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Abstract

Background: Drug-disease associations provide important information for the drug discovery. Wet experiments
that identify drug-disease associations are time-consuming and expensive. However, many drug-disease
associations are still unobserved or unknown. The development of computational methods for predicting
unobserved drug-disease associations is an important and urgent task.

Results: In this paper, we proposed a similarity constrained matrix factorization method for the drug-disease association
prediction (SCMFDD), which makes use of known drug-disease associations, drug features and disease semantic
information. SCMFDD projects the drug-disease association relationship into two low-rank spaces, which
uncover latent features for drugs and diseases, and then introduces drug feature-based similarities and
disease semantic similarity as constraints for drugs and diseases in low-rank spaces. Different from the
classic matrix factorization technique, SCMFDD takes the biological context of the problem into account. In
computational experiments, the proposed method can produce high-accuracy performances on benchmark
datasets, and outperform existing state-of-the-art prediction methods when evaluated by five-fold cross
validation and independent testing.

Conclusion: We developed a user-friendly web server by using known associations collected from the CTD
database, available at http://www.bioinfotech.cn/SCMFDD/. The case studies show that the server can find out
novel associations, which are not included in the CTD database.
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Background
A drug is a chemical that treats, cures, prevents, or diag-
noses diseases. The drug design has three stages: discov-
ery stage, preclinical stage and clinical development
stage [1], and the development of a new drug take
15 years [2] and cost 800 million dollars [3].
The drug-disease associations refer to the events that

drugs exert effects on diseases, which can be classified
into two types: drug indications and drug side-effects.
Some drugs could have a therapeutic role in a disease,
e.g. a drug treats leukemia & lymphoma; other drugs
could play a role in the etiology of a disease, e.g. expos-
ure to a drug causes lung cancer [4]. Drug-disease

associations reveal the close relations between drugs and
diseases, and have gained great attention. Computational
methods can screen possible drug-disease associations,
and complement or guide laborious and costly wet
experiments.
In recent years, a great number of computational

methods have been proposed to predict drug-disease as-
sociations. As shown in Fig. 1, existing methods are
roughly classified as two types. One type of methods
makes use of biological elements shared by drugs and
diseases to predict drug-disease associations. Eichborn J
et al. [5] studied drug-disease relations based on drug
side effects. Wang et al. [6] and Wiegers et al. [7]
considered drug-gene-disease relations. Yu et al. [8] used
common protein complexes related to drugs and dis-
eases. These methods have to use elements shared by
drugs and diseases, but many drugs and diseases do not
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share any elements, and these methods fail to work in
this case. The other type of methods predicts novel
drug-disease associations by using known drug-disease
associations, drug features and disease features. Gottlieb
et al. [9] constructed a universal predictor named PRE-
DICT for drug repositioning to express drug-disease as-
sociations in a large-scale manner that integrated
molecular structure, molecular activity and disease se-
mantic data. Yang et al. [10] built Naive Bayes models to
predict indications for diseases based on their side ef-
fects. Wang et al. [11] proposed the method “PreDR”
that trained a support vector machine (SVM) model
based on drug structures, drug target proteins, and drug
side effects. Huang et al. [12] combined three different
networks of drugs, genomic and disease phenotypes to
build a heterogeneous network to predict drug-disease
associations. Oh et al. [13] proposed scoring methods to
obtain quantified scores as features between drugs and
diseases, and built classifiers based on the extracted
features to predict novel drug-disease associations.
Wang et al. [14] proposed a three-layer heterogeneous
network model (TL-HGBI), and applied the approach on
drug repositioning by using existing omics data of dis-
eases, drugs and drug targets. Martínez et al. [15] built a
network of interconnected drugs, proteins and diseases
to identify their relations. Wang et al. [16] adopted rec-
ommendation systems to predict drug-disease relations.
Moghadam et al. [17] combined drug features and dis-
ease features by using kernel fusion, and then built
SVM-based prediction model. Liang et al. [18] proposed
a Laplacian regularized sparse subspace learning method
(LRSSL), which integrated drug chemical information,

drug target domain information and target annotation
information.
A great number of drug-disease associations have been

identified and stored in databases. However, many asso-
ciations remain unobserved and need to be discovered.
In this paper, we proposed a similarity constrained
matrix factorization method for the drug-disease
association prediction (SCMFDD), which makes use of
known drug-disease associations, drug features and dis-
ease semantic information. SCMFDD projects the
drug-disease association relationship into two low-rank
spaces, which uncover latent features for drugs and dis-
eases, and then introduces drug feature-based similarity
and disease semantic similarity as constraints for drugs
and diseases in low-rank spaces. Different from the clas-
sic matrix factorization technique, SCMFDD can take
the biological context of the problem into account.
Computational experiments show that SCMFDD can
produce high-accuracy performances on benchmark
datasets and outperform existing state-of-the-art predic-
tion methods, i.e. PREDICT, TL-HGBI and LRSSL when
evaluated by five-fold cross validation and independent
testing on the same datasets. Moreover, a web server is
constructed on known associations collected from the
CTD database [4], and case studies show that the web
server can help to find out novel associations.
The main contributions of this paper include: 1) we pro-

posed a novel matrix factorization approach (SCMFDD),
which is different from the traditional matrix factorization
methods. SCMFDD incorporates drug features and dis-
ease semantic information into the matrix factorization
frame; 2) an efficient optimization algorithm is developed

Fig. 1 Two types of drug-disease association prediction methods. a Infer drug-disease associations without known associations; b Infer
unobserved drug-disease associations based on known associations

Table 1 The summary of SCMFDD-S dataset and SCMFDD-L dataset

Dataset Drugs Diseases Associations Richness Drug features

Substructure Target Enzyme Pathway Drug Interactions

SCMFDD-S 269 598 18,416 11.4% 881 623 247 465 2086

SCMFDD-L 1323 2834 49,217 1.31% 881 N.A. N.A. N.A. N.A.

Numbers for drug features represent the numbers of descriptors. For example, the PubChem Compound defines 881 types of substructure descriptors for
compound substructures, and a drug has some substructures and is thus described by a subset of substructure descriptors. Richness is the ratio of association
number vs drug-disease pair number. N.A. indicates that the information is not available
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to obtain the solution of SCMFDD; 3) we developed a
user-friendly web server to facilitate the drug-disease
association prediction, available at http://www.bioinfo
tech.cn/SCMFDD/.

Methods
Datasets
CTD database [4] is a publicly available database that in-
tends to advance understanding about how environmen-
tal exposures affect human health. CTD database
provides curated and inferred chemical-disease associa-
tions. The curated associations are real associations ex-
tracted from literature. Several databases describe
features for drugs and diseases. PubChem Compound
database [19] provides drug substructures. DrugBank
database [20] is a comprehensive resource for drug tar-
gets, drug enzymes and drug-drug interactions. KEGG
DRUG database [21] provides pathway information for
approved drugs in Japan, USA and Europe. U.S. National
Library of Medicine stores disease MeSH descriptors,
which reflect the hierarchy of diseases.
We downloaded real drug-disease associations from

CTD database, and collected features for drugs and

diseases to compile our datasets. In order to avoid spars-
ity of drug-disease associations, we selected drugs that
are associated with more than 10 diseases, and also
selected diseases that are associated with more than 10
drugs. Moreover, we collected drug features: substruc-
tures, targets, enzymes, pathways and drug-drug interac-
tions as well as disease MeSH descriptors. Thus, we
compiled a dataset named “SCMFDD-S”, which contains
18,416 associations between 269 drugs and 598 diseases.
Further, we selected drugs associated with at least one
disease as well as diseases associated with at least one
drug, and collected drug substructures and disease
MeSH descriptors. Thus, we compiled a larger dataset
named “SCMFDD-L”, which contains 49,217 associations
between 1323 drugs and 2834 diseases. Table 1 summa-
rizes the datasets “SCMFDD-S” and “SCMFDD-L”.
Several benchmark datasets were used in the

drug-disease association prediction. Gottlieb et al. [9]
compiled a dataset with 1933 associations between 593
drugs in DrugBank and 313 diseases in OMIM, and used
it for the method “PREDICT”. This dataset contains five
types of drug-drug similarities and two types of
disease-disease similarities. Three drug-drug similarities

Fig. 2 The basic idea of similarity constrained matrix factorization

Fig. 3 The bipartite network and the association network
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are calculated based on drug-related genes, by using
Smith-Waterman sequence alignment score [22], all-pairs
shortest paths algorithm [23] and semantic similarity
scores [24] respectively; other two drug-drug similarities
are drug structure-based Tanimoto similarity and drug
side effect-based Jaccard similarity. Two disease-disease
similarity measures are semantic similarity and genetic
similarity. Wang et al. [14] compiled a dataset with 1461
interactions between 1409 drugs in DrugBank database
and 5080 diseases in OMIM database, and used it for the
method “TL-HGBI”. The dataset also contains the
drug-drug structure similarity and disease semantic simi-
larity. Liang et al. [18] obtained 3051 associations between
763 drugs and 681 diseases from the study [25], and
collected drug substructures, protein domains of tar-
get proteins, gene ontology terms of target proteins
to calculate three types of drug-drug similarities as well
as the disease-disease semantic similarity. The dataset
was used for the method “LRSSL”. We name these data-
sets as “PREDICT dataset”, “TL-HGBI dataset” and
“LRSSL datasets”.
Therefore, we adopt SCMFDD-S dataset,

SCMFDD-L dataset, PREDICT dataset, TL-HGBI
dataset and LRSSL datasets as benchmark datasets.

Similarity constrained matrix factorization method
The aim of this study is to predict unobserved
drug-disease associations by using drug features, disease
semantic information and known associations. Figure 2
illustrates the basic idea of the similarity constrained
matrix factorization method for the drug-disease associ-
ation prediction (SCMFDD).

Drug-drug similarities
Actually, a feature is a set of descriptors. A drug has a
subset of descriptors, and thus is represented as a bit
vector, whose dimensions indicate the presence or

absence of corresponding descriptors with the value 1 or
0. Let P and Q denote feature vectors of two drugs, we
can calculate the Jaccard similarity between two drugs
by using,

J P;Qð Þ ¼ j P∩Q j
j P∪Q j

where P ∩Q∣ is the number of bits where P and Q both
have the value 1, and P ∪Q∣ is the number of bits where
either P and Q has the value 1.
When we have different features of a drug, i.e. sub-

structures, targets, enzymes, pathways and drug-drug in-
teractions, we can represent them as feature vectors in
different feature spaces, and calculate different types of
drug-drug similarities.

Disease-disease semantic similarity
MeSH is the National Library of Medicine’s controlled
vocabulary thesaurus, and MeSH provides hierarchical
descriptors for diseases. As described in [26–28], we can
calculate disease-disease semantic similarity by using
MeSH information.
For each disease, a directed acyclic graph (DAG) is

constructed based on hierarchical descriptors, in which
nodes represent disease MeSH descriptors (or disease
terms) and the edges represent the relationship between
the current node and its ancestors. For the disease A,
the DAG is denoted as DAG(A) = (N(A), E(E)), where
N(A) is the set of all ancestors of A (including itself ) and
E(A) is the set of their corresponding links.
We define the contribution of a node d d in DAG(A)

to the semantic value of disease A:

CA dð Þ ¼ 1 if d ¼ A
max Δ � CA d0ð Þjd0∈children of dg if d≠Af

�

Fig. 4 The influence of parameters on SCMFDD models. a the influnce of μ and λ b the influence of k
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where Δ is the semantic contribution factor, and we set
Δ = 0.5 in the study.
The semantic value of disease A is defined as,

DV Að Þ ¼
X

d∈N Að Þ
CA dð Þ

The semantic similarity between two diseases A and B
is calculated by,

SA;B ¼
P

d∈N Að Þ∩N Bð Þ CA dð Þ þ CB dð Þð Þ
DV Að Þ þ DV Bð Þ

Objective Function
The observed drug-disease associations can be formu-
lated as a bipartite network, and represented by a binary
matrix A ∈ Rn ×m, where n is the number of drugs and m
is the number of diseases. aij is the (i, j)th entry of A. If
the vertex (drug) di and the vertex (disease) disj are con-
nected, aij = 1; otherwise aij = 0. The bipartite network
and the association matrix are demonstrated in Fig. 3.
SCMFDD factorizes the drug-disease association

matrix A into two low-rank feature matrices X ∈ Rn × k

and Y ∈ Rm × k, where k is the dimension of drug feature
and disease feature in the low-rank spaces. The
drug-disease association can be approximated by inner
product between the drug feature vector and the disease
feature vector: aij ≈ xiyTj , where xi is the ith row of X,

and yj is the jth row of Y.The objective function is de-
fined as:

min
1
2

X
ij

aij−xiyTj
� �2

ð1Þ

Then, to avoid overfitting problem, L2 regularization
terms of xi and yj are added to the objective function
(1),

min
1
2

X
ij

aij−xiyTj
� �2

þ μ
2

X
i

xik k2

þ μ
2

X
j

y j

��� ���2 ð2Þ

where μ is the regularization parameter for xi and yj.
Recent studies on manifold learning theory [29, 30],

spectral graph theory [31, 32] and their applications
[33–38] show that the geometric and topological struc-
ture of data points may be maintained when they are
mapped from high dimensional space into low dimen-
sional space. Considering that the similarity matrix wd

and ws not only can be defined to represent statistical
correlation but also can be regarded as geometric prop-
erties of the data points, we introduce the similarity con-
straint terms RX and RY:

RX ¼ 1
2

X
ij

xi−x j

�� ��2wd
ij ð3Þ

RY ¼ 1
2

X
ij

yi−y j

��� ���2ws
ij ð4Þ

where wd
ij denotes the similarity between the drug di and

the drug dj, which is calculated in the drug feature space;
ws
ij denotes the similarity between the disease disi and

the disease disj, which is calculated in the disease feature
space. It is generally believed that the similarity between
two data points is higher if the distance of them is
smaller. Therefore, RX(or RY) incurs a heavy penalty if
drug di and the drug dj(disease disi and the disease disj)
are close in the drug feature space (or disease feature
space) and thus minimizing it further incurs that drug di
and the drug dj(or disease disi and the disease disj) are
mapped closely in low-rank spaces. Hence, we could
maintain effectively the topological structure of drug
data points and disease data points by minimizing RX

and RY.
By combining RX and RY with the original objective

function (2), we propose the objective function of
SCMFDD,

min
X;Y

L ¼ 1
2

X
ij

aij−xiyTj
� �2

þ μ
2

X
i

xik k2

þ μ
2

X
j

y j

��� ���2 þ λ
2

X
ij

xi−x j

�� ��2wd
ij

þ λ
2

X
ij

yi−y j

��� ���2ws
ij ð5Þ

where λ is the hyper parameter controlling the smooth-
ness of the similarity consistency.

Optimization algorithm
Here, we develop an efficient optimization algorithm
to solve the objective function in (5). First, we cal-
culate the partial derivatives of L with respect to
xi and yj,

∇ xi L ¼
X
j

xiy
T
j −aij

� �
y j þ μxi

þ λ
X
j

xi−x j
� �

wd
ij−
X
j

x j−xi
� �

wd
ji

 !

¼ xi Y TY þ μI þ λ
X
j

wd
ij þ

X
j

wd
ji

 !
I

 !

−A i; :ð ÞY−λ
X
j

wd
ij þ wd

ji

� �
x j

ð6Þ
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∇ y j
L ¼

X
i

y jx
T
i −aij

� �
xi þ μy j

þ λ
X
i

y j−yi
� �

ws
ji−
X
i

yi−y j

� �
ws
ij

 !

¼ y j XTX þ μI þ λ
X
i

ws
ij þ

X
i

ws
ji

 !
I

 !

−A :; jð ÞTX−λ
X
i

ws
ij þ ws

ji

� �
yi

ð7Þ
A(i, :) represents the ith row of A and A(:, j) represents

the jth column of A.
Then, we can calculate the second derivatives of L

with respect to xi and yj:

∇ 2
xi L ¼ YTY þ μI þ λ

X
j

wd
ij þ

X
j

wd
ji

 !
I ð8Þ

∇ 2
y j
L ¼ XTX þ μI þ λ

X
i

ws
ij þ

X
i

ws
ji

 !
I ð9Þ

Utilizing Newton’s method, we have:

xi←xi−∇ xi L ∇ 2
xi L

� �−1
ð10Þ

y j←y j−∇ y j
L ∇ 2

y j
L

� �−1
ð11Þ

Thus, we can obtain the updating rules:

xi ¼ A i; :ð ÞY þ λ
X
j

wd
ij þ wd

ji

� �
x j

 !

YTY þ μI þ λ
X
j

wd
ij þ

X
j

wd
ji

 !
I

 !−1

ð12Þ

y j ¼ A :; jð ÞTX þ λ
X
i

ws
ij þ ws

ji

� �
yi

 !

XTX þ μI þ λ
X
i

ws
ij þ

X
i

ws
ji

 !
I

 !−1

ð13Þ
We alternatively update xi and yj with Eq. (12) and

Eq. (13) until convergence. The prediction matrix is
given by

Apredict ¼ XYT ð14Þ
The score of (Apredict)ij represents the probability

that the drug di and the disease disj has the associ-
ation. The optimization algorithm is summarized in
Algorithm 1.

Algorithm 1 Algorithm to solve objective function (5)

Input: known drug-disease association matrix, A ∈ Rn ×m;
drug similarity matrix, Wd ∈ Rn × n;
disease similarity matrix, Ws ∈ Rm ×m;
dimension of the low-rank feature space, k <min(m, n);
regularization parameter, μ > 0, λ > 0;
Output: the prediction matrix Apredict
1 Initialize X ∈ Rn × k, Y ∈ Rm × k as two random matrices;
2 Repeat
3 Update X:
4 for each i(1≤ i ≤ n) do
5 update xi by Eq. (12);
6 end
7 Update Y:
8 for each j(1≤ j ≤m) do
9 update yj by Eq. (13);
10 end
11 Until Converges;
12 Calculate the prediction matrix Apredict by Eq. (14);
13 Output Apredict;

Results and discussion
Evaluation metrics
In our experiments, we adopted five-fold cross validation
(5-CV) to test performances of prediction models. To
implement five-fold cross validation, we randomly split
all known drug-disease associations into five equal-sized
subsets. In each fold, we combined four subsets as the
training set, and used the other subset as the testing set.
We constructed the prediction model based on known
associations in the training set, and predicted associa-
tions in the testing set. Training and testing were re-
peated five times, and the average of performances was
adopted.
AUC and AUPR are popular metrics for evaluating

prediction models. Since drug-disease pairs without as-
sociations are much more than known drug-disease as-
sociations, we adopted AUPR as the primary metric,
which takes into recall and precision. We also consid-
ered several binary classification metrics, i.e. sensitivity
(SN, also known as recall), specificity (SP), accuracy
(ACC) and F-measure (F).

Performances of SCMFDD
First of all, we discussed the influence of parameters on
SCMFDD models by using SCMFDD-S dataset.
SCMFDD has three parameters, i.e. the number of latent
variables k, the regularization parameter μ and the
regularization parameter λ. k is the dimension of drugs
and diseases in low-rank spaces, and k is less than row
number and column number of the association matrix,
and k < k0 = min(m, n). For simplicity, we set k as the
percentage of k0.
SCMFDD builds prediction model constrained by

drug-drug similarity and disease-disease semantic simi-
larity. We have several drug features in SCMFDD-S
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dataset, and can calculate several types of drug-drug
similarities. Here, we used the drug interaction-based
similarity and the disease semantic similarity to build
SCMFDD models for analysis. We considered all combi-
nations of following values λ ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23},
μ ∈ {2−3, 2−2, 2−1, 20, 21, 22, 23} and k ∈ {5%, 10%, 15 %…,
50%} to build SCMFDD models, and implemented
five-fold cross validation to evaluate models. The experi-
ments for all parameter combinations cost about 12 h
on a PC with Intel i7 7700 K CPU and 16GB RAM.
In computational experiments, SCMFDD produced

the best AUPR score when k = 45 % , μ = 20 and λ = 22.
Then, we fixed the latent variable number k = 45%, and
evaluated the influence of parameters μ and λ, and
results are shown in Fig. 4a. Clearly, μ and λ have great
impact on the model. When μ is a small value, greater λ
could lead to better performances; when μ is a great
value, greater λ contributes to poorer performances.
Further, we fixed the parameters μ = 20 and λ = 22, and
tested the influence of the latent variable number k. The
latent variable numbers and AUPR scores of corresponding
models are shown in Fig. 4b. Clearly, performances of
SCMFDD will increase as k increases, and remain
unchanged after reaching a threshold.
Further, we tested the impact of different similarity

constraints on SCMFDD models. We have various
features of drugs, and can calculate different types of
drug-drug similarities, i.e. substructure similarity, target
similarity, pathway similarity, enzyme similarity and drug

interaction similarity. These similarities can be used as
the constraint terms for SCMFDD models. We set k =
45%, μ = 20 and λ = 22 in the experiments. As shown in
Table 2, SCMFDD models using different drug-drug
similarities produce high-accuracy and robust perfor-
mances. Since drug structures directly influence func-
tions and drug interactions may induce drug effects,
drug substructures and drug interactions lead to better
results than other features.
The known drug-disease association is an important

resource for predicting unobserved drug-disease associa-
tions. The data richness, which is the ratio of association
number vs drug-disease pair number, may influence per-
formances of SCMFDD. Here, we used the dataset
SCMFDD-L for analysis. We removed drugs that are as-
sociated with less than m diseases, and removed diseases
that associated with less than m drugs from SCMFDD-L
dataset, m ∈ {2, 3, 4, 5, 6…10}. As displayed in Fig. 5, the
data richness will increase as the threshold m increases,
and then improve performances of SCMFDD models.
Although the data richness influences the performances,
SCMFDD could still produce robust performances.

Comparison with state-of-the-art prediction methods
In this section, we compared our method with three
state-of-the-art drug-disease association prediction
methods: PREDICT [9], TL-HGBI [14] and LRSSL
[18]. PREDICT constructed a universal predictor for
drug repositioning to express drug-disease associations in
a large-scale manner that integrates molecular structure,
molecular activity and semantic data. TL-HGBI was a
computational framework based on a three-layer hetero-
geneous network model, which made use of Omics data
about diseases, drugs and drug targets to make predic-
tions. LRSSL was a Laplacian regularized sparse subspace
learning method, which integrated drug chemical infor-
mation, drug target domains and target annotation infor-
mation to make predictions. We obtained datasets of
PREDICT [9], datasets and source codes of TL-HGBI [14]

Table 2 The performances of SCMFDD models based on
different drug features

AUPR AUC SN SP ACC F

Substructure 0.2644 0.8737 0.3329 0.9795 0.9632 0.3130

Target 0.1947 0.8410 0.2751 0.9751 0.9575 0.2456

Pathway 0.2582 0.8706 0.3435 0.9771 0.9611 0.3079

Enzyme 0.2496 0.8671 0.3331 0.9768 0.9606 0.2990

Drug interaction 0.2638 0.8734 0.3505 0.9769 0.9611 0.3120

Fig. 5 The influence of association exclusion criteria on data richness (a) and model performance (b)
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from authors. The datasets and source codes of LRSSL
[18] are publicly available. Therefore, we can adopt these
methods as benchmark methods for fair comparison.
First, we compared our method with PREDICT based

on the PREDICT dataset by using five-fold cross valid-
ation. SCMFDD uses one drug similarity constraint and
one disease similarity constraint. The PREDICT dataset
contains five kinds of drug-drug similarities and two kinds
of diseases-disease similarity. Thus, we built 10 different
SCMFDD models by combining drug-drug similarities
and diseases-disease similarities. As shown in Table 3,
SCMFDD models and PREDICT produce similar AUC
scores, but SCMFDD models yield much greater AUPR
scores than PREDICT. Moreover, SCMFDD models were
robust to different similarities, and the models based on
the drug Genes-Waterman similarity and disease Gene
Signature similarity produced the best results.
Then, we compared our method with TL-HGBI by

using TL-HGBI dataset. TL-HGBI dataset contains one
drug chemical structure similarity and one disease pheno-
typic similarity. We constructed the SCMFDD model by
using drug structure similarity and disease phenotypic
similarity. As shown in Table 4, SCMFDD produced simi-
lar AUC score but much greater AUPR score compared
with TL-HGBI.
Further, we compared SCMFDD and LRSSL by using

LRSSL dataset. Since LRSSL dataset contains three
features of drugs: chemical substructures, protein
domains of target proteins, gene ontology information of
target proteins. Three drug similarities were calculated,
and disease semantic similarity was provided as well.
Therefore, we can construct three SCMFDD models by
combing three drug similarities and the disease semantic
similarity. Table 5 shows the performances of prediction

models evaluated by five-fold cross validation. Clearly,
three SCMFDD models can produce better performance
than LRSSL.

Independent experiments
In this section, we conducted independent experiments
to test performances of our method in predicting novel
drug-disease associations.
CTD database is an up-to-date resource about the

experimentally determined drug-disease associations.
Since PREDICT dataset and LRSSL dataset were com-
piled several years ago, we can build prediction
models by using PREDICT dataset and LRSSL dataset,
and check up the predictions in the CTD database.
Different drugs and diseases could be matched ac-
cording to their names and synonyms (provided by
CTD database “Chemical vocabulary” and “Disease
vocabulary”). PREDICT dataset and LRSSL dataset in-
clude different types of drug-drug similarities, and we
build different similarity-based SCMFDD models for
the comprehensive comparison. The PREDICT model
and the LRSSL model respectively predict novel inter-
action by using PREDICT dataset and LRSSL dataset.
We considered the top predictions from top 2 to top

1000 in a step size of 2, and respectively counted how
many predicted associations can be confirmed in CTD
database. Figure 6 shows the number of checked
predictions and the number of confirmed associations.
Clearly, our method finds out more novel associations
than benchmark methods, and has the good
performances in the independent experiments.

Web server and applications
To facilitate the drug-disease association prediction, we
developed a web server named “SCMFDD” by using the
dataset SCMFDD-L, available at http://www.bioinfo
tech.cn/SCMFDD/. Users can predict novel drug-disease

Table 3 Performance of PREDICT and SCMFDD on PREDICT
Dataset

Methods AUPR AUC SN SP ACC F

PREDICT 0.1507 0.9020 0.3414 0.9929 0.9915 0.1437

SCMFDD-Che-GS 0.3141 0.9005 0.3663 0.9988 0.9974 0.3753

SCMFDD-Che-Phen 0.3153 0.9038 0.3678 0.9988 0.9974 0.3769

SCMFDD-SE-GS 0.3157 0.9082 0.3663 0.9988 0.9974 0.3753

SCMFDD-SE-Phen 0.3176 0.9109 0.3678 0.9988 0.9974 0.3769

SCMFDD-GP-GS 0.3210 0.9129 0.3720 0.9988 0.9975 0.3811

SCMFDD-GP-Phen 0.3224 0.9157 0.3714 0.9988 0.9975 0.3806

SCMFDD-GO-GS 0.3147 0.9035 0.3678 0.9988 0.9974 0.3769

SCMFDD-GO-Phen 0.3159 0.9065 0.3678 0.9988 0.9974 0.3769

SCMFDD-GW-GS 0.3249 0.9173 0.3389 0.9991 0.9977 0.3843

SCMFDD-GW-Phen 0.3284 0.9203 0.3776 0.9988 0.9975 0.3870

For drugs, Che Chemical fingerprints Similarity, SE Side Effect Similarity, GP
Genes-Perlman Similarity, GO Genes- Ovaska Similarity, GW Genes-Waterman
Similarity. For diseases, GS Gene Signature Similarity, Phen
Phenotypic Similarity

Table 4 Performance of TL-HGBI and SCMFDD on TL-HGBI
Dataset

Methods AUPR AUC SN SP ACC F

TL-HGBI 0.0492 0.9584 0.1697 0.9999 0.9998 0.0840

SCMFDD 0.1500 0.9752 0.2136 0.9990 0.9990 0.0168

Table 5 Performance of LRSSL and SCMFDD on Liang Dataset

Methods AUPR AUC SN SP ACC F

LRSSL 0.1789 0.8250 0.2167 0.9989 0.9979 0.2018

SCMFDD-Che-Sem 0.2518 0.9020 0.2799 0.9993 0.9985 0.3030

SCMFDD-Dom-Sem 0.2673 0.9228 0.2851 0.9993 0.9985 0.3088

SCMFDD-Go-Sem 0.2585 0.9210 0.2897 0.9993 0.9985 0.3137

For drugs, Che Chemical Similarity, Dom Protein Domains Similarity, Go Gene
ontology Similarity. For diseases, Sem: Semantic Similarity
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associations for a given drug or a given disease, and then
visualize predictions. Here, we used two case studies to
illustrate the usefulness for the drug-disease association
prediction of our web server.
Clozapine is an effective drug to treat patients with

refractory schizophrenia [39, 40]. Clozapine works by
changing the actions of chemicals in the brain. Here,
the web server predicts diseases that are associated with
Clozapine. Table 6 lists top 10 predictions among all
unknown relationships between Clozapine and diseases in
the SCMFDD-L dataset. Then, we analyze these predicted
diseases case by case. From https://en.wikipedia.org/wiki/
Clozapine (access on 2018–2-1), three diseases: sleep initi-
ation and maintenance disorders (also insomnia), status
epilepticus and headache have been reported as side ef-
fects of Clozapine, indicating that they have associations
with the drug “Clozapine”. Further, the study [41] found
that Clozapine improved the syndrome of inappropriate

antidiuretic hormone secretion(SIADH) in a patient; the
studies [42, 43] revealed that Clozapine can be used for
the treatment of post-traumatic stress disorder (PTSD);
the study [44] demonstrated that Clozapine can be used
for the treatment of Parkinson’s disease; the study [45]
indicated that Clozapine can affect the visual memory.
Alzheimer’s disease (AD) is a chronic

neurodegenerative disorder that leads to disturbances of
cognitive functions. The radical cause and effective
treatment of AD remain unclear, and AD has attracted
many scientists to study its pathogenic mechanism and
therapeutic function. Table 7 lists top 10 predicted drugs
associated with Alzheimer’s disease, and evidence is
available for six drugs. For example, the study [46]
revealed that Olanzapine appears to be effective in
treating psychotic and behavioral disturbances
associated with AD; the study [47] found that
stimulation of the dopaminergic system could improve

Fig. 6 The number of confirmed associations in top predictions of PREDICT, LRSSL, SCMFDD. (a) For drugs, Che: Chemical Similarity, SE: Chemical
Similarity, GP: Genes-Perlman Similarity, GO: Genes- Ovaska Similarity, GW: Genes-Waterman Similarity. For diseases, GS: Gene Signature Similarity,
Phen: Phenotypic Similarity (b) For drugs, Che: Chemical Similarity, Dom: Protein Domains Similarity, Go: Gene ontology Similarity. For diseases,
Sem: Semantic Similarity

Table 6 Top 10 predicted diseases associated with Clozapine

Index Disease Name Disease ID Score Evidence

1 Sleep Initiation and Maintenance Disorders D007319 1 https://en.wikipedia.org/wiki/Clozapine

2 Anxiety Disorders D001008 0.9117 N.A.

3 Inappropriate ADH Syndrome D007177 0.7434 A Case report [41]

4 Stress Disorders, Post-Traumatic D013313 0.7267 Report [42, 43]

5 Parkinson Disease, Secondary D010302 0.7179 Review [44]

6 Memory Disorders D008569 0.7123 An animal study [45]

7 Status Epilepticus D013226 0.6312 https://en.wikipedia.org/wiki/Clozapine

8 Headache D006261 0.6166 https://en.wikipedia.org/wiki/Clozapine

9 Torsades de Pointes D016171 0.5953 N.A.

10 Attention Deficit Disorder with Hyperactivity D001289 0.5913 N.A.

Scores are normalized by using ((score-min)/(max-min))
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cognitive function in a murine model and suggested that
Levodopa that works in the dopaminergic system could
ameliorate typical symptoms of AD: learning and
memory deficits. The study [48] revealed that the
presence of Malondialdehyde level is a risk factor for AD.
The study [49] confirmed that progesterone significantly
could reduce and inhibit tau hyperphosphorylation, a
chemical process implicated in AD. The study [50]
demonstrated that Valproic Acid (VPA) could decrease
β-amyloid(Aβ) production which is the key risk factor in
AD and improve memory deficits of AD model mice. The
study [51] showed that Ethanol protect neurons against
Aβ-induced synapse damage and explained epidemio-
logical reports that moderate alcohol consumption pro-
tects against the development of AD.
The server can visualize the predictions. Figure 7

shows the top 100 predictions for Clozapine and top 200

predictions for Alzheimer’s disease. As shown in Fig. 7a,
“dark blue circle” stands for a disease, which has a known
association with Clozapine, and “red square” stands for
predicted diseases, which have an association with
Clozapine. As shown in Fig. 7b, “dark blue circle” stands
for a drug, which has a known association with Alzheimer’s
disease, and “red square” stands for predicted drugs, which
have an association with Alzheimer’s disease. Users can
adjust the number of predictions for visualization.

Conclusion
In this paper, we proposed a computational method
“SCMFDD” to predict unobserved drug-disease associa-
tions. SCMFDD incorporate drug feature-based similar-
ities and disease semantic similarity into the matrix
factorization frame. Experimental results show that
SCMFDD can produce high-accuracy performances on

Table 7 Top 10 predicted drugs associated with Alzheimer’s disease

Index Drug Name Drug MeSH ID DrugBank ID PubChem CID Score(normalized) Evidence

1 Nitroprusside D009599 DB00325 11,963,622 1 N.A.

2 Tamoxifen D013629 DB00675 2,733,526 0.7644 N.A.

3 Olanzapine C076029 DB00334 4585 0.7269 A clinical study [46]

4 Sucralfate D013392 DB00364 70,789,197 0.7223 N.A.

5 Levodopa D007980 DB01235 6047 0.6893 An animal study [47]

6 Malondialdehyde D008315 DB03057 10,964 0.6767 A clinical study [48]

7 Progesterone D011374 DB00396 5994 0.6695 An animal study [49]

8 Valproic Acid D014635 DB00313 3121 0.6625 An animal study [50]

9 Scopolamine Hydrobromide D012601 DB00747 3,000,322 0.6522 N.A.

10 Ethanol D000431 DB00898 702 0.6402 A clinical study [51]

Scores are normalized by using ((score-min)/(max-min))

Fig. 7 Web Visualization of predictions for Clozapine a and predictions for Headache b
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five benchmark datasets when evaluated by five-fold cross
validation, and SCMFDD outperforms state-of-the-art
methods under fair comparison. Moreover, SCMFDD
produces satisfying performances for different similarity
constraints, and is also robust to the data richness. We
constructed a web server based on drug-disease associa-
tions, which are collected from the CTD database. The
server can predict novel drug-disease associations, and
also can help researchers to quickly find associations for
interested drugs or diseases.
In recent years, the deep learning methods have been

applied to similar tasks [52–54]. However, designing an
effective neural network is a hard task, and the training
process also costs a great amount of time. Compared to
deep learning-based methods, SCMFDD is easy to im-
plement, and SCMFDD can be applied into similar tasks
in bioinformatics.
However, SCMFDD still has several limitations. First,

SCMFDD has three parameters, and there is no good
way of determining suitable parameters except going
through all combinations. For our datasets, it costs
dozens of hours to determine optimal parameters.
Second, SCMFDD only uses individual drug feature-based
similarity to build prediction models. When we have mul-
tiple drug features, we can calculate different drug
feature-based similarities. Combining diverse information
can usually lead to improved performances [55–60], and
how to integrate multiple similarities in a model is our
future work. Third, the server can make predictions for
the drugs and diseases in our dataset, but can’t support
other drugs or diseases.
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