De Beukelaer et al. BMIC Bioinformatics (2018) 19:203
https://doi.org/10.1186/s12859-018-2209-z

BMC Bioinformatics

RESEARCH ARTICLE Open Access
@ CrossMark

Core Hunter 3: flexible core subset
selection

Herman De Beukelaer'” ®, Guy F Davenport? and Veerle Fack!

Abstract

Background: Core collections provide genebank curators and plant breeders a way to reduce size of their
collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have
been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions,
based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses

allelic richness.

3 is freely available on http://www.corehunter.org.

local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and

Results: In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing
distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2
(CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to
those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high
average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to
find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality
of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to
simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with
those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was
specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either
are more representative or have higher allelic richness, than those obtained by Siméli.

Conclusions: In version 3, Core Hunter has been updated to include two new core subset selection metrics that
construct cores for representativeness or diversity, with improved performance. It combines and outperforms the
strengths of other methods, as it (simultaneously) optimizes a variety of metrics. In addition, CH3 is an improvement
over CH2, with the option to use genetic marker data or phenotypic traits, or both, and improved speed. Core Hunter

Keywords: Core collections, Multi-objective, Local search heuristics

Background

Genebanks were established by national or international
breeding, or conservation programs with the goal to safe-
guard genetic diversity for future use. Many breeding pro-
grams have established genebanks as a resource for new
variation in the crops they breed, allowing them to react
to changing environments and emerging biotic and abiotic
stresses. Accessions are often divided between active (or

*Correspondence: herman.debeukelaer@ugent.be

'Department of Applied Mathematics, Computer Science and Statistics, Ghent
University, Krijgslaan 281 S9, 9000 Gent, Belgium

Full list of author information is available at the end of the article

working) and base collections. Examples of active collec-
tions include seed stores or live plants that can be accessed
quickly by plant breeders and researchers through germi-
nation or clonal propagation. In contrast, accessions in
base collections are held in long-term storage, such as
cryopreservation, and require some time for regeneration
and propagation before being made available.

During the last few decades the collections stored in
genebanks have grown enormously, and cost of main-
taining viable germplasm within genebanks has increased.
Genebank curators must make decisions about which
accessions to maintain in the active collection versus the
base collection, and may even consider not maintaining

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2209-z&domain=pdf
http://orcid.org/0000-0002-3968-7386
http://www.corehunter.org
mailto: herman.debeukelaer@ugent.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

De Beukelaer et al. BMIC Bioinformatics (2018) 19:203

an accession at all. The concept of a core collection was
introduced to help with these decisions, and is defined as
subset of the complete collection which most represents
the diversity of the entire collection with minimum redun-
dancy [1]. Genebank curators can use core collections to
define the active collection over the base collection. Core
collections can also be used to aid researchers and plant
breeders in the choice of starting material. For example,
the potential for use of core collections has been shown
for association studies [2, 3].

A variety of measures have been used to evaluate core
collections based on genetic marker data or phenotypic
traits, including pairwise distances and allelic richness.
The choice of the most appropriate evaluation measure
depends on the purpose of the core collection [4]. Some-
times core collections are sampled based on a combi-
nation of both genotypes and phenotypes [5-7]. Many
methods have been proposed to sample high quality core
collections according to the measure(s) of interest. The
first methods were stratified sampling techniques that
cluster the accessions, based on distance matrices calcu-
lated from their allele scores or phenotypic trait values,
and then select several accessions from each cluster using
a certain allocation method. Brown suggested to randomly
select either a constant (C) number of accessions per clus-
ter, or a number proportional (P) to the size or logarithm
(L) of the size of the cluster, and argued that the L-method
is preferred [8]. It was later shown that more diverse cores
are obtained when the number of included accessions is
proportional to the within-cluster diversity [9].

Another allocation method, the M-method, maximizes
the probability to retain all observed alleles in order to
construct cores with high allelic richness [10]. This idea
led to the development of the MSTRAT software, which
implements a generalized M-method that directly sam-
ples from the entire collection to maximize allelic richness
with a simple hill-climbing algorithm [11]. Other heuris-
tics work by repeatedly removing one of the two most
similar accessions from the collection until the desired
core size is obtained, either randomly (least distance
stepwise sampling [12]), or using a specific elimination
criterion maximizing the distance to the remaining acces-
sions or expected heterozygosity of the reduced collection
(SimEli) [13]. The genetic distance optimization strategy
(GDOpt) was designed to construct highly representative
cores, in which each accession from the entire collection
is represented by a similar core entry [14]. GDOpt par-
titions the data around a number of identified medoids,
which are then selected as the core entries. Methods
for variable size core sampling have also been devel-
oped. PowerCore minimizes the size of the core, while
covering all observed marker alleles and/or trait values
[15]. GenoCore was developed for the same purpose,
and specifically tailored to high-density marker datasets

Page 2 of 12

[16]. The genetic distance sampling strategy constructs
cores with a given minimum distance between selected
accessions by repeatedly including a random acces-
sion and removing all others within a certain sampling
radius [17].

Core Hunter was designed to meet the variety of crite-
ria used to evaluate core collections for different purposes,
and supports optimization of several of these metrics,
using flexible local search algorithms [18]. Core Hunter
can construct core collections for specific applications,
and combines multiple objectives to bring the different
perspectives closer together, for example by simultane-
ously maximizing genetic dissimilarity and allelic rich-
ness. Although Core Hunter is mainly focused at fixed size
core subset selection, version 1 and 2 allowed to spec-
ify a minimum and maximum size and preferred smaller
cores with the same value. Core Hunter was shown to
outperform stratified sampling strategies, MSTRAT and
PowerCore.

It has been assumed that, to obtain a diverse core, the
average distance between its entries should be maximized
[9, 18]. However, a high entry-to-entry distance does not
guarantee that selected accessions are sufficiently differ-
ent, and it is known that maximizing this criterion over-
represents extreme values [4, 19]. Core Hunter 2 (CH2)
deals with this issue by also maximizing the minimum
distance between selected accessions [19]. Although aver-
age distance and allelic richness can be effectively opti-
mized using simple and fast local search algorithms, such
as a stochastic hill-climber, a more complex and slower
mixed replica search (MixRep) was required to maximize
minimum distance in the Core Hunter framework. The
MixRep algorithm runs multiple types of stochastic local
searches in parallel, as well as a constructive algorithm
(LR) that starts from an empty selection that is itera-
tively extended. In case an active search is unable to find
any further improvements, it is terminated and replaced
with a new local search engine starting from a selection
that is obtained by combining two previously found high-
quality selections, in an attempt to further explore other
interesting regions of the search space, as in a genetic
algorithm [20].

Another approach to maximize diversity, while at the
same time avoiding inclusion of too similar accessions at
the extremes of the collection, is to maximize the average
distance between each entry and the closest other entry
in the core, as proposed by Odong et al. [4]. The SimEli
algorithm was shown to outperform Core Hunter 2 in
terms of this new entry-to-nearest-entry (E-NE) metric.
Alternatively, one may desire to optimally represent the
individual accessions, instead of the whole range of diver-
sity. In such case, Odong et al. reccomend to minimize the
average distance between each accession in the full collec-
tion and the most similar accession contained in the core.

De Beukelaer et al. BVIC Bioinformatics (2018) 19:203

The GDOpt strategy was specifically developed to mini-
mize this accession-to-nearest-entry (A-NE) metric, and
shown to outperform both Core Hunter 2 and SimEli for
this purpose [13, 14].

We introduce Core Hunter 3 (CH3), which incorporates
the two improved methods for summarizing distances,
entry-to-nearest-entry (E-NE) and accession-to-nearest-
entry (A-NE), proposed by Odong et al. [4]. CH3 attempts
to find the maximum entry-to-nearest-entry distance to
obtain diverse cores, whereas accession-to-nearest-entry
distance is minimized to represent as much as possible
all accessions from the entire collection. More specifi-
cally, CH3 can sample fixed size cores based on molecular
marker data, phenotypic traits, a precomputed distance
matrix, or a combination of these. The distance matrix
can be generated using an appropriate measure, such as
Modified Roger’s distance for genotypes [21] or Gower’s
distance for phenotypes [22]. As in previous versions,
Core Hunter 3 can also maximize allelic richness, as well
as a combination of multiple metrics. In particular, we
assess whether the new distance-based E-NE and A-NE
metrics can be effectively optimized using fast local search
algorithms, and whether maximizing E-NE indirectly also
yields a high minimum distance, without the need for
a more complex algorithm. Furthermore, we assess the
ability of Core Hunter 3 to simultaneously maximize E-
NE and A-NE, or E-NE and allelic richness, and com-
pare the results with those obtained with Core Hunter
2, GDOpt, and SimElj, for three marker datasets with
different allelic composition and varying size, and one
phenotypic trait dataset. Core Hunter 3 is available as an
R package corehunter on CRAN and as an open source
project on GitHub. A prototype graphical user interface
is also available. See http://www.corehunter.org for more
information.

Methods

Core selection problem

Given a collection A that contains n accessions, and a
desired core size 1 < k < n, the feasible solution space of
possible core subsets is defined as

Q={C|CCcAN|C|=k}

where |C| denotes the size of the subset. The core selection
problem then consists of finding an optimal subset C* €
that maximizes a certain evaluation measure F(C) : Q —
R, ie.

C* = argmax F(C).
CeQ

In case the evaluation measure F(C) is intended to be
minimized, this can be achieved by maximizing —F(C).

Page 3 0of 12

Evaluation measures
Core Hunter 3 includes various evaluation measures that
can be selected as optimization objectives, including but
not limited to those described below. We refer to the
website http://www.corehunter.org for an overview of all
provided measures.

Distance measures

We used the Modified Roger’s distance [18, 21] to assess
the dissimilarity of accessions based on genetic marker
data. For phenotypic traits we used Gower’s distance [22]
which simultaneously takes into account qualitative and
quantitative traits. Pairwise distances are aggregated as
follows to evaluate the diversity or representativeness of
the core [4]:

e Entry-to-nearest-entry (E-NE): the average distance
between each selected accession and the closest other
core entry. This criterion can be maximized to
construct highly diverse cores in which all accessions
are maximally different.

e Accession-to-nearest-entry (A-NE): the mean
distance between each accession from the entire
collection and the most similar core entry, including
itself in case the accession has been selected.
Minimizing this criterion yields cores that maximally
represent all individual accessions.

When comparing CH3 with CH2 we also evaluated the
minimum distance (DMIN) between selected accessions,
but this is not an objective that can be directly opti-
mized by CH3, for reasons explained in the discussion.
A detailed description and comparison of the E-NE and
A-NE metrics are provided in [4].

Allelic richness

To evaluate the allelic richness of cores sampled based
on genetic marker data, we used the average expected
heterozygosity (HE) per locus [18, 23], calculated as

L

n
0§HE=22(1—XI:[9,24)51
a=1

=1

where L is the number of markers (loci), #; is the number
of observed alleles at the /th locus, and falza is the fre-
quency of the ath allele at the /th locus in the selected core
collection.

Weighted index and normalization
As in previous versions, Core Hunter can simultaneously
optimize k measures by maximizing a weighted index

k
F(c) =) aiFi(0)
i=1

http://www.corehunter.org
http://www.corehunter.org

De Beukelaer et al. BMIC Bioinformatics (2018) 19:203

where F; is the ith included evaluation measure and 0 <
a; < 1 is the weight assigned to this objective, with

f;l o; = 1. In case of a measure F; that is to be
minimized, such as A-NE, it is transformed into a max-
imization objective F; = —F; when it is included in the
weighted index. The individual measures are automati-
cally normalized to [0, 1], following the Pareto minimum
based upper-lower-bound approach as described in [24],
to ensure a fair balance between the included objectives,
independent of their original range. More information
about this normalization is provided in the documenta-
tion of the R package.

Core sampling algorithms

We evaluate the performance of three general purpose
selection heuristics to optimize the chosen evaluation
measure or weighted index for a fixed core size: ran-
dom descent, parallel tempering, and a genetic algorithm.
Based on the findings in this study, only the former two
were included in Core Hunter 3, which defaults to the par-
allel tempering algorithm, but also provides a fast mode
in which the random descent algorithm is applied. Note
that these two stochastic local search algorithms were
also available in CH2, although they were not used by
default. The search algorithms are executed until either an
absolute runtime limit has been exceeded, or no further
improvements were obtained during a certain amount
of time.

Random descent

This basic local search outlined in Algorithm 1 starts with
arandom selection of the desired size and then iteratively
tries to improve its quality by slightly modifying the core.
The obtained similar selection, referred to as a neighbour
of the current selection, is accepted if and only if it has
a higher objective function value according to the cho-
sen evaluation measure. Otherwise, another move is tried
from the current selection. Core Hunter uses a single-
swap neighbourhood, i.e. considers all neighbours that can
be obtained from the current selection by replacing one
selected accession with a currently unselected accession.

Parallel tempering

Algorithm 2 describes the more advanced parallel tem-
pering method [18], also referred to as replica exchange
Monte Carlo (REMC), which consists of multiple coop-
erating local searches that are executed in parallel. Each
search performs the same procedure as random descent,
but may also accept inferior modifications to be able to
escape from local optima, i.e. to further improve the cur-
rent selection even if none of the considered neighbours
has a better score. For this purpose, the search repli-
cates are assigned fixed, increasing temperatures, equally
spread in a given range. A higher temperature leads to a

Page 4 of 12

Algorithm 1 Random descent.

Input: collection A, core size (k), evaluation measure
F(C), neighbourhood N(C) : @ — P(Q) with Q =
{CICCANIC| =k}

Output: best found core C* € Q

1: C < random element of Q

2: repeat

3 pick random neighbour C’ € N(C)
& ifF(C) > F(C) then

5: C«C

6 end if

7: until stop condition satisfied

8: return C

higher probability to accept inferior modifications, simi-
lar to the frequently used simulated annealing algorithm
[25]. The acceptance function is commonly defined as

1 ifA>0
P& D) = {eA/t else

where A = F(C)) — F(C;) and t is the temperature of
the replica. This acceptance function ensures that neigh-
bours with a better score are always accepted, whereas
inferior neighbours are accepted at a probability that
exponentially decreases as the solution gets poorer or as
the temperature is decreased. In addition, searches with
similar temperature periodically exchange their current
selection, which has the effect to push the most promis-
ing solutions towards the coolest searches to promote
convergence towards a common solution, and the worst
solutions towards the hottest searches allowing them to
escape from local optima. The probability that replica r
and r + 1 will swap their current selection is commonly
defined as

1 ifA>0

q(Ap b try1) = (L_ 1)
e\tr fr41 else

with A, = F (Cy4+1) — F(C;). As such, if the current selec-
tion of replica r 4+ 1 has a better objective function value
than that of the rth replica, these are always swapped. In
addition, similar to the probabilistic acceptance of infe-
rior neighbours, swaps that push solutions in the opposite
direction may also be performed—yet with a probability
that decreases for a larger difference in objective func-
tion value and replica temperature. The parallel tempering
algorithm implemented in Core Hunter 3 consists of p =
10 searches with a temperature range of [10_8, 10_4], and
uses the same single-swap neighbourhood as the random
descent method described above. The number of replica
steps per iteration is fixed to ¢ = 500, and the default
acceptance and swap functions are applied.

De Beukelaer et al. BVIC Bioinformatics (2018) 19:203

Algorithm 2 Parallel tempering.

Input: collection A, core size (k), evaluation measure
F(C), neighbourhood N(C) Q — P(Q) with
Q = {C|C c AAIC| =k}, number of replicas (p),
temperature range [£, bnax], acceptance function
p(A,t), swap function g(A, £1, £2), number of replica
steps per iteration (g)

Output: best found core C* € Q

1: forifrom1topdo
2 Li <= Umin + %(tmax — bwmin)
3 C; < random element of
4: end for
5: Cpest < argmax; _;_,F(Cy)
6: 8 <0
7: repeat
8 for i from 1 to p (in parallel) do
9 repeat g times
10: pick random neighbour C; € N(C;)
11: compute A; < F(C}) — F(C;)
12: with probability p(A;, t;): set C; < C;
13: if F(C;) > F(Cpes;) then
14 Chest < Ci
15: end if
16: end repeat
17: end for
18: r<s+1
19: while r < p do
20: compute A, < F(Cry1) — F(C,)
21: with probability g(Ay, ¢, t41): swap C, and
Cr+1
22: r<r+2
23: end while
24: s<«<1—s

25: until stop condition satisfied
26: return Cpeg

Genetic algorithm

To assess the potential improvement of a global opti-
mization engine over a local search we also applied the
genetic algorithm [20] outlined in Algorithm 3. Here,
a population of initially randomly generated solutions
(cores) is maintained. In every step, new child solutions
are produced by combining two randomly chosen par-
ent solutions (crossover), followed by one or more swaps
of accessions (mutation) between the unselected and the
selected subset. These children are added to the pop-
ulation, and certain solutions are discarded to simulate
survival of the fittest individuals in natural evolution. For
our experiments we used a population size of p = 25 and
generated ¢ = 5 children in each step (in parallel). We
applied the following operators:

Page 5 of 12

Selection (SELECT).We randomly picked five candidates
from the current population, from which the one
with the highest objective function value was chosen
as a parent (tournament selection).

Crossover (CROSS). A child was created from two par-
ents by repeatedly adding an arbitrary accession that
is selected in either parent solution (at random with
equal probability) until the desired core size was
obtained.

Mutation (MUTATE). As mutation operator we applied
the random descent heuristic described above, start-
ing from the given solution, until no improvement
was found in the last 5000 steps.

Survival (SURVIVE). We applied a roulette selection to
discard five solutions in each step, so that the pop-
ulation size remained fixed over all generations. A
solution C was assigned a weight of 1/F(C) meaning
that the probability that it is discarded is inversely
proportional to its fitness.

Algorithm 3 Genetic algorithm.

Input: collection A, core size (k), evaluation measure
F(C), population size (p), number of children per gen-
eration (c), selection operator SELECT : ¥ — Q
with @ = {C | C C A A |C| = k}, crossover operator
CROSS : Q2 — Q, mutation operator MUTATE : Q —
Q, survival operator SURVIVE : QPT¢ — QP

Output: best found core C* € Q

1: pop <
2: for i from 1 to p do
3: add random element of 2 to pop
4: end for
5: Chest < argmaxCePupF(C)
6: repeat
7: children < ¢
8: for i from 1 to ¢ (in parallel) do
9: P1 < SELECT (pop)
10: Py < SELECT (pop)
11: C < MUTATE(CROSS(P1, P2))
12: add C to children
13: end for
14 for C € children do
15; add C to pop
16: if F(C) > F(Cpes) then
17: Chest < C
18: end if
19: end for

20: pop < SURVIVE(pop)
21: until stop condition satisfied
22: return Cp,g

De Beukelaer et al. BMIC Bioinformatics (2018) 19:203

Comparison with GDOpt and SimEli

For the GDOpt selection strategy [14], we used the
k-medoids algorithm of Kaufman and Rousseuw [26]
through the R function pam, to identify a representative
core collection. The number of clusters was chosen equal
to the desired core size and the returned medoids were
selected as core accessions. We also implemented SimEli
in R, considering both elimination criteria suggested in
[13]. In each step, one of the two most similar acces-
sions was eliminated, maximizing either the average dis-
tance to the remaining accessions (SimEli-A-RA) or the
expected heterozygosity of the reduced collection (SimEli-
HE), until the desired core size was obtained. The source
code for these implementations is available on GitHub
(corehunter/corehunter3-paper).

Datasets

We used four datasets of varying size and composition
to compare the performance of different core sampling
algorithms:

1 Rice data: 1000 accessions for which 39 phenotypic
traits were recorded, including 28 qualitative and 11
quantitative traits. Available from the PowerCore
project [15] and previously used to assess the
performance of several other core sampling
algorithms, including SimEli [13].

2 Coconut data: 1014 accessions characterized using
30 crop-specific SSR markers. Used in multiple
previous core selection studies [4, 13, 14].

3 Maize data: 1250 accessions characterized with 1117
SNP markers. Distributed as part of the R package
synbreedData [27].

4 Pea data: 4428 accessions characterized by 17 RBIP
markers [28, 29]. Previously used to compare the
performance of Core Hunter 2 with other core
sampling algorithms for large datasets [19].

All cores sampled in the performed experiments com-
prised 20% of the entire collection for the rice, coconut
and maize datasets, and 10% for the large pea dataset.

Implementation and hardware

Core Hunter 3 has been reimplemented in Java 8, using the
JAMES framework (v1.2) for discrete optimization with
local search metaheuristics [30] and was executed from

Page 6 of 12

R through the package corehunter (https://cran.r-project.
org/package=corehunter). GDOpt, SimEli, and all compu-
tational experiments were implemented in R v3.3.1 [31].
Note that the R function pam used in GDOpt calls a C
function which performs the actual partitioning. Exper-
iments were executed on a computing server with two
10-core Intel E5-2660v3 (2.6 GHz) CPUs and 128 GB
RAM.

Results

Optimizing E-NE and A-NE with local searches

We sampled 10 cores from each dataset using random
descent, parallel tempering, and the described genetic
algorithm, configured to maximize E-NE with a runtime
limit of 30 min. Table 1 shows mean values and standard
deviations of the obtained cores. The results indicate that
parallel tempering yields the highest E-NE values, with
the lowest variability across independent samples. Vari-
ability in solution quality is always at least one order of
magnitude below that observed for random descent and
the genetic algorithm. Still, variability is already quite low
when using the basic random descent heuristic. Although
the genetic algorithm also outperforms random descent,
it is not as effective as parallel tempering. We performed
a pairwise comparison of the results obtained with the
three applied methods, for the four considered datasets,
using a Wilcoxon rank-sum test [32]. The twelve result-
ing p-values were adjusted for multiple testing to control
the family-wise error rate (FWER) using Holm’s method
[33]. All differences were statistically significant at the « =
0.05 confidence level, with adjusted p-values ranging from
0.00013 to 0.00049. Figure 1 displays convergence curves
of the three applied algorithms, again averaged over 10
runs, for the large pea dataset. These plots confirm that
all algorithms are able to iteratively improve an arbitrarily
bad random selection to reach a high E-NE value. Again
we see that parallel tempering yields the highest-quality
cores (left). Moreover, this algorithm is almost as fast as
the basic random descent heuristic (right). Both meth-
ods very quickly improve the initial random selection, and
after less than 10 s, parallel tempering found a better solu-
tion than random descent, after which it keeps improving
the quality of the core. In contrast, the genetic algorithm
takes a slower start, catches up with random descent after
20s, and then also further improves the selection—but not

Table 1 Comparison of random descent, parallel tempering, and a genetic algorithm, when maximizing the entry-to-nearest-entry
criterion (E-NE). Mean values and standard deviations are reported for 10 independently sampled core collections

Rice Coconut

Maize Pea

0.1500 & 1.83e-04
0.1508 &= 1.40e-15
0.1506 & 1.12e-04

Random descent
Parallel tempering

Genetic algorithm

0.5748 & 5.22e-04
0.5759 &+ 2.12e-06
0.5755 &+ 1.04e-04

04332 4 2.73e-04
04359 & 8.56e-05
04346 £ 3.45e-04

0.3337 4= 1.70e-03
0.3412 & 1.46e-04
0.3386 & 8.00e-04

https://github.com/corehunter/corehunter3-paper
https://cran.r-project.org/package=corehunter
https://cran.r-project.org/package=corehunter

De Beukelaer et al. BVIC Bioinformatics (2018) 19:203

Page 7 of 12

-- Genetic Algorithm
Parallel Tempering
—— Random Descent

Average entry-to-nearest-entry

0.05 010 0.15 020 025 030 0.35
I

Average entry-to-nearest-entry

-- Genetic Algorithm
Parallel Tempering
—— Random Descent

010 015 020 025 0.30
I

04
o 4
24
5 4

20 25 30

Time (min)

Fig. 1 Convergence curves for pea dataset. These curves show the E-NE value of the best found solution at each point in time during execution of
random descent, parallel tempering, and the genetic algorithm, averaged over 10 independent runs, for the large pea dataset. The left plot reports
the progress during the entire run with a runtime of 30 min while the right plot is zoomed in on the first 40 s

T T T T T
0 10 20 30 40

Time (sec)

as effectively as parallel tempering. We performed these
experiments only for the E-NE measure but assume that
our findings also hold for A-NE due to the very similar
composition of both criteria. All following CH3 results
were obtained with the parallel tempering algorithm.

Comparison with Core Hunter 2

To assess whether maximizing E-NE indirectly also yields
a high minimum distance (DMIN) between selected
accessions, we compared the results of CH3 and CH2.
We configured CH2 to maximize a weighted index includ-
ing both average and minimum pairwise distance, with
equal weight, and CH3 to maximize E-NE. Both algo-
rithms were terminated when no improvement was found
during the last 10 s. Table 2 reports average E-NE, DMIN,

Table 2 Comparison of Core Hunter 2 and 3

E-NE DMIN Time (s)
Coconut
CH2 0.552 £ 3.53e-2 0.501 £ 9.76e-2 276 +06.0
CH3 0.576 + 9.35e-5 0.540 £ 0.00e-0 37.5+£079
CHaL 0569 £ 591e-4 0.548 + 0.00e-0 31.0 £00.1
Maize
CH2 0416 £ 1.52e-2 0.396 £ 2.46e-2 783 £ 106
CH3 0.435 £ 2.70e-4 0409 +£ 3.05e-3 743 £ 26.5
CH2L 0429 £ 5.00e-4 0.415+ 1.11e-3 786 £ 02.0
Pea
CH2 0.219 £ 1.49e-3 0.000 = 0.00e-0 85.6 + 04.5
CH3 0.338 £ 1.04e-3 0.287 £ 1.34e-2 154.1 £49.7
CH2L 0325+821e4 0.297 -+ 0.00e-0 8023 £008

CH2 maximizes a weighted index including average and minimum pairwise
distance, with equal weight, while CH3 maximizes E-NE. Mean E-NE, DMIN, runtime
and corresponding standard deviations are reported for 10 independent
executions. The highest obtained E-NE and DMIN value per dataset is shown in

bold. CH3 was terminated when no improvements were found during 10 s. For CH2,
two alternatives were considered: (a) the same stop condition as for CH3 (CH2); and
(b) an absolute runtime limit that was empirically determined per dataset to ensure
that the LR replica of MixRep terminated in each run (CH2L)

and execution time for 10 independent samples, obtained
with both methods, and for each dataset except the rice
collection, because CH2 cannot sample cores based on
phenotypic traits. For all three datasets, CH3 yields higher
E-NE and DMIN than CH2. However, a detailed inspec-
tion of the output generated by CH2 (not shown) revealed
that the LR replica—one of the search replicas in the
MixRep algorithm used by CH2—did not always complete
before CH2 was terminated. This LR search is a con-
structive heuristic that starts with an empty selection and
iteratively adds the two best accessions, i.e. those yielding
the best possible score when added to the current selec-
tion. After each two additions, one accession is removed
from the selection, again chosen to optimize the score of
the remaining selection. This procedure is repeated until
the desired core size has been reached. The LR replica
was specifically included in CH2 to construct cores with
high minimum distance [19]. Therefore, we repeated the
CH2 experiments with an absolute runtime limit that was
empirically determined per dataset to ensure that the LR
replica terminated in each run (CH2L). Especially for the
large pea dataset, significantly more time was needed in
this configuration. Table 2 shows that CH2L is indeed
able to construct cores with a much higher minimum dis-
tance than CH2, and also outperforms CH3 in terms of
this measure. Although differences in minimum distance
obtained with CH2L and CH3 are not larger than 4%,
they are statistically significant for the coconut and maize
datasets (p = 0.000097), but not for the pea dataset (p =
0.3064). Moreover, CH3 still yields significantly higher-
quality core collections in terms of the E-NE criterion
(p = 0.000097), and is faster for large datasets.

Comparison with GDOpt and SimEli

We approximated the Pareto front obtained by Core
Hunter 3 when simultaneously optimizing E-NE, and
either A-NE or HE, with varying weights o7 €[0,1] and
ay = 1 — oy, respectively, and compared the results with
those obtained by GDOpt and SimEli. Note that A-NE is

De Beukelaer et al. BMIC Bioinformatics (2018) 19:203

minimized, while E-NE and HE are maximized. As before,
CH3 was terminated when no improvement was found
during 10 s. Figure 2 shows that GDOpt and CH3 are able
to construct representative cores with low A-NE, which is
not the case for SimEli. In fact, all cores sampled by SimEli
have a worse A-NE value than those obtained by GDOpt
and CH3, even when the latter is configured to maximize
E-NE only. On the other hand, SimEli scores much bet-
ter than GDOpt in terms of diversity (high E-NE). Still,
Core Hunter 3 is able to find cores which simultaneously
have a higher diversity and are more representative than
those obtained with SimEli. For the maize dataset, SimEli-
A-RA and SimEli-HE found cores of similar quality, while
for the coconut and pea dataset SimEli-A-RA showed to
be preferred in terms of both E-NE and A-NE. For the rice
dataset, SimEli-HE was not included because expected
heterozygosity can only be evaluated for genotypic data.
Figure 3 shows that GDOpt yields cores with significantly
lower HE than any of the other methods. SimEli performs
better in this respect, especially SimEli-HE, but as before

Page 8 of 12

Core Hunter 3 is able to simultaneously improve over
SimEli in terms of both objectives (E-NE and HE value).

Average execution times of GDOpt, SimEli and CH3
(configured to optimize E-NE, A-NE or HE) are reported
in Table 3. Core Hunter 3 was slower than GDOpt and
SimEli for the rice and coconut datasets. For the maize
dataset CH3 was faster than GDOpt and SimEli-HE when
maximizing HE or E-NE but slower when minimizing A-
NE and always slower than SimEli-A-RA. Finally, for the
pea dataset, CH3 was faster than both GDOpt and SimEli.
Core Hunter 3 was also consistently faster when maximiz-
ing HE as compared to the configurations where E-NE or
A-NE were optimized.

Discussion

Depending on the purpose of a core collection, a vari-
ety of metrics is used to evaluate its quality. Distance-
based measures are attractive because they are intuitive
to understand and can capture both diversity within the
core as well as representativeness of the accessions from

Dataset: rice
[Te]
N~
=
e SimEIi-A-RA
N *
@ 7o) K3
Bz © ,
S .
w T .
= «
Yol
s B :
g o .
g -
< .
g | +* CoreHunter 3
S GDOpt . *
LSRR IR i g
T T T T T
0.11 0.12 0.13 0.14 0.15
Average E-NE distance
Dataset: maize
SimEli-HE
& simEli-A-RA ¥
Q
o
o _
o
=
3 3 ’
1%} —
s 8
w *
= . ¢
< 3
] 0 .
% R‘ N .
§ o *
< | x4
’0
B o
N GDOpt RS *"" Core Hunter 3
=] *- B
T T T T T
0.39 0.40 0.41 0.42 0.43
Average E-NE distance

Average A-NE distance

Average A-NE distance

Dataset: coconut

8 SimEli-HE X
© SmEI-A-RA §
g | ¢
[} &
*
<
&
o *
*
%‘. — Core Hunter 3
o
o *
&
S | GDOpt
* :0“ **
T T T T T T T T
0.44 046 048 050 0.52 0.54 0.56 0.58
Average E-NE distance
Dataset: pea
w0
- imEli X
S SimEli-HE
+
SimEli-A-RA
= e
<} 5
.
.
*
0 .
o *
[}
Ed
9’
+* Gore Hunter 3
GDOpt . . P g ore Hunter
8 I, eee®
o T T T T T
0.10 0.15 0.20 0.25 0.30

Average E-NE distance

Fig. 2 Simultaneous optimization of entry-to-nearest-entry (E-NE) and accession-to-nearest-entry (A-NE) distance. These Pareto front
approximations for Core Hunter 3 were obtained by sampling cores with varying weights a €[0, 1] and ap = 1 — a7 assigned to the E-NE and A-NE
measures, respectively, with a step size of 0.05. The quality of the cores constructed by CH3 is compared with those obtained by GDOpt and Siméli,
in terms of both objective functions. All reported values are averages of 10 independently sampled cores with the same settings

De Beukelaer et al. BVIC Bioinformatics (2018) 19:203

Page 9 of 12

Dataset: coconut

Dataset: maize

Dataset:

pea

-

0.77
I

*aa,

Core Hunter 3
.

0.46
1

.o

LRSI

Hunter 3
+., Core Hunter

0
.
o
+

0.75
I

.
kY
SimEli-HE X ¢
+

0.73
I

SimEli-A-RA

Expected heterozygosity
Expected heterozygosity

0.71

GDOpt
*

*
T T T

GDOpt

N

*.., CoreHunter3 .

- s
0

0.44
1

.

SimEli-HE X
+
SImEI-A-RA

0.42
L
soe? .

0.40
I

SIMEN-HE .
SimEli-A-RA .
B

Expected heterozygosity

0.38
L

GDOpt
*

T T T T T T T T
044 046 048 050 052 054 0.56 0.58

Average E-NE distance

037 0.38 039 040 041 042 043

Average E-NE distance

Fig. 3 Simultaneous maximization of entry-to-nearest-entry distance (E-NE) and expected heterozygosity (HE). These Pareto front approximations
for Core Hunter 3 were obtained by sampling cores with varying weights &1 €[0, 11and oy = 1 — 1 assigned to the E-NE and HE measures,
respectively, with a step size of 0.05. The quality of the cores constructed by CH3 is compared with those obtained by GDOpt and SimEli, in terms of
both objective functions. All reported values are averages of 10 independently sampled cores with the same settings. The rice dataset is excluded
here because expected heterozygosity can only be evaluated for genotypic data

T T T T T T T T T
0.10 0.15 0.20 0.25 0.30

Average E-NE distance

the full collection, computed from either genetic mark-
ers or phenotypes. However, pairwise distances need to be
aggregated in an appropriate way to evaluate the selected
core. Although many studies and methods have used aver-
age pairwise distance to assess the diversity in the core,
it is known that a high average does not guarantee that
all accessions in the core are sufficiently different from
each other [4, 19]. Maximizing this criterion tends to
overrepresent the extremes of the distribution in the full
collection.

Core Hunter 2 addressed this issue by maximizing min-
imum distance in addition to average distance, using
a complex mixed replica search (MixRep) consisting of
different cooperating strategies [19]. The original Core
Hunter software used a local search algorithm to optimize
the chosen evaluation measure, but such local searches
are not well suited to optimize minimum distance because
this measure is very sensitive to the precise selection. Sim-
ilar cores may have very different values, while at the same
time very different cores may have a similar or even the
same minimum distance. This makes it difficult for a local
search to find its way from a randomly generated selection
to a high-quality core. In particular, for a given current
solution, many possible modifications may not affect the

Table 3 Average execution times (seconds) of GDOpt, both
SimEli implementations and CH3 for 10 independent samples
from each dataset. Three configurations are considered for CH3:
(a) maximize E-NE; (b) minimize A-NE; and (c) maximize HE

Rice Coconut Maize Pea
GDOpt 14.9 7.1 91.2 350.1
SimEli-A-RA 76 75 115 514.7
SimEli-HE - 159 780 5023
CH3 E-NE 458 375 743 154.1
CH3 A-NE 74.6 557 1331 86.7
CH3 HE - 16.6 40.2 62.8

minimum distance, meaning that the search has no clue as
to whether these modifications may eventually lead to an
improved solution. To smooth out the objective function,
CH2 maximized a combination of average and minimum
distance. Also, the applied MixRep algorithm includes a
constructive LR heuristic (see “Results”), which is much
better suited to maintain a high minimum distance as it
iteratively adds accessions to an initially empty selection.
Unfortunately, the LR algorithm becomes slow for large
datasets, because it builds the core bottom-up, instead of
iteratively refining a randomly chosen initial selection.

Two new distance-based metrics, entry-to-nearest-
entry (E-NE) and accession-to-nearest-entry (A-NE),
introduced by [4], were shown to generate improved cores
for specific goals. The E-NE criterion takes all acces-
sions into account and can therefore presumably be more
effectively optimized with local searches as compared to
minimum distance, but still focuses on maintaining a high
distance between each pair of closest accessions which,
in contrast to average pairwise distance, avoids overrep-
resentation of extreme values. Therefore, in Core Hunter
3, the minimum distance measure was replaced with the
newly proposed E-NE criterion. The A-NE metric was
also included to sample cores that maximally represent all
individual accessions from the full collection.

We assessed whether the new E-NE metric can indeed
be effectively optimized with local search algorithms, in
an attempt to avoid the complexity of the MixRep algo-
rithm used by CH2, and in particular the slowness of the
LR replica. We showed that even a very basic stochastic
hill-climber (random descent) can already construct cores
with high E-NE value and quite little variability in qual-
ity across independent samples. Still, the value of the core
is further improved, and variability further reduced, when
using the more advanced parallel tempering algorithm.
Since parallel tempering takes advantage of modern multi-
core CPUs, the associated computational overhead is very
limited. In our experiments, even for the large pea dataset

De Beukelaer et al. BMIC Bioinformatics (2018) 19:203

with over 4000 accessions, parallel tempering was only
marginally slower than random descent. We also assessed
whether a genetic algorithm could further improve these
results. Such global optimization strategy iteratively com-
bines currently known high-quality solutions (crossover)
in an attempt to explore other interesting regions of the
solution space. The obtained solutions are then exploited
by applying local modifications (mutation). We used the
random descent heuristic as a mutation operator, since it
showed to be able to effectively improve the E-NE value
of a given selection. Although the genetic algorithm out-
performed random descent, it showed to be slower and
produced cores with slightly lower E-NE values as com-
pared to parallel tempering. These results indicate that the
intelligent exploitation of parallel tempering is more effec-
tive to optimize E-NE than the more global exploration
of the evaluated genetic algorithm. We thus conclude
that parallel tempering is preferred, and that more com-
plex algorithms are not needed to optimize E-NE, since
a basic stochastic hill-climber (random descent) already
yields high-quality cores and a global optimization engine
(genetic algorithm) did not provide any further advantage.
Moreover, parallel tempering does not yield a significant
computational overhead—it is almost as fast as random
descent. We assume that the same conclusion holds for
A-NE due to the very similar composition of both met-
rics. Therefore, Core Hunter 3 uses parallel tempering
by default, which is also known to effectively optimize
the other measures that were already included in CH2,
such as allelic richness [19]. A fast mode is also provided
in which the basic random descent algorithm is applied,
in case execution time is critical, but it was not used in
this study.

To validate the effectiveness of the new E-NE mea-
sure, we assessed whether maximizing E-NE indirectly
also yields a high minimum distance. A comparison with
Core Hunter 2, configured to sample cores with high aver-
age and minimum distance, revealed that this is indeed
the case. The minimum distance obtained with CH3 is
slightly lower as compared to CH2, but more importantly
CH3 yields higher E-NE values because it actively opti-
mizes this criterion. As the minimum distance captures
less information about the core than E-NE, we believe that
the latter criterion better reflects within-core diversity. As
expected, CH3 was faster than CH2 for large datasets,
due to the quadratic time complexity of the LR replica.
Because of its constructive nature, LR only produces use-
ful results if given enough time to complete. Therefore,
a potential additional issue of CH2 is that the user is
responsible to set an appropriate time limit that allows
the LR replica to complete, when aiming at a high min-
imum distance. It is not possible to affect the execution
time of the LR replica and therefore this method does
not provide a quality-runtime tradeoff to the user. Also,

Page 10 of 12

it may be confusing that there is a possibly large time gap
between the last improvement found by the other replicas
and that obtained when the LR replica has finished. In this
respect, CH3 is more user-friendly because it uses a well-
known local search algorithm that gradually improves the
E-NE value of the core. Large gaps between significant
improvements are not expected, which makes it easier to
determine an appropriate time limit and even more so to
use a convenient adaptive stop condition such as a maxi-
mum time without finding an improvement, in which case
the execution time is automatically adjusted—to some
extent—to the size of the collection.

One of the main advantages of Core Hunter 3 and pre-
vious versions is its flexibility. While other methods are
often developed for a specific purpose such as maximiz-
ing diversity, representativeness, or allelic richness, Core
Hunter is suited for each of these as it includes a variety of
evaluation measures that can directly be optimized, and if
desired combined in a weighted index. We compared CH3
with GDOpt, designed to maximize representativeness,
and SimEli, where the elimination criterion was chosen
either to maximize diversity (SimEli-A-RA) or expected
heterozygosity (SimEli-HE). Core Hunter was configured
to optimize a weighted index including E-NE and either A-
NE (Fig. 2) or HE (Fig. 3), with varying weights, in order to
approximate the corresponding Pareto front. The results
showed that, as expected, GDOpt is especially suited to
construct cores that optimally represent all accessions
from the entire collection (low A-NE), as it was specifically
developed for this purpose. On the other hand, in terms
of diversity (E-NE) and allelic richness (HE), SimEli scores
much better than GDOpt. From the two considered elim-
ination criteria, SImEli-HE resulted in the highest allelic
richness, while SimEli-A-RA showed to be most suited
to maximize diversity (E-NE). Again, this was expected
and confirms that the SimEli method can be adjusted to
some extent, by using an appropriate elimination criterion
depending on the purpose of the core collection. How-
ever, Core Hunter 3 found cores that simultaneously have
higher E-NE (more diverse), and lower A-NE (more rep-
resentative) or higher HE values (higher allelic richness),
than those obtained by SimEli. In addition, CH3 was able
to construct equally representative cores as GDOpt, and
thus combines and improves over the advantages of both
other methods.

A comparison of execution times showed that CH3
needs less time to optimize HE as compared to E-NE
and A-NE. This is not surprising, as it is known that
allelic richness can also be effectively maximized with a
basic stochastic hill-climber [19]. As we showed that the
more advanced parallel tempering algorithm is preferred
to optimize E-NE and A-NE, it is clearly more difficult to
find cores with high E-NE and low A-NE than to maxi-
mize allelic richness. In our experiments CH3 was slower

De Beukelaer et al. BVIC Bioinformatics (2018) 19:203

than GDOpt and SimEli for smaller datasets but faster for
the large pea dataset. Note that although these methods
were implemented in different programming languages,
which affects their absolute execution times, the latter
does not affect the observed trend in their execution times
when sampling from increasingly large collections. Here,
the main advantage of Core Hunter is again its flexibil-
ity. For example, the runtime of SimEli is determined
by the size of the dataset and the sampled core. When
sampling a small core from a large collection, many acces-
sions need to be eliminated, and finding the two most
similar accessions in each step as well as deciding which
one to eliminate requires many computations. In contrast,
the runtime of Core Hunter can be adjusted by using an
appropriate stop condition. It is possible to limit the total
runtime, but we used an adaptive condition that termi-
nated the search when no more improvement was found
during 10 s.

There is of course a tradeoff between execution time and
solution quality, and we may be able to further increase
the quality of the core collections sampled from any of our
datasets by allowing a longer runtime. For the large pea
dataset for example, we indeed see that allowing no more
than 10 s without finding further improvements (Table 2)
yields a slightly lower E-NE value as compared to a config-
uration with an absolute runtime limit of 30 min (Table 1).
Since each of the tested methods was able to sample cores
from collections with up to multiple thousands of acces-
sions in at most a few minutes, we do not expect that
the execution time of any of these algorithms will be lim-
iting for most practical applications. Still, Core Hunter
is the only one whose runtime can be controlled by the
user in various ways, which yields an interesting quality-
runtime tradeoff that can be used to either reduce the
execution time for large datasets when needed, or to more
thoroughly explore the solution space when more time
is available, neither of which is possible with the other
methods. Note that although we did not experiment with
genotypic datasets with tens or hundreds of thousands of
markers, these can easily be dealt with by precomputing a
distance matrix, if necessary, so that only the number of
accessions affects the performance of Core Hunter.

Variable size core sampling

Previous versions of Core Hunter also supported variable
size core sampling. We decided to remove this function-
ality from Core Hunter 3, and to focus on fixed size core
sampling for the provided evaluation measures, because
these measures are not generally applicable to compare
cores of different sizes. For example, reducing the core
size artificially increases dissimilarity between selected
accessions, while adding more accessions always yields a
more representative core. Also, while CH1 and CH2 pre-
ferred the smallest of two cores with the same objective

Page 11 of 12

function value, minimizing the core size may not always
be desired, depending on the purpose of the core. We
are therefore convinced that fixed and variable size core
sampling should be treated as separate problems, using
specific evaluation measures and optimization strategies.

Conclusions

We introduced Core Hunter 3 (CH3) and showed that
it constructs core collections with high diversity (high
entry-to-nearest-entry distance; E-NE) and which maxi-
mally represent the individual accessions from the entire
collection (low accession-to-nearest-entry distance; A-
NE) using flexible and fast local search algorithms. By
default, the parallel tempering algorithm is used. Version
3 improves over Core Hunter 2 (CH2) in multiple ways.
CH3 is able to find cores with higher E-NE, within less
time for large datasets, which also have a high minimum
distance, without the need for a more complex algorithm
like the mixed replica search from CH2. In addition, CH3
finds similar and often better cores than GDOpt and
SimEli, which were reported to outperform CH2 in terms
of E-NE and A-NE. In particular, CH3 can create equally
representative cores as GDOpt, which was designed for
this purpose, while at the same time being able to con-
struct cores that are simultaneously more diverse, and
either are more representative or have a higher allelic
richness, than cores obtained with SimEli. As in previ-
ous versions, one of the main strengths of Core Hunter is
its flexibility. The applied local search algorithms are not
confined to a specific evaluation measure and new criteria
can easily be introduced and optimized without the need
to alter the underlying algorithms. Moreover, multiple cri-
teria can be simultaneously optimized and the execution
time is controlled by the user through various stop condi-
tions, which offers a convenient quality-runtime tradeoff.
We therefore believe that Core Hunter is a very broadly
applicable core subset selection tool with a lot of opportu-
nities to be further extended. For example, we may explore
the ability of Core Hunter 3 to sample cores based on
a combination of genotypes and phenotypes, or extend
Core Hunter to properly incorporate variable size core
sampling such as a method to construct covering cores of
minimum size.

Abbreviations

A-NE: Average accession-to-nearest-entry distance; CH2: Core Hunter 2; CH3:
Core Hunter 3; DMIN: Minimum distance; E-NE: Average entry-to-nearest-entry
distance; GDOpt: Genetic distance optimization; HE: Expected heterozygosity;
MixRep: Mixed replica search; REMC: Replica exchange Monte Carlo search

Acknowledgements

We thank Nathan Sinnesael who performed preliminary experiments that
supported the development of Core Hunter 3. The computational resources
(Stevin Supercomputer Infrastructure) and services used in this work were
provided by the VSC (Flemish Supercomputer Center), funded by Ghent
University, the Hercules Foundation and the Flemish Government -
department EWI.

De Beukelaer et al. BMIC Bioinformatics (2018) 19:203

Funding
Herman De Beukelaer is supported by a Ph.D. grant from the Research
Foundation - Flanders (FWO).

Availability of data and materials

The raw rice, coconut and maize datasets are available from the cited
references [14, 15, 27] or on request. The raw pea dataset and computed
distance matrices are also available on request.

Authors’ contributions

HDB and GD implemented the Core Hunter 3 library in Java. HDB was
responsible for the R package while GD developed the graphical interface.
HDB performed all experiments, under the supervision of VF. HDB wrote the
initial manuscript with all authors contributing to the final version. All authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

! Department of Applied Mathematics, Computer Science and Statistics, Ghent
University, Krijgslaan 281 59, 9000 Gent, Belgium. 2New Zealand Institute for
Plant & Food Research Limited, 412 No1 Rd RD2, Te Puke, New Zealand.

Received: 12 October 2016 Accepted: 16 May 2018
Published online: 31 May 2018

References

1. Frankel O, et al. Genetic perspectives of germplasm conservation. Genetic
manipulation: impact on man and society. Cambridge: Cambridge
University Press; 1984. pp. 161-170.

2. ElBakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B.
Construction of core collections suitable for association mapping to
optimize use of mediterranean olive (olea europaea |.) genetic resources.
PLoS ONE. 2013;8(5):1-13. https://doi.org/10.1371/journal.pone.0061265.

3. Mufoz-Amatriain M, Cuesta-Marcos A, Endelman JB, Comadran J,
Bonman JM, Bockelman HE, Chao'S, Russell J, Waugh R, Hayes PM,
Muehlbauer GJ. The usda barley core collection: Genetic diversity,
population structure, and potential for genome-wide association studies.
PLoS ONE. 2014;9(4):1-13. https://doi.org/10.1371/journal.pone.0094688.

4. Odong T, Jansen J, Van Eeuwijk F, van Hintum TJ. Quality of core
collections for effective utilisation of genetic resources review, discussion
and interpretation. Theor Appl Genet. 2013;126(2):289-305.

5. Wang J-C, HuJ, Liu N-N, Xu H-M, Zhang S. Investigation of combining
plant genotypic values and molecular marker information for
constructing core subsets. J Integr Plant Biol. 2006;48(11):1371-8.

6. FrancoJ, CrossaJ, Desphande S. Hierarchical multiple-factor analysis for
classifying genotypes based on phenotypic and genetic data. Crop Sci.
2010;50(1):105-17.

7. Borrayo E, Machida-Hirano R, Takeya M, Kawase M, Watanabe K.
Principal components analysis-k-means transposon element based foxtail
millet core collection selection method. BMC Genet. 2016;17(1):1.

8. Brown A. Core collections: a practical approach to genetic resources
management. Genome. 1989;31(2):818-24.

9. FrancoJ, CrossaJ, Taba S, Shands H. A sampling strategy for conserving
genetic diversity when forming core subsets. Crop Sci. 2005;45(3):
1035-44.

10. Schoen D, Brown A. Conservation of allelic richness in wild crop relatives
is aided by assessment of genetic markers. Proc Natl Acad Sci.
1993;90(22):10623-7.

11. Gouesnard B, Bataillon T, Decoux G, Rozale C, Schoen D, David J.
MSTRAT: An algorithm for building germ plasm core collections by
maximizing allelic or phenotypic richness. J Hered. 2001;92(1):93-4.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

Page 12 of 12

Wang J, Hu J, XuH, Zhang S. A strategy on constructing core collections
by least distance stepwise sampling. Theor Appl Genet. 2007;115(1):1-8.
Krishnan RR, Sumathy R, Ramesh S, Bindroo B, Naik GV. SimEli: Similarity
elimination method for sampling distant entries in development of core
collections. Crop Sci. 2014;54(3):1070-8.

Odong T, van Heerwaarden J, Jansen J, van Hintum TJ, van Eeuwijk F.
Statistical techniques for defining reference sets of accessions and
microsatellite markers. Crop Sci. 2011;51(6):2401-11.

Kim K-W, Chung H-K, Cho G-T, Ma K-H, Chandrabalan D, Gwag J-G, Kim T-S,
Cho E-G, Park Y-J. PowerCore: a program applying the advanced m
strategy with a heuristic search for establishing core sets. Bioinformatics.
2007,23(16):2155-62.

Jeong S, Kim J-Y, Jeong S-C, Kang S-T, Moon J-K, Kim N. Genocore: A
simple and fast algorithm for core subset selection from large genotype
datasets. PLoS ONE. 2017;12(7):0181420.

Jansen J, Van Hintum T. Genetic distance sampling: a novel sampling
method for obtaining core collections using genetic distances with an
application to cultivated lettuce. Theor Appl Genet. 2007;114(3):421-8.
Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport
GF. Core Hunter: an algorithm for sampling genetic resources based on
multiple genetic measures. BMC Bioinformatics. 2009;10(1):1.

De Beukelaer H, Smykal P, Davenport GF, Fack V. Core Hunter II: fast core
subset selection based on multiple genetic diversity measures using
mixed replica search. BMC Bioinformatics. 2012;13(1):1.

Holland JH. Adaptation in Natural and Artificial Systems: an Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence.
Ann Arbor: U Michigan Press; 1975.

Wright S. Evolution and genetics of populations. vol IV. Chicago: The
University of Chicago Press; 1978. p. 91.

Gower JC. A general coefficient of similarity and some of its properties. J C
Gower Biometrics. 1971,27(4):857-71.

Berg EE, Hamrick J. Quantification of genetic diversity at allozyme loci.
Can JFor Res. 1997;27(3):415-24.

Marler RT, Arora JS. Function-transformation methods for multi-objective
optimization. Eng Optim. 2005;37(6):551-70.

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing.
Science. 1983;220(4598):671-80.

Kaufman L, Rousseeuw PJ. Chapter 2 Partitioning Around Medoids
(Program PAM) in Finding groups in data: an introduction to cluster
analysis. New York: Wiley; 1990. pp. 68-125.

Wimmer V, Albrecht T, Auinger H-J, Schoen C-C. synbreedData: Data for
the Synbreed Package. 2015. R package version 1.5. https://CRAN.R-
project.org/package=synbreedData.

Jing R, Vershinin A, Grzebyta J, Shaw P, Smykal P, Marshall D, Ambrose
MJ, Ellis TN, Flavell AJ. The genetic diversity and evolution of field pea
(pisum) studied by high throughput retrotransposon based insertion
polymorphism (rbip) marker analysis. BMC Evol Biol. 2010;10(1):1.

Smykal P., Kenicer G, Flavell AJ, Corander J, Kosterin O, Redden RJ, Ford
R, Coyne CJ, Maxted N, Ambrose MJ, et al. Phylogeny, phylogeography
and genetic diversity of the pisum genus. Plant Genet Resour. 2011;9(01):
4-18.

De Beukelaer H, Davenport GF, De Meyer G, Fack V. JAMES: An
object-oriented java framework for discrete optimization using local
search metaheuristics. Softw Pract Experience. 2017;47(6):921-38.

R Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing; 2016. R
Foundation for Statistical Computing. https://www.R-project.org/.
Hollander M, Wolfe DA, Chicken E. Nonparametric Statistical Methods.
Chichester: Wiley; 2013.

Holm S. A simple sequentially rejective multiple test procedure. Scand J
Stat. 1979;65-70.

https://doi.org/10.1371/journal.pone.0061265
https://doi.org/10.1371/journal.pone.0094688
https://CRAN.R-project.org/package=synbreedData
https://CRAN.R-project.org/package=synbreedData
https://www.R-project.org/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Core selection problem
	Evaluation measures
	Distance measures
	Allelic richness
	Weighted index and normalization

	Core sampling algorithms
	Random descent
	Parallel tempering
	Genetic algorithm

	Comparison with GDOpt and SimEli
	Datasets
	Implementation and hardware

	Results
	Optimizing E-NE and A-NE with local searches
	Comparison with Core Hunter 2
	Comparison with GDOpt and SimEli

	Discussion
	Variable size core sampling

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

