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Abstract

Background: Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To
discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods
incorporate interaction network as prior information. However, the prior information of mRNA expression patterns are
not exploited by these existing network-based methods, which is also proven to be highly informative of cancer
progressions.

Results: To incorporate prior information from both interaction network and mRNA expressions, we propose a
robust and sparse co-regularized nonnegative matrix factorization to discover driver genes from mutation data.
Furthermore, our framework also conducts Frobenius norm regularization to overcome overfitting issue. Sparsity-
inducing penalty is employed to obtain sparse scores in gene representations, of which the top scored genes are
selected as driver candidates. Evaluation experiments by known benchmarking genes indicate that the performance
of our method benefits from the two type of prior information. Our method also outperforms the existing
network-based methods, and detect some driver genes that are not predicted by the competing methods.

Conclusions: In summary, our proposed method can improve the performance of driver gene discovery by
effectively incorporating prior information from interaction network and mRNA expression patterns into a robust and
sparse co-regularized matrix factorization framework.
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Background
To accelerate diagnostics and therapeutics of cancers,
understand the causation of tumors is an urgent task [1].
Since cancer is a type of disease mainly caused by genomic
aberrations, one of the primary objective for studying
tumorigenesis is to discover mutated driver genes that
can confer a selective survival advantage for tumor cells
[1–3].With the state-of-the-art technique next generation
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sequencing (NGS), enormous volume of DNA sequenc-
ing data of cancer cell samples have been increasingly
accumulated [4–6]. Publicly available databases like The
Cancer Genome Atlas (TCGA) [7] and the International
Cancer Genome Consortium (ICGC) [8] have offered an
unprecedented opportunity for the researches on can-
cer genomics. Nevertheless, despite the large amount of
the somatic mutation data, there are many passenger
mutations that are irrelevant to cancer phenotype, which
greatly complicate the discovery of mutated driver genes
[1, 9–11]. To discover mutated driver genes from spo-
radic passengermutations, a straightforward way is to find
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highly mutated genes. Many previous methods use statis-
tical test to compare the mutation rates of the tested genes
with their background mutation rates, and select genes
significantly highly mutated among the cancer samples [9,
12–15]. Moreover, MutSigCV [9] and CHASM [16] fur-
ther predict cancer drivers based on multiple signals of
positive selection and the functional impact.
Recently, a number of driver genes have been reported

to be mutated with relatively low frequencies, and using
only the mutated frequencies of genes may ignore some
potential driver genes [3, 17, 18]. To detect driver genes
with relatively low frequencies, many recently proposed
methods are based on a prevalent assumption that
mutated genes can perturb their interacted genes [17–22].
By incorporating interaction network of the genes as prior
information, these methods detect mutated driver genes
in the interacted network neighbors [23–26]. For exam-
ple, HotNet and its revised version HotNet2 regard the
mutated frequencies of genes as “heat” scores of the net-
work nodes [17, 18]. By propagating the “heat” through
the network, they can find not only highly mutated genes
but also genes with relatively low mutated frequencies
but important in network context. Another method called
ReMIC identifies mutated driver genes through diffusion
kernel of the network on mutational recurrences of the
tested genes [19]. In addition to network propagation,
MUFFINN investigates the mutational impact of genes
by only their network neighbors, and considers either
the highest mutated frequencies or the summation of all
frequencies of the direct neighbors [21]. These network-
based methods have pinpointed many novel mutated
driver genes, which greatly expands the boundary of our
understanding of driver events [3, 18, 21].
However, the existing methods aforementioned have

not incorporated information from mRNA expression
data, which are also widely available [27–32]. Accord-
ing to previous studies, mRNA expression data of tumor
samples are capable of predicting clinical outcome of can-
cer patients [28–30] and survival-associated biomarkers
[27, 31]. The altered mRNA expression profiles are also
expected to reflect the molecular basis of the cancer
patients, and the profiles are used as signatures for strat-
ifying cancer patients with different survivals [33]. In
addition to somatic mutations and interaction network,
existing methods such as DriverNet [34] and Dawn-
Rank [35] also use mRNA expression information in
driver gene detection task. Another method OncoIM-
PACT [36] further requires copy number alternations
as its input variables. Instead of the direct usage of
mRNA expressions aforementioned, the underlying sim-
ilarities between cancer cell samples can also be compu-
tationally measured through mRNA expressions [37–40].
Notably, the expression based similarities are proven to be
quite informative in several cancer related bioinformatics

tasks such as drug-target interaction prediction [38], drug
response prediction [40] and survival prediction [39].
Consequently, taking into consideration both expression
pattern similarities between tumor samples and the inter-
action network information, the performance of discover-
ing driver genes from mutation data could be potentially
improved.
In this study, by incorporating somatic mutations, inter-

action network and mRNA expressions of genes, we
introduce a novel and efficient method for predicting
mutated driver genes. Motivated by a previous study [40],
we model the similarities between tumor cells through
their mRNA expression profiles into similarities between
samples. The expression similarities of samples and gene
interaction network are incorporated into an integrated
framework based on graph co-regularized nonnegative
matrix factorization (NMF) [41]. Furthermore, we also
introduce Frobenius norm penalty to prevent overfit-
ting issue [42], and sparsity-inducing penalty to obtain
sparse representations of the mutated genes [43, 44].
When evaluated through two lists of known benchmark-
ing driver genes [45, 46], our proposed method shows
better detection results than the NMF methods with only
gene interaction network, with only expression similari-
ties of samples and with no prior information. We further
compare our proposed method with existing network-
based approaches for detecting driver genes, and find that
our method yields the best performances among these
competing approaches. Furthermore, the gene-set enrich-
ment analysis [47] is also applied to determine whether
members of a known driver gene set tend to occur toward
the top of the genes detected by a method. By Fisher’s
exact test, the gene-set enrichment results show that the
genes detected by our methods are substantially more sig-
nificant than those of the other competing approaches.
Moreover, when we apply functional enrichment analysis
on the detected genes, we find that most of the enriched
pathways are related to cancer progressions. In addition,
we also conduct literature survey and find some novel
driver gene candidates from the results of our model.

Methods
Somatic mutation data and prior information
In this study, we use the somatic mutation data of three
cancers from TCGA datasets [7], including glioblastoma
multiforme (GBM) [48], colon and rectal cancer (COAD-
READ) [49] and breast cancer (BRCA) [50]. The reason
why we select these three particular cancer types is that
the numbers of known benchmarking genes of these three
cancer types are relatively large for performance evalua-
tion. To evaluate whether our model is generalizable for
other cancer types as well, we further apply our model on
the datasets of three other cancer types, kidney renal clear
cell carcinoma (KIRC) [51], papillary thyroid carcinoma
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(THCA) [52] and prostate adenocarcinoma (PRAD) [53].
We download these datasets from a well-curated database
cBioPortal [54]. The mutations of the cancer cell samples
are then organized as a binary matrix (the entries of the
matrix can be either one or zero), denoted as Xn×p (when
there are n samples and p genes for the input matrix)
[19, 32, 55]. If the j-th gene of the i-th sample has a somatic
mutation, then (i, j)-th entry of the matrix Xn×p is set to
one. The entry being zero represents no mutation found
in the gene of the sample.
We also use mRNA expressions of genes as prior infor-

mation. The data of mRNA expressions of the cancer
samples aforementioned are also fromTCGAdatasets and
downloaded from cBioPortal [54]. The gene expression
data are normalized by median normalization by cBio-
Portal [54]. Since both somatic mutation data and mRNA
expression data are used in this study, we use the can-
cer samples which have both mutation and expression
data from TCGA datasets (82 samples for GBM, 207 sam-
ples for COADREAD, 503 samples for BRCA, 49 samples
for KIRC, 390 samples for THCA and 333 samples for
PRAD). By following previous work [40], we measure the
similarities between cancer cell samples based on their
gene expression patterns and form the sample similarity
matrix Wi,j = exp

{
− ∣∣1 − ρi,j

∣∣2 /
(
2σ 2)}, where ρi,j is the

gene expression correlation between cancer samples. The
parameter σ is bandwidth to control the extent of similar-
ities fall off with the correlations, which is set to 1.0 in this
study. When ρi,j is close to 0, Wi,j is also relatively small,
giving only a weak contribution to the model. On the con-
trary, when the correlation ρi,j is close to 1, the similarity
Wi,j is close to 1, too.
For the prior information of the gene interaction

network, we use a highly curated interaction network
iRefIndex [23].We denote the adjacencymatrix of the net-
work as A, of which the (i, j)-th entry being 1 represents
the i-th gene and the j-th gene interact with each other.
Since the interaction network is an undirected graph, the
adjacency matrix A is a symmetric matrix. The degree
matrix DA of the network is a diagonal matrix whose
diagonal entries are the summation of the related rows
(or columns) of matrix A, i.e., Di,i = ∑

j Ai,j. The Lapla-
cian matrix of the network is defined as LA = DA −
A. For the sample similarity matrix W mentioned in
the previous paragraph, we also calculate the Laplacian
matrix LW = DW − W as same way as matrix LA.
Then, we use the symmetric normalization on the Lapla-
cian matrix to obtain normalized Laplacian matrix LÂ =
D−1/2
A LAD−1/2

A = I − D−1/2
A AD−1/2

A , where the opera-
tion (·)−1/2 on a diagonal matrix is to replace the diagonal
entries with the square root of them.We denote thematrix
Â = D−1/2

A AD−1/2
A as the normalized adjacency matrix

of A. In this situation, the normalized degree matrix DÂ

is reduced to the identity matrix. The LW matrix is not
applied to the normalization process.

Co-regularized NMF
The low-dimensional representations of different genes
can be extracted by nonnegative matrix factorization
(NMF) framework [41, 56, 57] from the somatic muta-
tion matrix X. In NMF, the sample gene matrix X can be
decomposed into the matrix production of two low-rank
nonnegative matricesU and V . The reconstruction resid-
ual of matrix X is minimized in NMF, which is used to
preserve the information of the input data:

min
U∈Cu,V∈Cv

L(X,UVT), (1)

where Cu and Cv are nonnegative constraint, which
require the entries of the matrix to be nonnegative, and L
is the loss function between the input data and the recon-
structed data. U = [u∗,1, . . . ,u∗,K ]= [u1,∗, . . . ,un,∗]T ∈
Rn×K is the sample representation matrix, where K is the
predefined dimension number of the latent representa-
tions. For ∀k ∈ {1, . . . ,K}, the k-th vector u∗,k indicates
the assignment weights of the cancer cell sample to the
k-th latent dimension. The i-th ui,∗ indicates the low-
dimensional representations of the i-th cancer cell sample.
V = [v∗,1, . . . , v∗,K ]= [v1,∗, . . . , vp,∗]T ∈ Rp×K is the gene
representation matrix, with the k-th vector v∗,k repre-
senting the weights of the tested genes in the k-th latent
dimension. Each vj,∗ denotes the representations of the
tested genes in the latent dimension. NMF framework is
also equivalent to maximizing the empirical likelihood of
the input data [57].
For the biological interpretation of the low-dimensional

representation of the samples, since the somatic mutation
X =[x1,∗, . . . , xi,∗, . . . , xn,∗]T is composed of n vectors, we
denote the i-th row vector xi,∗ as the raw mutation pro-
file of the i-th samples. The k-th vector v∗,k in matrix V
can be regarded as the k-th latent mutation profile. Con-
sequently, the loss function in Eq. (1) can be rewritten as
L

(
xi,∗,

∑
k ui,kv∗,k

)
, i.e. minimizing the residuals between

the raw mutation profile of the sample and the weighted
sum reconstructed profile. Therefore, the raw mutation
profile is approximated by the weighted sum of the latent
mutation profiles, and the entries of low-dimensional rep-
resentation of the samples are the proportions of the latent
mutation profiles to combine the raw mutation profile.
Since the genes can be influenced by their interacted

neighbors in the network, the preservation of the affinity
in gene representations is an effective way for incorpo-
rating the prior information of the interaction network.
Based on the local invariance assumption [41, 58, 59], if
two genes interact with each other, then the distance of
their representations vi,∗ and vj,∗ should also be small.
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The closeness between the low-dimensional representa-
tions of each pair of interacted genes can be measured by
the graph regularization below [41, 60]

RLV (V ) =
p∑

i=1

p∑
j=1

�
(
vi,∗, vj,∗

)
Âi,j. (2)

Due to the similarity of expression patterns between
the cancer cell samples, we also incorporate the sample-
wise similarities into the low-dimensional representations
of samples. Similar to the representations of genes, if
two cancer cell samples are similar in their expression
patterns, then their low-dimensional representations ui,∗
and uj,∗ should also be close. To achieve the closeness
between the representations. we introduce the following
graph regularization

RLU(U) =
n∑

i=1

n∑
j=1

�(ui,∗,uj,∗)Wi,j. (3)

The two terms of graph regularization in both Eqs. (2)
and (3) are referred as graph co-regularization, due to
the fact that they simultaneously preserve the affinity on
samples and genes. They are used to incorporate prior
information of both cancer sample similarity and gene
interaction network into the latent factors.
When we combine together the NMF low-dimensional

representation and the closeness between the sam-
ples/genes, we yield the objective function of co-
regularized NMF (CRNMF) [41] as shown below

min
U∈Cu,V∈Cv

L
(
X,UVT

)
+ λLURLU(U) + λLVRLV (V ) (4)

where λLU and λLV are the graph regularization param-
eters for samples and genes respectively. There are three
reasons to integrate the two learning objectives into
one optimization framework seamlessly. First, the com-
mon latent low-dimensional representations are extracted
from somatic mutation data through NMF [41]. Second,
the prior information of gene interaction network and
tumor sample similarity are incorporated in the repre-
sentations through graph co-regularization. Third, graph
co-regularization andmatrix factorization can be simulta-
neously performed to learn the representations preserving
both the information of the original data and geomet-
ric structure of affinity, where the learned representa-
tions can approximately recover the original data through
matrixmultiplication, and the distance between the repre-
sentations of two similar samples or two interacted genes
are also close to each other.

Robust and sparse CRNMF
In this subsection, we introduce our proposed method
robust and sparse CRNMF, of which the schematic dia-
gram is illustrated in Fig. 1. Different from CRNMF, our

method also considers two important aspects on the low-
dimensional representations of both samples and genes.
One aspect is the overfitting issue [42]. To adequately
exploit the input data and achieve a more generaliza-
tion model, we need to prevent some extreme values in
the samples representations, which may cause that the
reconstruction of input data are contributed by only a
small number of samples rather than all samples [42].
Another aspect is that most genes are not related to can-
cer progressions and only a few genes are driver genes
[1, 9, 10]. Consequently, the values of gene representa-
tions are required to be sparse. In other word, for each
latent dimension, the representation value of only a small
proportion of the genes are expected to be larger than
zero [43, 44].
We introduce two regularization terms to quantitatively

measure the two aspects. First, the overfitting problem
of sample representations can be measured by whether
they are some extreme values, denoted as RO(U) = f (U).
Here f (·) represent a nonlinear transformation, which can
amplify larger input values and attenuate small input val-
ues [42]. This property makes the regularization term
intolerant for very large values, and minimizing this term
can prevent the sample representations from extreme
values. Second, the sparseness of the values in gene rep-
resentation can be obtained by sparsity-inducing penalty
term RS(V ) = ∑K

k=1 g(v∗,k) [43, 44]. When the function
g(·) is sensitive to small values, it can penalize the small
values in the gene representation and lead to sparseness
[61]. When g(·) is a convex function, the optimization
procedure can be facilitated by the convexity property
[43, 44, 61]. We rewrite the objective function of robust
and sparse CRNMF as below, where the parameters λRV
and λRV are the tuning parameters for robust regulariza-
tion on matrixU and sparse regularization V respectively

min
U∈Cu,V∈Cv

L
(
X,UVT

)
+ λLURLU(U) + λRURO

(
f (U)

)

+ λLVRLV (V ) + λRVRS(V ).
(5)

The aforementioned framework is a general formula-
tion, where various loss functions L, �, f and g can be
chosen from different options. Their options used in this
study are as follows: Loss function L used in matrix fac-
torization is the summation of squares loss, L(X, X̂) =∥∥∥X − X̂

∥∥∥
2

F
. Loss function � is the Euclidian distance, i.e.,

�(x, x̂) = ∥∥x − x̂
∥∥2
2. In this case, the graph regularization

terms can be reformed as

RLU(U) =
n∑

i=1

n∑
j=1

(
uTi,∗uj,∗

)
(LW )i,j = Tr

{
UTLWU

}

RLV (V ) =
p∑

i=1

p∑
j=1

(
vTi,∗vj,∗

) (
LÂ

)
i,j = Tr

{
VTLÂV

} (6)
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Fig. 1 Schematic diagram of the proposed method. For discovering driver genes from somatic mutation data, we propose a robust and sparse
co-regularized NMF framework by incorporating prior information of both mRNA expression patterns and interaction network. The input data
contain three parts: 1) the binary somatic mutation matrix of cancer samples and genes, 2) the mRNA expression matrix of cancer samples and
genes, and 3) the interaction network of genes. The mRNA expression patterns are used to calculate the sample similarities between tumor samples,
which is used as the intermediate variable. We then use NMF co-regularized by the sample similarity and gene interaction network to incorporate
their prior information. Robust regularization are employed to prevent overfitting issue for the representation of samples, and sparsity-inducing
penalty is also used to generate sparse representation of genes. The tested genes are scored through the maximal values in their low-dimensional
representations, and the top scored genes are selected as driver candidates

For the robust regularization, we choose squared Frobe-
nius norm [42] as the nonlinear transformation. The
squared Frobenius norm is equivalent to the summation
of the square of the entries, i.e., ‖U‖2F = ∑

i
∑

j
(
Ui,j

)2,
which satisfies the property of intolerance for very large
values. For the sparsity-inducing penalty term, we use
the squared L1-norm as the function for the input vec-
tor g(v∗,k) = ∥∥v∗,k

∥∥2
1 =

(∑
j |vj,k|

)2
, since the L1-norm is

convex function and is also one of the most widely used
sparsity-inducing loss in previous studies [43, 44]. Using
the settings above, the framework in Eq. (5) is formed as

min
U≤0,V≤0

∥∥∥X − X̂
∥∥∥
2

F
+ λLUTr{UTLWU} + λRU ‖U‖2F

+ λLVTr{VTLÂV } + λRV

K∑
k=1

∥∥v∗,k
∥∥2
1 .

(7)

The objective function in Eq. (7) can be solved by an
alternating optimization procedure, as shown below,

Ui,j ← Ui,j
(XV + λLUWU)i,j(

UVTV + λLUDWU + λRUU
)
i,j

(8)

Vi,j ← Vi,j

(
XTU + λLV ÂV

)
i,j(

VUTU + λLVDÂV + λRVEp×pV
)
i,j

(9)

where Ep×p is a p by p matrix with all entries being 1.
In this study, the dimension number of the latent repre-
sentations K is set to 4 and the tuning parameters λLU ,
λRU , λLV and λRV are set to 1.0 as suggested by a pre-
vious study [32], which also uses NMF framework and
graph regularization on somatic mutation data of can-
cers. For the source code of the method in GitHub, we
have also offered the options for users to set the param-
eters separately for their own applications. Furthermore,
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we evaluate the performance of the model when the num-
ber of dimensions increases, as shown in Additional file 1:
Figures S1. The evaluation show that the performance of
our model varies slightly among these numbers of dimen-
sions, indicating that our model are not sensitive to the
number of dimensions.
Through the usage of updating rules of U and V in

Eqs. (8) and (9) sequentially, the objective function in
Eq. (7) can be decreased until convergence. Finally, to
discover driver genes, we use the maximum values in
the low-dimensional representation of each tested gene
as its mutation score, and prioritize the tested genes by
their mutation scores. Rather than using the average value
across the dimensions as the score of each gene, we use
the maximum coefficient across the dimensions, which
can reflect the mutation score of each gene in a subset of
samples and is more effective for heterogeneous cancers.

Results
Evaluation metrics
In this study, we use two lists of well-curated bench-
marking driver genes to evaluate the performance of
our approach in the discovery of driver genes. The
first benchmarking gene list used for evaluation is the
537 known driver genes curated by Cancer Gene Cen-
sus (CGC) which are experimentally supported [45].
The cancer types related to these genes are also pro-
vided by CGC database. The second benchmarking gene
list is from another independent database of cancer
drivers called Integrative Onco Genomics (IntOGen)
[46]. By regarding the benchmarking genes from the
two independent lists as ground truths, we can com-
prehensively evaluate the performance of driver gene
discovery.
To quantitatively assess the performance, we intro-

duce evaluation metrics precision = TP/TP+FP, recall =
TP/TP+FN. Due to the fact that known driver genes
are much less than the other genes in the discovery of
driver genes, in the evaluation, precision is more sen-
sitive to false positive than recall. By draw precisions
against recalls over different cutoff ranks, we can obtain
precision recall curves of the discovery results, where a
higher curve denotes a better performance [62, 63]. For
a precision recall curve, the area under the curve (AUC)
is also larger when the discovery performance is better,
which can also be used for assessment. Since only the
top scored candidates might be validated by experimen-
tal follow-up [21], the top 200 genes are selected as the
driver gene candidates, as suggested in a previous study
[22]. To assess whether the numbers of benchmarking
genes in top scored candidates are significantly differ-
ent from random selections, we also employ the Fisher’s
exact test on the top scored genes of the discovered
results.

Comparison analysis of prior information
To assess the contribution of prior information used in
our proposed approach, we firstly compare our method to
the NMFmethods with only one of the two kinds of infor-
mation and with no prior information. When we set the
tuning parameter λLU and λRU in Eq. (7) to zero, we can
obtain NMFwith only network information. Similarity, we
can yield NMFwith only information from expression pat-
tern similarity by setting the tuning parameter λLV and
λRV in Eq. (7) to zero. In the situation that both the four
tuning parameters are set to zero, the framework in Eq. (7)
is reduced to original NMF with no prior information. In
brief, we denote our proposed method, NMF with only
network information, NMF with only expression pattern
information and NMF with no prior information as “Pro-
posed”, “Only network”, “Only expression” and “No prior”
respectively in the following paragraphs.
Through the precision recall curves of the NMF based

methods with different prior information in Fig. 2a–c, we
can observe that our proposed model outperforms the
other NMF methods with at least one of the two types of
information removed. When applied on GBM dataset and
evaluated by CGC gene list, our proposed method achieve
a AUC of 28.7%, compared with 13.7% of “Only net-
work”, 17.3% of “Only expression” and 7.0% of “No prior”
(Fig. 2d). The AUCs of our method on COADREAD and
BRCA are 17.8 and 18.3% (Fig. 2e–f), which are also higher
than those of the other three methods in the same situa-
tions. Furthermore, we display the precision recall curves
based on IntOGen list (Additional file 1: Figure S2(a)-(c)),
we can obtain same conclusion that the proposed method
yields higher performance than those of “Only network”,
“Only expression” and “No prior” on GBM, COADREAD
and BRCA data. For example, the AUCs of our method on
GBM, COADREAD and BRCA are 11.4%, 9.8% and 13.5%
respectively (Additional file 1: Figure S2(d)-(f )), and their
values are also larger than those of “Only network”, “Only
expression” and “No prior”. To clearly evaluate whether
the improvement is from the prior knowledge, we further
demonstrate the results of our methods when the param-
eters for sparseness (or robustness) are fixed and the
parameters for prior knowledge varies, i.e., the case where
λRU is fixed and λLU varies (Additional file 1: Figures S3)
and the case where λRV is fixed and λLV varies (Additional
file 1: Figures S4). We can observe that the performance
of our methods also increase when the tuning parameters
for prior knowledge increase inmost situations, indicating
that the improvement is from the prior knowledge.

Comparison with existing methods
In this subsection, we compare our method with five pre-
vious publishedmethods, DriverNet [34], DawnRank [35],
HotNet2 [18], ReMIC [19] and MUFFINN [21]. In the
comparison, DawnRank, DriverNet and HotNet2 are set
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of our proposed method (“Proposed”: red), NMF with information of mRNA expression pattern similarity (“Only expression”: orange), NMF with only
network information (“Only network”: yellow), and NMF with no prior information (“No prior”: dark red), for datatsets of (a) GBM, (b) COADREAD and
(c) BRCA. The AUCs of precision recall curves of “Proposed”, “Only expression”, “Only network” and “No prior”, displayed as bar plot, for datatsets of
(d) GBM, (e) COADREAD and (f) BRCA

with their default parameters [18, 34, 35]. For ReMIC, we
follow the previous work and set the diffusion strength β

to three values 0.01, 0.02 and 0.03 [19]. Both of the two dif-
ferent versions ofMUFFINN are used in this study, known
as MUFFINN(DNmax) and MUFFINN(DNsum) [21]. For
all the five existing network-based methods, we also use
iRefIndex as prior information from network as is used in
our method [23].
The precision recall curves of the competing methods

are illustrated in Fig. 3a–c for CGC evaluation and
Additional file 1: Figure S5(a)-(c) for IntOGen eval-
uation. Since most of the validated benchmarking
genes are curated based on high mutation frequencies
[1, 45, 46], the performance calculated by mutation
frequencies can be regarded as baseline performance,
and our model achieves higher performance against
the baseline performance. Compared with these exist-
ing network-based methods, the discovery results of our
proposed method are largely elevated, for the evaluation
of CGC benchmarking lists. Taking GBM as an exam-
ple, the AUC of DawnRank, DriverNet, HotNet2, ReMIC
(β = 0.01), ReMIC (β = 0.02), ReMIC (β = 0.03),
MUFFINN(DNmax) and MUFFINN(DNsum) are 23.7%,
24.1%, 7.8%, 5.0%, 4.4%, 3.9%, 0.2% and 0.5% respectively,
when evaluated by CGC list (Fig. 3d). In comparison, our
proposed method achieves a AUC of 28.7% evaluated by

CGC, which is larger than the values of the results of
the existing methods. For IntOGen evaluation, the AUCs
for GBM achieved by DawnRank, DriverNet, HotNet2,
ReMIC (β = 0.01), ReMIC (β = 0.02), ReMIC (β =
0.03), MUFFINN(DNmax) and MUFFINN(DNsum) are
10.4%, 8.3%, 3.8%, 3.2%, 3.2%, 2.9%, 0.7% and 0.8% respec-
tively, while the AUC of our method is 11.4% (Additional
file 1: Figure S5(d)). For COADREAD and BRCA data, the
AUCs of our method are also comparable or larger than
the AUCs of the competing approaches, when evaluated
by both CGC (Fig. 3e–f) and IntOGen lists (Additional
file 1: Figure S5(e)-(f )). In addition, we also demonstrate
the results of the comparison methods on the three other
cancer types KIRC, THCA and PRAD. The results show
that our model also performs comparable or better than
the comparison methods when applied on the datasets
of the three other cancer types (Additional file 1: Figures
S6-S7).
Furthermore, we also investigate the top scored driver

candidates discovered by the competing methods. By
applying the gene-set enrichment analysis [47], we test
whether the top scored genes of our methods are signifi-
cantly different from random selections of the genes in the
two benchmarking lists, when the threshold are 50, 100,
150 and 200 (Table 1). For example, for the top 200 genes,
when we employ the significant test on the results for
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COADREAD data, the enrichment p-values of HotNet2,
ReMIC(β = 0.01), ReMIC(β = 0.02), ReMIC(β = 0.03)
on COADREAD data are 5.46e-02, 3.06e-05, 4.97e-04 and
4.97e-04 respectively. In comparison, the p-values of our
method is 3.35e-16. When we investigate the p-values of
the top scored genes of these methods for IntOGen, the
enrichment p-values of our method for top 200 genes
is 1.30e-18, which is also smaller than the p-values of
the other competing methods. For GBM and BRCA data,
we can observe similar phenomenon that the discovery
results of our proposed method are significantly enriched
for benchmarking gene lists of both CGC and IntOGen
(Additional file 1: Table S1-S2).
We also demonstrate Venn diagram (Fig. 4) among the

top 200 genes of some of the competing methods. For all
the three cancer datasets, we can observe a relatively high
concordance between the our results and the results of the
other network-based methods. Among the top 200 genes
of these methods, there are 89.0% (GBM), 46.5% (COAD-
READ) and 86.0% (BRCA) genes detected by our pro-
posed methods which are also included in the top scored
genes discovered by at least one of the other network-
based methods. For example, the five results on GBM
dataset share 47 common genes, including TP53, PTEN,

BRCA2 that are curated by both CGC and IntOGen (Sup-
plementary Table). These five results also share CGC gene
APC for COADREAD data and IntOGen gene ANK3 for
BRCA data (Supplementary Table). Meanwhile, there are
also some driver are found by only our proposed method.
For example, known CGC genes PIK3CA, TP53 and IntO-
Gen genesHDAC9,KALRN, LRP6,MAP3K4 andTGFBR2
are found by only our method for COADREAD (Supple-
mentary Table). For BRCA, CGC gene PTEN and IntO-
Gen gene RB1 and SF3B1 are unique to the result of our
proposed method (Supplementary Table). The full lists of
the top 200 genes for GBM, COADREAD and BRCA dis-
covered by our method are provided in Additional file 1:
Table S3-S5 respectively.

Functional enrichment analysis
In addition to the evaluation of benchmarking genes,
functional enrichment analysis is another way to assess
the association between the top scored genes and cancer
progressions. Here we apply functional enrichment anal-
ysis for the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [64] on the top 200 driver candidates to
find whether their shared biological functions are also cor-
related with cancer. For GBM, the driver gene candidates
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Table 1 Fisher’s exact test on the top scored candidates of COADREAD results for CGC and IntOGen benchmarking genes

CGC IntOGen

Top 50 100 150 200 50 100 150 200

Proposed 3.05e-12 9.59e-16 9.86e-18 3.35e-16 1.66e-15 2.48e-17 1.88e-18 1.30e-18

HotNet2 9.07e-02 1.74e-01 2.49e-01 5.46e-02 5.51e-02 1.76e-01 3.15e-01 1.94e-01

ReMIC(β = 0.01) 9.07e-02 1.52e-02 2.74e-03 3.06e-05 8.78e-08 4.77e-13 3.45e-13 7.59e-15

ReMIC(β = 0.02) 9.07e-02 1.52e-02 2.74e-03 4.97e-04 8.78e-08 4.77e-13 3.45e-13 7.59e-15

ReMIC(β = 0.03) 3.99e-03 8.54e-04 1.66e-04 4.97e-04 1.96e-06 2.11e-10 3.45e-13 1.72e-12

MUFFINN(DNmax) 1.00e-00 1.00e-00 1.00e-00 1.00e-00 1.00e-00 1.00e-00 1.00e-00 1.00e-00

MUFFINN(DNmax) 1.00e-00 1.00e-00 1.00e-00 1.00e-00 1.00e-00 1.00e-00 6.32e-01 4.09e-01

The p-values are for the results our proposed method, HotNet2, ReMIC(β=0.01), ReMIC(β=0.02), ReMIC(β=0.03), MUFFINN(DNmax) and MUFFINN(DNsum)

are highly enriched for cancer related pathways (Table 2),
such as Pathway in cancer (p = 1.44e-24), Glioma (p =
5.09e-24), Melanoma (p = 1.41e-09), p53 signaling path-
way (p = 8.11e-09) and mTOR signaling pathway (p =
2.29e-06). For COADREAD, the top scored genes are
highly associated with pathways like Focal adhesion (p =
2.15e-09), Pathways in cancer (p = 2.45e-09), Colorectal
cancer (p = 7.18e-09), Pancreatic cancer (p = 1.61e-06)
Prostate cancer (p = 2.66e-06) and Renal cell carcinoma
(p = 9.05e-04) (Additional file 1: Table S6). For BRCA
result, the top 200 genes are significantly enriched for
Calcium signaling pathway (p = 3.11e-07), Focal adhe-
sion (p = 3.46e-07), ErbB signaling pathway (p = 1.53e-
05), Endometrial cancer (p = 2.51e-05), MAPK signaling
pathway (p = 3.79e-04) and Apoptosis (p = 6.15e-04)
(Additional file 1: Table S7).

Literature survey
To investigate whether there are some novel insights that
can be learned from the model for each cancer type, we

further conduct a literature survey on the genes detected
by our model that are not annotated in the benchmark-
ing lists. For GBM results, ERBB2 is detected as one
of the top ranked genes. Although ERBB2 is recognized
as driver gene for several cancer types, but it is not
curated as GBM driver gene in the two benchmarking
lists [45, 46]. However, a recent study shows that ERBB2
mutations are associated with GBM formation and pro-
gression [65]. MSH6 is another gene detected in GBM
results. Recent studies have reported that MSH6 muta-
tions are considered to play an important role in the recur-
rence of glioma, acquired resistance to alkylating agents
and genome instability [66, 67]. Moreover, TERT is also
found as a driver gene candidate by our model in GBM
results, although TERT is not included in the 537 CGC
genes either. Recent research has shown that TERT muta-
tions are observed in the most aggressive human glioma
(grade IV astrocytoma) and the least aggressive diffuse
human glioma (grade II oligodendroglioma) at the same
time [68].
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Table 2 Functional enrichment analysis results for KEGG pathways [64] of the top 200 genes of the proposed method on GBM dataset

Pathway Count % p-value Pathway Count % p-value

Pathways in cancer 48 24.12 1.44e-24 Leukocyte transendothelial migration 11 5.53 1.44e-04

Focal adhesion 28 14.07 5.09e-15 Apoptosis 8 4.02 2.55e-04

Prostate cancer 20 10.05 6.97e-15 Renal cell carcinoma 8 4.02 3.43e-04

Glioma 15 7.54 3.13e-11 Gap junction 9 4.52 4.20e-04

Pancreatic cancer 15 7.54 3.13e-11 Melanogenesis 9 4.52 9.88e-04

Colorectal cancer 14 7.04 2.35e-10 Small cell lung cancer 8 4.02 1.73e-03

Melanoma 14 7.04 1.41e-09 Wnt signaling pathway 10 5.03 2.06e-03

Endometrial cancer 12 6.03 5.50e-09 Hedgehog signaling pathway 5 2.51 2.08e-03

p53 signaling pathway 13 6.53 8.11e-09 Natural killer cell mediated cytotoxicity 9 4.52 3.50e-03

Non-small cell lung cancer 12 6.03 1.26e-08 Chemokine signaling pathway 11 5.53 4.82e-03

Chronic myeloid leukemia 13 6.53 1.90e-08 Endocytosis 13 6.53 6.63e-03

Neurotrophin signaling pathway 15 7.54 1.31e-07 Fc gamma R-mediated phagocytosis 7 3.52 7.40e-03

Regulation of actin cytoskeleton 18 9.05 1.26e-06 Jak-STAT signaling pathway 9 4.52 9.78e-03

ErbB signaling pathway 12 6.03 1.38e-06 Mismatch repair 4 2.01 1.11e-02

Acute myeloid leukemia 10 5.03 1.69e-06 Calcium signaling pathway 10 5.03 1.12e-02

mTOR signaling pathway 10 5.03 2.29e-06 B cell receptor signaling pathway 6 3.02 1.34e-02

Cell cycle 13 6.53 7.91e-06 Adipocytokine signaling pathway 6 3.02 1.42e-02

Fc epsilon RI signaling pathway 10 5.03 8.92e-06 T cell receptor signaling pathway 7 3.52 1.90e-02

Adherens junction 10 5.03 1.28e-05 Cytokine-cytokine receptor interaction 11 5.53 1.97e-02

Bladder cancer 8 4.02 1.67e-05 Thyroid cancer 4 2.01 2.10e-02

Insulin signaling pathway 13 6.53 2.36e-05 Tight junction 8 4.02 2.24e-02

VEGF signaling pathway 9 4.52 3.07e-05 Phosphatidylinositol signaling system 6 3.02 5.07e-02

MAPK signaling pathway 17 8.54 6.19e-05 Toll-like receptor signaling pathway 6 3.02 6.67e-02

GnRH signaling pathway 10 5.03 9.50e-05 Notch signaling pathway 4 2.01 7.52e-02

Basal cell carcinoma 8 4.02 1.19e-04 TGF-beta signaling pathway 5 2.51 9.39e-02

The pathways are sorted by their enrichment p-values

For COADREAD results, SYNE1 is the top 5 gene
detected by our model. Mutations in SYNE1 are reported
to be associated with colorectal cancers in previous
studies [69]. Meanwhile, another recent study has
observed high prevalence of non-silent mutations in
SYNE1 among 160 colorectal cancer patients [70]. In addi-
tion, for another gene FAT4, which is also detected by
our model but not curated in benchmarking lists, the
high prevalence of mutations in FAT4 are also recognized
among the colorectal cancer patients [70]. Gene GRIN2A
(Glutamate Ionotropic Receptor NMDA Type Subunit
2A) and POLE (DNA polymerase epsilon catalytic sub-
unit) are not curated in the 537 CGC genes either. Still,
these two genes are detected by our model as top ranked
genes in COADREAD results. Recently, GRIN2A have
been identified as a novel hub driver gene for the stage-
II progression of colon adenocarcinoma [71]. Meanwhile,
mutations in POLE has been reported to be associated
with lesions in colon and rectum, and novel mutations
in POLE detected by exome sequencing also seem to

explain the cancer predisposition in colorectal cancer
[72]. Moreover, missense mutations in the polymerase
genes POLE have been identified as rare cause of multi-
ple colorectal adenomas and carcinomas in another recent
study [73].
For BRCA results, several genes not included in the

benchmarking lists are also detected as top ranked genes
by our model. For example, gene SPEN is detected by
our model from BRCA dataset, which is reported to be
capable of regulating tumor growth and cell prolifera-
tion [74]. Moreover, nonsense mutations in SPEN can
also be identified in the ERα-expressing breast cancer cell
line T47D [74]. Gene USH2A is another genes in BRCA
results of our model, and USH2A mutations have been
identified highlighting the molecular diversity observed
in triple-negative breast cancers by a recent research
[75]. The OBSCN is also detected in BRCA results by
our model, which is likely to regulate breast cancer pro-
gression and metastasis and the prognostic molecular
signatures [76].
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Discussion
Discovery mutated driver genes from passenger muta-
tions is one of the primary task in tumorigenesis, and
many previous methods find driver genes from somatic
mutation data by using interaction network as prior infor-
mation. In addition to mutation data and network data,
mRNA expression patterns of genes are also proven to
be highly associated with cancer progressions, which have
been widely used in predictions of patients’ clinical out-
come and biomarkers of cancers. However, the prior infor-
mation from mRNA expression data are not exploited
by the previous network-based methods. To discover
mutated driver genes, we proposed a robust and sparse
co-regularizedmatrix factorization framework, which can
effectively incorporate prior information from both inter-
action network and mRNA expression patterns. Through
this framework, we can prioritize the driver gene candi-
dates by their scores in latent representations. To incor-
porate prior information from mRNA expression and
network, graph co-regularization is used in matrix factor-
ization framework to regularize the latent representations
of samples and genes with tumor similarity and interac-
tion network. We also use Frobenius norm regularization
to prevent overfitting issue. The sparsity-inducing penalty
is also used to obtain sparse representations of mutated
genes.
When our method is evaluated by two lists of bench-

marking genes, our results outperform the results of the
framework without at least a portion of the prior infor-
mation, indicating the contribution of prior information
to the performance of driver gene discovery. Furthermore,
the detection performance of our methods are largely
elevated when compared with the performance of the pre-
vious published methods. Statistical test also show that
the top scored genes of our methods are significantly
different from random selections of the known bench-
marking genes. Moreover, while we can find considerable
concordance between our method and the other exist-
ing methods, our proposed method also discover some
important driver genes that are not included in the results
of the other methods. The functional enrichment analy-
sis also suggests that the driver candidates discovered by
our proposed method are significantly enriched for many
well-known cancer related pathways.
Since iRefIndex network [23] is not used as the net-

work information in the original MUFFINN paper, we
further rerun the comparison methods with their opti-
mal input information provided in their related papers for
evaluation, where iRefIndex is used in HotNet2 as net-
work information [18] and String v10 [77] is used in both
MUFFINN and ReMIC [19, 21]. By comparing the results
of the competitors with their optimal input information,
we find that our model still give the best performance
among these methods (Additional file 1: Figures S8). The

results also indicate that our model are less sensitive to the
choice of prior network information. Notably, we find that
the performance of MUFFINN largely increases when the
network information changes. Consequently, it is worth
using prior network information from several different
sources and combining the detection results of both our
model and the existing approaches, which can maximize
the recognition of driver gene candidates.
Despite the success achieved by our proposed method,

some questions are still required for further investigation.
A limitation of this study is that the consideration of only
the simplified binary mutation matrix can led to a bias
with respect to gene lengths. For example, TTN is pre-
dicted as the third BRCA gene due to its long length, but
it is not a cancer gene and therefore this is a false pos-
itive prediction. Similar biases are also noticeable in the
results of the other cancers. Therefore, how to address the
challenge of incorporating mutation rate/types into our
method is considered as potential future improvement of
our work. Another limitation is that our work encodes the
expression similarity and gene-gene interaction as con-
stant matrices, which cannot reflect the dynamic and
heterogeneous nature of the expressions and the interac-
tions. In this study, we encode the presence of a somatic
mutation on a gene as either 0 or 1 in the matrix by fol-
lowing previous studies [19, 32, 55]. When more than one
somatic mutation is incorporated in one gene, the binary
encoding strategy may underestimate > 1 somatic muta-
tions on the gene. In comparison, encoding strategy that
can incorporate > 1 somatic mutations would be more
useful, which are also considered as future work of our
study. Moveover, in this study, we use the cutoff of the top
200 genes for the recognition results by following previ-
ous work [22]. Note that using a significance threshold like
p-value can better serve the users. However, how to apply
significance test on the results of nonnegative matrix fac-
torization with regularizations is still a challenge, and we
plan to address this problem in our future work. Although
we have used both somatic mutations and mRNA expres-
sions of genes in our approach, there are also information
related to tumor progressions from some other omics,
such as copy number alternations and DNA methylation
[63]. Since more tumor samples can offer a more com-
prehensive analysis on tumorigenesis, our future work
can also combine the samples of numerous types of can-
cers to discover driver genes across different cancers [18].
Another possible expansion to our approach is to use
some nonlinear loss functions to mining the nonlinearity
of the representations of genes [41].

Conclusions
In summary, we propose a robust and sparse co-
regularized nonnegative matrix factorization framework
to discover mutated driver genes. This framework can
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effectively incorporate prior information from both
mRNA expression patterns and interaction network of
genes. Furthermore, the regularization of robustness and
sparseness are also considered in our method. Through
evaluation of known benchmarking genes, our method
yields better performance compared to NMF framework
with at least one of two kinds of the prior information
removed. Moreover, our proposed method also outper-
forms the existing network-based methods, and capture
some driver genes missed by the competing methods. In
addition, the pathways for which our results are enriched,
are highly corresponding to cancer progressions.We hope
that our approach can well serve as a driver gene discov-
erymethod by offering a comprehensive and sophisticated
view of cancer genome.
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