein functions and the biochemical reactions involved. Several knowledge-based methods
have been developed for the prediction of PFSs; however, accurate methods for predicting the physicochemical
interactions associated with PFSs are still lacking.

Results: In this paper, we present a sequence-based method for the prediction of physicochemical interactions
at PFSs. The method is based on a functional site and physicochemical interaction-annotated domain profile
database, called fiDPD, which was built using protein domains found in the Protein Data Bank. This method was
applied to 13 target proteins from the very recent Critical Assessment of Structure Prediction (CASP10/11), and
our calculations gave a Matthews correlation coefficient (MCC) value of 0.66 for PFS prediction and an 80% recall
in the prediction of the associated physicochemical interactions.

Conclusions: Our results show that, in addition to the PFSs, the physical interactions at these sites are also
conserved in the evolution of proteins. This work provides a valuable sequence-based tool for rational drug
design and side-effect assessment. The method is freely available and can be accessed at http://202.119.249.49.

Keywords: Physicochemical interaction prediction, Protein functional site prediction, fiDPD, Hidden Markov model,
Domain profile module

Background
Most proteins perform biological functions via interactions
with their partners, such as small molecules or ligands,
DNA/RNA, and other proteins, forming instantaneous or
permanent complex structures. Of particular importance is
that only a few pivotal amino acids on a protein’s surface,
usually called protein functional sites (PFSs), play key roles
in determining these interactions. Thus, understanding
protein functions depends upon accurate predictions of
PFSs. However, PFSs alone do not reveal the details of their

physicochemical interactions, which is indispensable in-
formation for understanding protein biochemical reactions.
Together with PFS prediction, accurate protein-ligand
interaction (PLI) prediction opens up a new dimension in
correctly annotating protein function and thus provides
valuable information for rational drug design and drug
side-effect assessment [1–3]. To date, 3D protein-partner
complex structures have been the main source of know-
ledge about PFSs and PLIs. In recent years, in silico
methods have received increasing attention as an alterna-
tive strategy for protein function annotation, especially in
predicting PFSs. The advantage of these methods stems
from two factors: the rapid accumulation of a large number
of complex 3D structures in publicly accessible databases

* Correspondence: dming@njtech.edu.cn
2College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech
University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangsu
211816 Nanjing, People’s Republic of China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Han et al. BMC Bioinformatics  (2018) 19:204 
https://doi.org/10.1186/s12859-018-2206-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2206-2&domain=pdf
http://202.119.249.49
mailto:dming@njtech.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


such as the Protein Data Bank (PDB) [4] and the rapid
development of computer technology and computation
algorithms.
In the last few decades, many computational methods

have emerged to identify PFSs from protein structures and
sequences [5]. Most sequence-based methods assume that
functionally important residues are conserved through
evolution and can be identified as conserved sites based
on multiple sequence alignment (MSA) within homolo-
gous protein families [6–8]. Sequence-based information
such as secondary structure propensity and the likely
solvent accessible surface area (SASA) have also been
used to improve the prediction [9–12]. In addition,
structure-based methods that essentially determine local
or overall structural similarity have been developed for
PFS prediction [13–16]. Typical local structural features
include large clefts on protein surfaces [17, 18], special
spatial arrangements of catalytic residues [19–21], and
particular patterns between surface residues [22, 23].
Other prediction methods have used both structural and
sequence information [24, 25] and might, when combined
with artificial intelligence techniques, provide encouraging
results [26–28]. Other methods based on protein dynam-
ics [29–34], conventional molecular dynamics and dock-
ing simulations [35–37] have also been successful in PSF
prediction. To elucidate the physicochemical interactions
between proteins and their partners, particularly those be-
tween protein and ligands, researchers have attempted to
characterize these interactions as early as the emergence
of the first protein-ligand complex structure. However,
only very recently have structural bioinformatic tools
emerged with which to systematically characterize pro-
tein-ligand interactions (PLIs) [38–43] due to the rapid ac-
cumulation of protein complex structures. Additionally, a
few databases record detailed atomic interactions be-
tween proteins and ligands, facilitating PLI studies
[44–46]. These data provide new resources for the
large-scale characterization of physicochemical inter-
actions between proteins and their partners and have
helped improve conventional docking simulation and
pharmacology research. Several knowledge-based or
ab initio methods have been developed for the prediction
of PFSs; however, an accurate method for predicting
the physicochemical interactions associated with PFSs
is still lacking [47].
In this paper, we develop a new method for predicting

physical interactions occurring on functional sites based
on the amino acid sequences of given proteins. This
sequence-based method first predicts PFSs from a func-
tional site-annotated domain profile database, or fDPD,
and then assigns the types of interactions most likely to
appear at the predicted sites. In this study, we derived a
functional site- and interaction-annotated domain profile
database, called fiDPD, which plays the primary role in

the prediction. A profile hidden Markov model of the
HMMER program was used in the prediction to search a
module member of the database for a given protein. We
applied the fiDPD method to 10 target proteins of CASP10
[48] and CASP11 [49] and found that the method has a
Matthews correlation coefficient (MCC) value of 0.66 for
PFS prediction. Additionally, the model provided a cor-
rect physicochemical interaction prediction for 80% of
the examined sites. We expect the present method to
be a valuable auxiliary tool for conventional bioinformatic
and protein function annotations.

Methods
Figure 1 shows the flow chart used to build fiDPD. We
first introduced the fDPD as a list of representative profile
modules built by sorting out structure-and-sequence
similar protein domains in the SCOP databases [50].
Next, PFSs and atomic patterns of PLIs were derived
from known protein-ligand-complex structures in the
PDB; then, after a series of site-to-site mappings, these
structures were used to annotate fDPD profile modules
and thus to build the fiDPD.

fDPD was prepared based on the subgroup classification
of domain entries of the SCOP database
We started with a modified classification of protein do-
main structures collected in the SCOP database [50, 51].
In SCOP, a large protein structure is often manually di-
vided into a few smaller parts or domains according to
their spatial arrangement within the protein. A recent
version of SCOPe 2.05 was downloaded from http://
scop.berkeley.edu/references/ver=2.05, which includes
214,547 domain entries extracted from 75,226 protein
structures in the PDB. In SCOP, these domain structures
are arranged in a hierarchical 7-level system—Class (cl),
Fold (cf), Superfamily (sf ), Family (fa), Protein Domain
(dm), Species (sp), and PDB code identity (px)—according
to their sequence, function and structure similarity. Spe-
cifically, those domains listed in a given domain entry
(dm) presumably share the same class, fold, superfamily
and protein family but might differ in species and PDB
code entry. Theoretically, PFSs are more likely to be
conserved when they share both higher structural and
sequential similarity, and this assumption forms the basis
for our algorithm of fiDPD in the prediction of PFSs
and PLIs. Using a profile hidden Markov model of the
HMMER program, the MSA of all the domains within
the same dm entry gives a single representative profile
module. In this way, 12,527 representative profile mod-
ules were created for all the dm entries, forming the
basis of fDPD and fiDPD.
In building fDPD, it is important for protein domains

within the same dm entry to be structurally and sequen-
tially close to one another. However, a quick calculation
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reveals that the Cα root-mean-square-distance (RMSD)
can be as large as 12 Å for many domain structures
listed in the same dm entry. This result indicates that
there are many domains listed in the same dm entry of
SCOPe 2.05 that have quite different structures, which
makes the profile modules of fDPD less representative of
member proteins within the dm entry. To reduce the
difference, we divided the domains within a dm entry
into a few smaller groups or subgroups so that selected
domains within the same subgroup would have mutual
Cα-RMSD < 7 Å and a mutual sequence similarity > 10
(a score calculated by the MSA program CLUSTALW
[52]). Thus, derived subgroups then replace the dm
entry as the basic unit of fDPD. fDPD contains 16,559
subgroups, which is 32% more than the original SCOP
dm entries, with approximately 12 member structures in
each subgroup, on average.

fDPD is composed of functional site annotated protein
profile modules based on multiple subgroup-protein
sequence alignment
In fDPD, sequences of protein domains in a subgroup
were extracted and aligned using the MSA program

MUSCLE [53], from which a profile module was then
built using the hmmbuild module of the HMMER pro-
gram (http://hmmer.org/ [54]). A profile module is a se-
quence of hypothetical amino acids, which is, instead of
conventional amino acids, probably a mixture of certain
amino acids according to the MSA of the subgroup. For
each individual position in a profile module, we defined
a conservation value C according to the MSA. We
assigned the C value as 0, 1, 3, or 4 for a position being
nonconservative, minimally conservative, conservative
and highly conservative, as indicated respectively by a
gap, “+” symbol, a lowercase letter or a capital letter in
the MUSCLE alignment. We also defined an overall vol-
ume value N for a profile module as the number of pro-
tein domains listed in the subgroup: a larger N value
usually indicates that more information is available for
that subgroup and thus a greater confidence on the
annotation.
A scoring function S was assigned to each position in

an fDPD profile module to mark its propensity of being
a functional site. To this end, we first mapped known
functional sites of member proteins within the same
subgroup to the profile module according to the MSA

Fig. 1 Flow-chart for building the function-site- and interaction-annotated domain profile database (fiDPD) and for predicting protein function-
sites and PLIs using fiDSPD
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(see Fig. 2). Functional sites of member proteins were
collected from the SITE sections of the corresponding
PDB file. Of the 202,705 protein domains listed in
SCOPe, 132,725 domain structures have a total of
1,878,004 functional sites annotated in PDB SITE re-
cords. Then, for simplicity, we assigned S as the total hit
number that a profile module position received based on
the MSA. Thus, the larger a position’s S-value, the more
likely it is to be a hypothetical functional site for the
profile module. In this way, the profile modules were an-
notated with known PFSs, and we called the database
composed of these profile modules the function-site-
annotated domain profile database, or fDPD. Previously,
alternative functional site annotations for profile modules
were also built by using different “known” PFSs derived
from FDPA calculations instead of those recorded active
sites in the PDB database [55]. Compared with the dm en-
tries in the original SCOP, in fDPD, PFSs should be more
likely to be conserved since they share both higher struc-
tural and higher sequential similarity.

fiDPD was built by attaching physicochemical interaction
annotations to functional sites in fDPD profile modules
Obviously, the abovementioned S-value is heavily
dependent on the means by which the “known” PFSs
were determined. In this work, S-values are determined by
using only PDB SITE information, which, in most cases,
is composed of manually prepared ligand-binding sites.
Other types of biologically relevant functional site data,
such as enzyme active sites [56] and phosphorylation sites
[57], might also be used in the annotation. Here, consider-
ing the importance of PLIs in determining protein func-
tion, we added PLI annotations to the profile modules of
fDPD to build the function-site and interaction-annotated
domain profile database, or fiDPD.

To annotate the profile modules with PLIs, atomic
interaction patterns between the protein and ligand were
initially determined based on their 3D protein-ligand
complex structures. Specifically, the atomic 3D coordi-
nates of amino acids listed in PDB SITE sections and
those of ligand molecules were filtered out from the PDB
files; then, a series of atomic distances (d) were calculated
between PFSs (ASite) and ligands (ALigand). Finally, a few
types of bonding and nonbonding interactions for each
ASite were determined based on the pairwise distances and
the biochemical properties of involved amino acids.

H-bond
Almost all PLIs occur in aqueous environments, where
water molecules play a critical role. As a result, hydrogen
bonds might be consistently established and destroyed
until a certain stable protein-ligand configuration is
achieved. Here, we have calculated hydrogen bonds within
the protein-ligand complex using the program HBPLUS
[58]. The program determines H-bond donor (D) and ac-
ceptor (A) atom pairs based on a nonhydrogen atom con-
figuration using a maximum H–A distance of 2.5 Å, a
maximum D–A distance of 3.9 Å, a minimum D–H–A
angle of 90° and a minimum H–A–AA angle of 90°, where
H is the theoretical hydrogen atom and AA is the atom of
functional sites in the H-bond acceptor. In this way, we
defined NHBA and NHBD as the total number of H-bond
acceptors and H-bond donors, respectively, associated
with atoms in a given functional site.

Electrostatic interactions
Electrostatic force plays important roles in many PLIs
and might be the main driving force to initiate catalytic
reactions, to guide the recognition between protein and
ligand, and so on [59–61]. However, accurately deter-
mining atomic charges in bio-structure is a very challen-
ging task since it is highly sensitive to the surrounding
environment. Here, for simplicity, we identified electro-
static interactions simply by examining the charging
status of contact atoms in PLIs. Specifically, we first se-
lected positively charged nitrogen (N) atoms of func-
tional sites of Arg, His, and Lys and then determined
an electrostatic interaction if there a neighboring (< 4.5 Å)
oxygen atom was present in the ligand, which is not part
of a cyclized structure. An electrostatic interaction was
also built when a negatively charged oxygen (O) atom
from Asp and Glu residues was found near a ligand
nitrogen atom. We used NELE as the total number of
electrostatic interactions involving atoms in a given func-
tional site.

π-stacking interactions
π-Stacking interactions play a critical role in orientating
ligands inside binding pockets. We first identified the

Fig. 2 Mapping known protein function sites and interactions to a
domain-profile module, ⊗: known PFSs of domain structures, ⊙:
pivotal PFSs in a profile module with the number indicating a
weight factor, *: PFSs mapped into the query protein sequence from
profile module pivotal sites, which, after a filtering, is reduced to two
points (A and B) as a final prediction output, Δ: non-conservative
pivotal sites mapped into the query protein, which will be ignored
due to the low conservation value
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aromatic side chains of Trp, Phe, Tyr and His of PFSs
and carbon-dominant cyclized structures of ligands. Usu-
ally, aromatic rings form an effective π-stacking inter-
action when they get close enough (4.5–7 Å) and have
either a parallel or perpendicular orientation [62, 63].
Here, for simplicity, we defined a π-stacking interaction if
we could find three or more distinct heavy-atom pairs be-
tween atoms from the aromatic ring of a given functional
site and those from ligand carbon-ring structures. We de-
fined the total number of π-stacking interactions involving
a given functional site as NPI.

Van der Waals interaction
A Van der Waals interaction is formed when the distance
d between a nonhydrogen atom of protein functional site
and a nonhydrogen atom of ligands satisfies the following
inequality:

d < vdW ASiteð Þ þ vdW ALigand
� �þ 0:5 Å;

where vdW(A) is the Van der Walls radius of atom A
and no covalent bond, coordination bond, hydrogen
bond, electrostatic force or π-stacking interaction is
found between them. A similar definition of the Van der
Waals interaction was also used by Kurgan and colleagues
in their study of protein-small ligand interaction patterns
[38] and by Ma and colleagues in their study of protein-
protein interactions [64]. The atomic Van der Waals radii
were taken from the CHARMM22 force field [65]. Each
functional site was assigned an NVDW value as the total
number of Van der Waals interactions involving atoms of
this site.

Covalent bond and coordinate bond
Usually, nonbonded forces dominate interactions between
a ligand and its target protein; however, irreversible cova-
lent bonds are also found in PLIs when a tight and steady
connection between the ligand and receptor is essential to
the biological function, such as in the rhodopsin system
[66]. A covalent bond is formed if the distance between a
nonhydrogen atom from a functional site and a nonhy-
drogen atom from ligand satisfies d < RðASiteÞ þ RðALigandÞ
þ0:5 Å, where R(A) is the radius of atom A. For metal-ion
ligands, this condition also defines coordinate bonds be-
tween metal ions and PFSs. Usually, in coordinate bonds,
the shared electrons are present in atoms with higher elec-
tronegativity in a functional site. We denoted NCOV as the
total number of covalent bonds involving atoms in the func-
tional site and NCOO as the total number of coordinate
bonds involving atoms in that site.
We characterized a PLI between a PFS and the ligands

with a 7-dimensional interaction vector V = (NCOV,
NCOO, NHBA, NHBD, NPI, NELE, NVDW). The inter-
action vectors of all member proteins were summed in

different pivotal sites of the profile module according to
the MSA of the studied subgroup. As a result, each
fDPD profile module was annotated with interaction
vectors V on hypothetical functional sites, thus forming
the fiDPD.

fiDPD predicts both functional sites and PLIs using a
hidden Markov model
fiDPD is essentially a list of profile module entries anno-
tated with domain functional sites and PLIs. In fiDPD,
two steps are required to predict the hypothetical func-
tional sites and involved PLIs for a given inquiry protein:
1) identifying profile modules in fiDPD that match the
query sequence best and 2) interpreting pivotal func-
tional sites and associated PLIs of the matched profile
modules as a prediction of PFSs and PLIs for the query
protein based on certain statistical evaluations.
In the first step, fiDPD scans the query sequence

against all its module entries using the SCAN module of
the HMMER program [67]. The scan usually gives a
couple of profile modules within an alignment E-value
cutoff no greater than 1 × 10− 5. Each alignment (indexed
by superscript j in Eq. (1)) is assigned a scoring function
E as the negative logarithm of the E-value score. Due to
the limited volume of known protein sequences contained
in fiDPD, there are cases in which HMMER SCAN cannot
find any match for the query protein, and for these cases,
fiDPD simply gives a notice of “no-hit.” In step 2), we de-
fined a scoring function Fi for the ith residue of the query
protein as its propensity to be a functional site:

Fi ¼
X

j
S j
i0C

j
i0N

jE j ð1Þ

where the summation runs over all the alignments j and i′

stands for the position of the profile module that matches
the ith residue of the query protein. Residues with a high-
valued F-scoring function will be predicted as hypothetical
functional sites.
One way to determine high-F-valued sites for a query

protein is to simply choose a certain number (n) of
top-valued residues, called n-top selection. This method
has been used for enzyme catalytic site prediction [55]
since experimentally determined enzyme active sites
have a relatively fixed number as revealed by the Catalytic
Site Atlas (CSA) dataset [56]. Another method to select
top-valued residues uses a cutoff percentage that was
proved to be efficient in a previous ligand-binding site
prediction study [32, 34]. In this method, we first filtered
out those low-valued noise-like residues whose F-scores
were smaller than a cutoff percentage M% of the max-
imum F-value Fmax; then, for the remaining residues,
the top T% were predicted as hypothetical functional
sites of the query protein. Usually, this selection strategy
tends to give a greater prediction function for larger
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proteins. We used this selection strategy to predict PFSs
in the remainder of this paper. The server is freely avail-
able and can be accessed at http://202.119.249.49. For
clarity, F-scores are renormalized to a 1–100 range for
predicted sites.
To predict PLIs, we defined a protein-ligand interaction

scoring-vector function Ii= {NCOVi, NCOOi, NHBAi, NHBDi,
NPIi, NELEi, NVDWi} for the ith residue of the query
protein following Eq. (1):

I i ¼
X

j
N jE jC j

i0V
j
i0 ð2Þ

where V j
i0 ¼ fNCOV j

i0 ;NCOO j
i0 ;NHBA j

i0 ;NHBD j
i0 ;NPI ji0 ;

NELE j
i0 ;NVDW j

i0 g is the PLI vector for residue i′ in the
profile module j that matches the ith residue of the query
sequence. For each prediction functional site, fiDPD will
determine an associated PLI vector according to Eq. (2),
which identifies the interactions involved with each pre-
diction site. For clarity, in the webserver, when Ii has a
nonzero value from Eq. (2), it will be simply assigned as
“1” to indicate a certain type of PLI.

Validation datasets
The original fDPD was examined for PFS prediction using
a few types of datasets, including two manually culti-
vated enzyme catalytic site datasets of the 140-enzyme
CATRES-FAM [68], the 94-enzyme Catalytic Site Atlas
(CSA-FAM) [56] and a 30-member small-molecular
binding protein target from CSAP9 [69]. Here, we exam-
ined fiDPD by calculating the PLIs of protein targets listed
in CASP10 [70] and in CASP11 [49], whose ligand-binding
complex structures had been solved.

Validation method
The conventional prediction precision and recall calcula-
tions were used to evaluate the performance of our method:
Precision = TP/(TP + FP) and Recall = TP/(TP + FN), where
the true positives (TPs) are the predicted residues listed as
functional sites in the dataset, the false positives (FPs) are
the predicted sites not listed in the dataset, and the false
negatives (FNs) are the functional sites listed in the dataset
but missed by the method. Another relevant quantity is the
true negative (TN), which stands for the correctly predicted
nonbinding/nonfunctional site residues. In our calculations,
the statistics did not take account of the “no-hit” predic-
tions. The overall precision is the sum of all the TPs divided
by the total number of predicted residues, and the overall
recall is the sum of all the TPs divided by the total number
of listed functional sites in the dataset. The precision-recall
curve was found to be slightly dependent on the cutoff
percentage M% and T% in the selection method. The
MCC [71] was used to assess the ligand-binding residue
predictions of the CASP10 target proteins [72] and is
defined as follows:

MCC ¼ TP� TN−FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ∙ TPþ FNð Þ∙ TNþ FPð Þ∙ TNþ FNð Þp :

The predicted PLIs were compared with those directly
derived from 3D protein-ligand complex structures, and
precision and recall values were obtained to qualify PLI
predictions.

Results and discussion
The mimivirus sulfhydryl oxidase R596
The 292aa mimivirus sulfhydryl oxidase R596 is target
T0737 of CASP10, whose structure was later deter-
mined at 2.21 Å (PDB entry 3TD7; see Fig. 3 [73]). The
protein is composed of two all alpha-helix domains: the
N-terminal sulfhydryl oxidase domain (Erv domain) and
the C-terminal ORFan domain. The mimivirus enzyme
R596 has an EC number of EC1.8.3.2, catalyzing the for-
mation of disulfide bonds through an oxidation reaction
with the help of a cofactor of flavin adenine dinucleotide
(FAD). FAD is tightly bonded to 22 residues in the cata-
lytic pocket in the Erv domain [48], playing an important
role in transferring electrons from a 10 Å distance shuttle
disulfide in the flexible interdomain loop to the active-site
disulfide close to FAD in the Erv domain [73]. In the
prediction, fiDPD scanned the T0737 sequence against
the database and found 4 profile module entries, all
from the Apolipoprotein family with a structure of a
four-helical up-and-down bundle. The 4 entries include
an automated-match-domain profile built from 10 sequences
from Arabidopsis thaliana, a second automated-match-
domain profile built from 4 sequences from Rattus nor-
vegicus, an augmenter of liver regeneration domain
profile built from 13 sequences from Rattus norvegicus,
and a thiol-oxidase Erv2p domain profile built from 6
sequences from Saccharomyces cerevisiae. The scanning
E-value ranges from 2 × 10− 8 to 1 × 10− 19, indicating
that the query sequence only has moderate similarity
with the annotated sequences in the database. A total
of 56 annotated pivotal sites in the 4 fiDPD profile
modules were then collected and sorted according to
their functional site scoring functions. When mapping
to the query sequence, 12 functional sites were then
automatically identified, resulting in a 92% prediction
precision and 57% recall. We also examined those func-
tional sites that fiDPD failed to identify and found that
they are located in a different C-terminal domain than
the four-helical up-and-down bundle domain.
To examine the PLI prediction, we first collected inter-

action scoring vectors associated with pivotal sites in the
four profile modules according Eq. (2) and then compared
with those directly determined from the protein-ligand
complex structure recorded in PDB entry 3TD7 (Table 1).
Figure 3 demonstrates key interactions predicted by
Eq. (2) and those not found by the prediction. fiDPD
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correctly predicted all the π-stacking interactions in-
volving Trp45, His49, Tyr114, and His117, indicating
that π-π interactions play a critically important role in
ligand binding. The prediction also found significant
π-stacking interactions on pivotal sites of Leu78 and
Lys123; however, these π-π interaction predictions
were ignored in posttreatment simply because of the
lack of aromatic side chains in these residues. fiDPD
also found the correct electrostatic interactions on
His117 and Lys123 sites. The algorithm identified a
large probability of electrostatic interactions on sites
Thr42 and Val126; however, these interactions were ig-
nored in posttreatment since the involved residues are
not chargeable in the conventional conditions. In total,
approximately 80% of the overall PLI predictions were
associated with identified functional sites.

CASP10 and CASP11 targets
We applied fiDPD to protein targets listed in CASP10
and CASP11, of which 13 targets had been solved with
explicit bound ligands [48]. Table 2 lists all the predic-
tions, of which fiDPD gave a no-hit for 3 target proteins.
For the remaining 10 predictions, fiDPD gave an overall
precision of 64% and an overall recall of 46% using a
scale selection with T of 45% and M of 35%. The

Fig. 3 Mapping the protein-ligand interactions predicted for the mimivirus sulfhydryl oxidase R596, target T0737, PDB code 3TD7. Dash lines
represent PLIs, they are colored as following: blue for electrostatic interactions, green for π-stacking interactions, gray for van der Waals
interactions, and red for interaction not found by fiDPD

Table 1 The prediction of protein-ligand interactions on PFSs of
T0737†

Target Site AA COV COO ELE HBD HBA π-π

T0737 41 G 0 0 0 0 0 0

42 T 0 0 +/0 T 0 0

45 W 0 0 0 T 0 T

49 H 0 0 0 0 + T

78 L 0 0 0 0 0 0

83 C 0 0 0 + T 0

114 Y 0 0 0 0 T T

117 H 0 0 T + – T

118 N 0 0 0 + T 0

120 V 0 0 0 0 0 0

121 N 0 0 0 0 + 0

123 K 0 0 T T + +/0

†AA stands for amino acid, COV for covalent bond, COO for coordinate bond,
ELE for electrostatic interaction, HBD for H-bond donor, HBA for H-bond
acceptor, π-π for π-stacking interactions. “0” indicates the corresponding
interaction is not present in protein-ligand complex structure and fiDPD
calculation also showed no such type PLIs on the site
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averaged MCC of the predictions was 0.49. Considering
the ligand-binding types, we found that fiDPD provided
better functional site predictions for metal binding sites
with an average MCC value of 0.68, while it was 0.38 for
nonmetal binding site prediction, indicating that PFSs
are more conservative with respect to either spatial ar-
rangement or sequence location in metal binding.
We compared the performance of fiDPD with the re-

cently published ligand-binding site prediction methods
LIBRA [74] (Table 3) and COACH [75, 76] (Table 4).
LIBRA aligns the structures of input proteins with a col-
lection of known functional sites and gives an averaged

MCC of 0.57 for the studied target proteins. Six LIBRA
predictions were based on the known sites of the PDB
structures of the target proteins themselves and contrib-
uted a higher average MCC value of 0.80. For COACH,
whose prediction is sequence based, the average MCC
was 0.58, of which 2 predictions were based on the
known sites of the target PDB structures. We observed
that, except for T0675 and T0697, COACH had already
used the target PDB structures as templates in building
structures from input target protein sequences. Taken
together, COACH performed best, while fiDPD’s per-
formance (the present version of the database fiDPD

Table 2 Ligand-binding sites predictions of CASP10/11 targets proteins†

Target PDB Ligand Type Sites* Prediction TP Precision Recall MCC

T0652 4HG0 AMP Non-metal 11 17 6 0.35 0.55 0.41

T0657 2LUL ZN Metal 5 9 4 0.44 0.8 0.58

T0659 4ESN ZN Metal 3 No-hit

T0675 2LV2 ZN Metal 8 9 8 0.89 1 0.94

T0686 4HQL MG Metal 5 6 3 0.5 0.6 0.54

T0696 4RT5 NA Metal 6 3 1 0.33 0.17 0.21

T0697 4RIT TRS Non-metal 6 11 0 0 0 0

T0706 4RCK MG Metal 5 3 3 1 0.6 0.77

T0720 4IC1 MN/SF4 Metal 14 No-hit

T0721 4FK1 FAD Non-metal 29 3 3 1 0.1 0.31

T0726 4FGM ZN Metal 7 No-hit

T0737 3TD7 FAD Non-metal 21 13 12 0.92 0.57 0.71

T0744 2YMV FNR Non-metal 19 4 4 1 0.21 0.45

† Target 762 to 854 were taken from CASP11 whose protein-ligand interactions were well characterized in the crystal structures
*“Sites” is the number of ligand-binding sites recorded in PDB files of the target protein

Table 3 Prediction performance of LIBRA*

Target PDB Length Sites LIBRA Rank-1 LIBRA Rank-2

Prediction TP Model MCC Prediction TP Model MCC

T0652 4HG0 292 11 7 1 N 0.08 8 7 N 0.74

T0657 2LUL 154 5 4 4 Y 0.89 4 0 N 0

T0659 4ESN 72 3 3 3 Y 1 3 0 N 0

T0675 2LV2 74 8 4 4 Y 0.69 4 4 N 0.69

T0686 4HQL 242 5 3 3 Y 0.77 3 3 Y 0.77

T0696 4RT5 111 6 7 0 N 0 5 0 N 0

T0697 4RIT 483 6 14 0 N 0 5 0 N 0

T0706 4RCK 217 5 3 0 N 0 8 1 N 0.14

T0720 4IC1 202 8 4 4 Y 0.7 5 0 N 0

T0721 4FK1 301 29 24 23 N 0.86 23 2 N 0.01

T0726 4FGM 589 7 6 6 N 0.92 10 0 N 0

T0737 3TD7 292 21 10 10 N 0.67 6 0 N 0

T0744 2YMV 329 19 12 12 Y 0.78 2 2 Y 0.64

*LIBRA prediction was based on the input of the PDBs of the target proteins. “Sites” is the number of ligand-binding sites recorded in PDB files of the target
protein. “Y” in “Model” indicates that the prediction was made based on binding pockets in the PDB of the target protein as the template. “N” when the PDB of
the target protein was not used in prediction
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does not contain target proteins except for T0675) was
comparable with that of LIBRA, especially when known
sites of the target PDB structures were not used.
One of the key aspects of fiDPD predictions lies in the

identification of physicochemical interactions between
predicted binding sites and ligands. We examined the
performance of the fiDPD prediction of PLIs in these
target proteins by determining the overlap between the

predicted PLIs and those calculated based on solved
protein-ligand complex structures. Table 5 compared the
predicted PLIs on functional sites with the experimental
PLIs. In most cases, fiDPD can correctly identify 80% or
more of the PLIs on functional sites.

Conclusions
In this paper, we present a new functional site- and
physicochemical interaction-annotated domain profile
database (fiDPD), from which we developed a sequence-
based method for predicting both PFSs and PLIs. Our
method is based on the assumption that proteins that share
similar structure and sequence tend to have similar func-
tional sites located on the same positions on a protein’s sur-
face. A profile module entry in fiDPD is representative of a
bunch of annotated domain structures that share high se-
quence and structure similarity. The fiDPD method first
identifies profile modules in the database and then, as a
prediction, maps the annotated pivotal sites and associated
interactions of the module(s) to the residues of the query
protein.
In a previous study, we examined the fDPD method

with a collection of catalytic sites from a standard dataset
of the 140-enzyme CATRES-FAM [68] and found that the
method provided an enzyme active-site prediction of 59%
recall at a precision of 18.3%. For ligand-binding site pre-
diction of target proteins in CASP9, the method obtained
an averaged MCC of 0.56, ranking between 8th and 10th
of the 33 participating groups [72]. In this study, fiDPD
gives new prediction for physicochemical interactions
associated with the predicted PFSs. Here, fiDPD was
applied to predict the functional sites of 10 target

Table 4 Prediction performance of COACH*

Target PDB Length Sites COACH Rank-1 COACH Rank-2

Prediction TP Model MCC Prediction TP Model MCC

T0652 4HG0 292 11 12 2 N 0.14 19 2 N 0.09

T0657 2LUL 154 5 7 0 N 0 5 5 Y 1

T0659 4ESN 72 3 3 3 N 1 8 0 N 0

T0675 2LV2 74 8 4 3 N 0.49 4 4 N 0.69

T0686 4HQL 242 5 4 3 N 0.66 13 0 N 0

T0696 4RT5 111 6 5 4 N 0.72 3 1 N 0.2

T0697 4RIT 483 6 12 0 N 0 5 0 N 0

T0706 4RCK 217 5 3 3 N 0.77 5 4 N 0.79

T0720 4IC1 202 8 5 4 Y 0.62 8 4 Y 0.48

T0721 4FK1 301 29 32 24 N 0.76 19 2 N 0.01

T0726 4FGM 589 7 10 6 N 0.71 10 3 N 0.35

T0737 3TD7 292 21 21 15 N 0.69 6 1 Y 0.05

T0744 2YMV 329 19 19 18 Y 0.94 7 4 N 0.32

*COACH built structures from the sequences of target proteins except for T0675 and T0697 by directly using the PDBs of the corresponding target proteins
themselves. “Sites” is the number of ligand-binding sites recorded in PDB files of the target protein. “Y” in “Model” indicates that the prediction was made based
on binding pockets in the PDB of the target protein as the template. “N” when the PDB of the target protein was not used in prediction

Table 5 PLI predictions of CASP10/11 targets proteins†

Target Interactions Correct Prediction Recall

T0652 60 36 60%

T0657 24 23 95.80%

T0675 30 28 93.30%

T0686 18 17 94.40%

T0696 18 15 83.30%

T0697 104 72 69.20%

T0706 24 21 87.50%

T0720 78 58 74.40%

T0721 60 50 83.30%

T0737 72 63 87.50%

T0744 42 37 88.10%

T0762 42 35 83.30%

T0764 60 52 86.70%

T0770 18 14 77.80%

T0784 18 18 100%

T0854 24 20 83.30%

† Target 762 to 854 were taken from CASP11 whose protein-ligand
interactions were well characterized in the crystal structures
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proteins in CASP10 and CASP11 that have been solved
in a ligand-bound state and achieved an averaged MCC
of 0.66. When compared with the solved 3D complex
structures, we found that the predicted PLIs correctly
overlapped 80% of the true PLIs. Our calculations indi-
cate that the PLIs are well-conserved biochemical prop-
erties during protein evolution and that it is possible to
assign accurate PLIs to predicted PFSs using an anno-
tated database. fiDPD demonstrates that atomic physi-
cochemical interactions between proteins and ligands
can be reliably identified from protein sequences.
fiDPD is improvable. First, new annotations could be

assigned to fiDPD to add new types of predictions. For
example, adding annotations of enzyme catalytic sites
(CSA), ligand-specific models, such as zinc-binding
sites or RNA-binding sites, should endow fiDPD with
the corresponding capability to predict catalytic sites,
zinc-binding sites or RNA-binding sites. Annotations of
fiDPD modules using other resources, such as dynamic
simulations, FDPA calculations [32], pocket druggability
[77], drug-target interactions (DTIs), drug modes of action
[78], etc., should provide new content for fiDPD predic-
tions that involve the protein dynamics and drug activity
in PLIs. Second, considering that the classification of
binding sites plays a key role in drug discovery and design,
it would be interesting to use the clustering sites [79, 80]
instead of the intact SITE information to annotate the
database, which might make the prediction more useful.
As a knowledge-based method, the utility and efficiency of
fiDPD prediction suffers from the sampling limitation of
annotations of known proteins. This sampling problem
might be partially solved with large-scale protein sequen-
cing efforts and worldwide structural genomics projects.
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