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Background: Biomolecular methods for species identification are increasingly being utilised in the study of changing
environments, both at the microscopic and macroscopic levels. High-throughput peptide mass fingerprinting has been
largely applied to bacterial identification, but increasingly used to identify archaeological and palaeontological skeletal
material to yield information on past environments and human-animal interaction. However, as applications move
away from predominantly domesticate and the more abundant wild fauna to a much wider range of less common
taxa that do not yet have genetically-derived sequence information, robust methods of species identification and

Results: Here we developed a supervised machine learning algorithm for classifying the species of ancient

remains based on collagen fingerprinting. The aim was to minimise requirements on prior knowledge of known
species while yielding satisfactory sensitivity and specificity. The algorithm uses iterations of a modified random forest
classifier with a similarity scoring system to expand its identified samples. We tested it on a set of 6805 spectra and
found that a high level of accuracy can be achieved with a training set of five identified specimens per taxon.

Conclusions: This method consistently achieves higher accuracy than two-dimensional principal component analysis
and similar accuracy with hierarchical clustering using optimised parameters, which greatly reduces requirements for
human input. Within the vertebrata, we demonstrate that this method was able to achieve the taxonomic resolution
of family or sub-family level whereas the genus- or species-level identification may require manual interpretation or
further experiments. In addition, it also identifies additional species biomarkers than those previously published.
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Background

Biomolecular species identification

Knowing the species from which a sample derives can be
highly informative of the environment, whether this is at
the microscopic or macroscopic scale. In the case of mi-
croorganisms this can be important to understand pro-
cesses of infection [1-3] and/or decay [4, 5], whereas in
the case of animals it can be important for understanding
the effects of climate change or human impacts on bio-
diversity [6—8], or targeted at wildlife crime [9, 10]. For
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reasons relating to either difficulties in identification or
practicalities of analysing high numbers of samples, mo-
lecular methods are often preferred over morphological
approaches, the most common being those that utilise
DNA [11]. Although DNA-based methods will undoubt-
edly continue to improve [12], there are alternative
methods that utilise proteins, coded by DNA but still in-
formative of species. These protein-based methods, such
as those that generate peptide mass fingerprints (PMFs)
via proteomic techniques, often do not have as much
taxonomic resolution as DNA-based approaches, but can
be subjected to much greater levels of high-throughput
processing, capable of analysing thousands of samples in
as little as a week. Another advantage is that proteins, par-
ticularly bone collagen, are known to survive for greater
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lengths of time than DNA [13], the identifications from
which could be useful for inferring animal-human interac-
tions or palaeobiodiversity change deeper into the past.

Fast production of PMFs by high-throughput
soft-ionization mass spectrometry, particularly Matrix
Assisted Laser Desorption Ionization (MALDI) Time
of Flight (ToF) mass spectrometry, calls for auto-
mated decision-making systems for species assign-
ment. The simplest strategy is to use biomarkers,
which are peptides within the PMF that are character-
istic of a taxonomic group. In microbial identification,
biomarker-based methods were able to reach the spe-
cies level with high accuracy in both bacteria and
yeasts [14]. However, their performance in ancient
species identification was less satisfactory due to diffi-
culties in finding well-defined biomarkers not affected
by great variations due to differences in levels of
decay over time, greatly reducing relative concentra-
tion; ancient collagen, the main target of PMFs de-
rived from archaeological and palaeontological
specimens can contain many post-translational modi-
fications (PTMs), some of which are also affected by
decay. Therefore, previous studies have tended to
combine biomarker-based methods with manual cor-
rection in order to improve performance [15, 16]. In
recent studies, focus has shifted towards using infor-
mation on the entire spectrum rather than specific
markers. For example, Hollemeyer et al. [17] intro-
duced the calculation of Euclidean distances between
samples to separate distantly related groups and then
used biomarkers to fine-tune the species assignment.
In addition, multivariate regressions such as principal
component analysis and partial least square regression
have been used in addition to biomarkers to separate
different taxa [15, 16].

Machine learning

The above examples are part of the methodology known
as expert systems, which implement the strategies and
logic used by an experienced researcher for making deci-
sions (e.g. using the presence/absence of manually identi-
fied biomarkers or applying certain cut-offs to hierarchical
clustering trees). However, building expert systems can be
difficult. For example, finding the logic orders to construct
the decision trees requires extensive work examining a
comprehensive set of PMFs, which often requires add-
itional sequencing information to lend confidence to the
homology of the markers. Moreover, the output of expert
systems tends to be binary rather than probabilistic. In re-
cent years, progress has been made towards more robust
systems that can learn to become experts through a train-
ing process analogous to human learning - this approach
is also known as machine learning.
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Supervised machine learning uses a training set of
samples with predetermined classes. For example, the
training set of MALDI data can be represented as an
n x m matrix Te R"*™, where n is the number of sam-
ple vectors in the training set and m is number of fea-
tures in each vector (e.g. the presence/absence of
biomarkers) and a class vector ¢ that indicates the desired
classification result. The classification algorithm learns to
build a classifier that puts all training samples into the
right class, or formally a function f such that f(7;) = ¢;
for ie{1,2...n}. Then the classifier f is applied to the real
dataset Xe R with p samples. One potential problem
here is overfitting, which means that the classifier f only
works for the training set but not the real set and this is why
a separate validation set is often used to filter out bad classi-
fiers. Another potential problem is the use of a single classi-
fier. For example, on a small training set of four spectra with
two of each species, many biomarkers could be able to dis-
tinguish the two species by chance and will not work on the
real set. In fact, it is recognised that using a collection of clas-
sifiers generally has enhanced performance compared to any
of its constituent classifiers [18—20]. This is also known as
ensemble learning, which looks for k possible classifiers f;...fx
that satisfy the training set and constructs a meta-classifier
My, .5, to achieve boosted performance.

Widely used ensemble approaches include boosting and
bagging. Boosting refers to the step-wise strategy that fixes
incorrect classifications every time a new classifier is incor-
porated [21]. The other approach, bagging, also known
as Bootstrap Aggregating, features random sampling from
the original dataset and is more robust against overfitting
than boosting [22, 23]. The main representative of bagging
approaches is random forest, where k subsets of s dimen-
sions S;...S € R"*® are randomly drawn from the m-di-
mensional training set and decision trees fi...fy are
calculated for each subset. The final classifier is constructed
by a majority vote from all decision trees [22]. More re-
cently, various modifications on the original random forest
algorithm have been made to enhance the performance or
customise individual studies [24, 25].

The aim of this study was to use machine learning to
build an automated algorithm for species identification
on large MALDI datasets with minimal requirement of
human input. We used data from a set of recent publica-
tions on the species identification of bone fragments
from Pin Hole Cave by collagen fingerprinting, an im-
portant archaeological site in the UK that contains col-
lections spanning approximately 40,000 years of
intermittent human occupation. The main obstacles
were that 1) noises in MALDI spectra due to chemical
decay, 2) limited number of samples that can be used as
the training set, and 3) the training set may not always
span all species in the entire data. Here we tested a
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modified random forest algorithm on a large set of 6805
MALDI spectra. Starting with a small set of manually
verified spectra from within the larger dataset, the
algorithm progressively learns to improve its classifica-
tion strategy and eventually becomes able to classify the
entire dataset with high discovery rates and few errors.

Methods

Acquisition of MALDI-ToF mass spectrometry data

Mass spectrometry data were acquired from a previous
publication [26], where microfaunal specimens were re-
covered from a single archaeological site called Pin Hole
Cave (UK), with additional specimens from the spoil
heap and elsewhere in the cave. A total set of 13,022
specimens were previously interpreted manually for spe-
cies biomarkers of particular taxa (predominantly mega-
fauna). Experimental protocols were exactly the same as
previously published [26].

Pre-processing of MALDI data

With an initial set of 13,022 spectra (PMFs) from
MALDI experiments [26, 27], the first step was to con-
vert each PMF into a binary vector representing the
presence or absence of m/z peaks (summarised in
Fig. 1a). The R package MALDIquant was used to iden-
tify peak lists of m/z ratios and intensities for samples.
Since MALDIquant has a permissive threshold, an extra
step of filtering was applied to remove background

Page 3 of 9

noises. To determine whether a peak is noise, local back-
ground was modelled by extracting the intensities of all
peaks within - 100 to + 100 m/z from the peak, remov-
ing the top 50% that were potential signals and fitting a
normal function to the remaining peaks. Based on the
normal function, likelihood of this peak for being noise
was evaluated; peaks with likelihood >1x10™'> were
discarded and the signal peaks were extracted from the
spectra (Fig. 1b).

Despite on-plate calibration, peaks from many samples
remained off-calibrated by up to +0.5 m/z units. There-
fore, additional calibration was performed by comparing
samples with a set of 50 most abundant peaks as refer-
ence (Additional file 1: Table S1). Calibration was omit-
ted for samples where all peaks are within +0.1 m/z
units to reference. For each sample where the maximum
error to reference was >0.1 m/z units, a linear model
was fitted between m/z values and errors within its
spectrum:

E}"V(M) =k-M+b

where Err is the error of m/z between the spectrum
and reference, M is the m/z ratio and k and b are coeffi-
cients for the linear model. The errors were then sub-
tracted from m/z values for each peak to obtain a set of
calibrated m/z values (Fig. 1c). From each cluster of
peaks, the monoisotopic peak was extracted. Peaks that
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are within 2-3 m/z units were distinguished from iso-
topic effects by examining their relative intensities
(Additional file 2: Figure S1). Spectra with poor quality
(manually selected as <6 peaks above 2000 m/z units)
were excluded, leaving 6805 considered of good quality
for this purpose. The pre-processing greatly reduced the
redundancy and inaccuracy in the total set of peaks
present in the datasets; the set of over 15,000 peaks
across all raw spectra was reduced to ~ 5000 (including
~ 3000 monoisotopic) by background filtering and was
further reduced to 814 monoisotopic peaks after calibra-
tion (Fig. 1d; Additional file 3: Table S2). These distinct
peak bins were then combined into a 6805 x 814 matrix
X, where x; ;€ {0, 1} for any i and j:

X1,1 X1,814

X=| : :

X6805,1 X6805,814

Statistical analysis
Sensitivity and specificity of machine-learning classifiers
were calculated as:

e TP s TN
Sensitivity = TP+ EN Specificity = TN £ P

where TP and TN stand for true positive and true
negative and FP and FN stand for false positive and false
negative respectively. Values of TP, TN, FP and FN were
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obtained by examining the overlaps between the posi-
tives/negatives identified by the classifier with the posi-
tives/negatives of the expanded validation set, which
consists of the original validation set [26] and newly
identified samples in this study that are manually
checked for species. The sensitivity and specificity of
hierarchical clustering and PCA were calculated using
the same method.

Results
Model design for semi-supervised learning
As the aim was to identify species for the entire dataset
with prior knowledge of only a small subset of samples,
an iterative approach based on the random forest algo-
rithm was developed. Each cycle starts with a training
set of n samples (e.g. five for Cycle 1) for each taxon
(Fig. 2a), for which 2000 subsets consisting of 10 peaks
were randomly selected out of the 814 peaks. On each
subset, the ID3 algorithm was applied to compute the
optimal decision tree (Fig. 2b). All the decision trees
with an accuracy > 95% were selected for majority voting
and samples that passed >60% of the votes were added
to the expanded set of this species (Fig. 2c). In the rare
case where a sample was voted positive by more than
one taxon, the sample will be regarded as unclassified.
However, passing this expanded set to the next cycle
could be problematic. The training set was unlikely to
cover all species in the Pin Hole dataset and thus the ex-
panded set could potentially contain undesired species.
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Fig. 2 Cycle of semi-supervised learning model: (a) starting with a training set, each species within the training set undergoes B-E, where (b) is the use
of random forest to draw 2000 subsets with 10 m/z peaks for the training set, from which the ID3 algorithm was used to find the optimal decision
tree to separate the taxon from the rest (retaining those with accuracy > 0.95), (c) reflects majority voting of samples satisfying > 60% of trees, which
were then added to the taxon, (d) the removal of samples significantly different to the training set (newly added samples with likelihood < 0.2 were
removed) and (e) the updated set of samples were passed on to the next cycle as the new training set
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To tackle this problem, a filtering step was implemented
to remove samples that are substantially different from
the taxon. First, the characteristic vector vy for the
taxon was calculated as the difference of the fraction of
a peak in this taxon and half of the maximum fraction of
this peak in any other taxa:

~ 1 1
(vr), = Zin,p—O.S X RaTx< ;in»l’>

ieT ieT’

where p is the peak of the p” element of ¥7, x is the
binary value in matrix, T is the taxon and 7’ represent
all the other taxa. The characteristic vector reflects both
the uniqueness of peaks to this taxon and the pattern of
all peaks in this taxon. A similarity score was then calcu-
lated as the inner product between a sample ®; and the
taxon’s ¥ . To remove newly added samples that are
vastly different to this taxon, a normal distribution was
fitted to similarity scores of the original set and samples
with a probability density <0.2 were removed (Fig. 2d).
The above process was repeated for all taxa in the train-
ing set and the new training set was passed on to the
next iteration (Fig. 2e).

Machine learning predicts species with high accuracy

We started machine learning (ML) using the validation
set of 14 megafaunal taxa identified in Buckley et al
[26], including 37 bear (Ursus), 34 bovine (Bos/Bison),
48 horse (Equus), 15 hyaena (Crocuta), seven lion
(Panthera), 76 hare (Lepus), 28 mammoth (Mam-
muthus), 13 red fox (Vulpes), eight arctic fox (Alopex),
eight wolf (Canis), 13 weasel (Mustela), 308 reindeer
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(Rangifer), six roe deer (Cervine) and 82 rhinoceros
(Coelodonta) samples, along with 11 field mouse (Apode-
mus) samples. Five samples were randomly drawn from
each taxon and used as the training set for Cycle 1. Since
ML struggled to distinguish between phylogenetically
closely related species (Additional file 2: Figure S2), we
pooled hyaenas with lions (denoted as Crocuta/
Panthera) and red foxes, arctic foxes with wolves (de-
noted as Canid). Through iterations of ML, we observed
increasing numbers of identified samples in each taxon
and the numbers converged to constants within eight cy-
cles (Fig. 3a, Additional file 4: Table S3). Each taxon
tended to occupy a distinct domain on the multivariate
plot of the first two principal components (Fig. 3b). We
observed no clear boundaries between taxa, which is as
expected since the principal component alone is insuffi-
cient in separating different taxa.

Any classification method faces the trade-off between
sensitivity (i.e. not missing true positives) and specificity
(i.e. not including false positives). To assess the sensitiv-
ity of our classifier, we compared the output with a val-
idation set published by Buckley et al. (2017) using
manually selected biomarkers. For most taxa, ML were
able to discover >90% samples of the validation set
(Fig. 4a). Notably, sensitivity reached ~95% for Bos/
Bison, Lepus, Cervine, Rangifer, Mammuthus and Coelo-
donta. We repeated the algorithm ten times with rando-
mised starting sets of size=5 and observed consistent
performances (Fig. 4b, blue boxes). ML also identified
previously unannotated samples (Fig. 4a yellow bars). To
test for false positives within these samples, we manually
checked the outputs of ten ML runs and confirmed that
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the error was within 5% for Apodemus, Ursus, Bos/Bison,
Canid, Crocuta/Panthera and Mustela and is zero for
other taxa (Fig. 4b).

Current runs of ML were based on training sets of five
samples per taxon. We next investigated the effect of
training-set sizes on the accuracy of the ML output and
then repeated the ML with a training set of =2, 3, 4, 5
or 6 samples per taxon. For each size of #, 10 runs of su-
pervised ML (each consisting of 8 cycles) were per-
formed. We observed that as the size of training set
increases, higher sensitivity was achieved at the end of
the 8-cycle runs. Notably, the gain in performance di-
minished after n =5, which indicates that five samples
per species is a reasonable choice for a training set.

Machine learning outperforms PCA and hierarchical
clustering

Given a suitable training set, machine learning (ML) was
able to identify species at high discovery rates with few
false positives. We next compared its performance with
alternative methods such as multivariate analysis and
clustering. Principal component analysis (PCA) is a
widely used multivariate analysis where the original data
is transformed into orthogonal principal components
with reduced dimensions. To classify samples, we first
calculated the centres of weight for each taxon in the
validation set using the first five principal components.
Samples were then classified into the nearest centre,
given that the distance is within a certain threshold. We
screened a range of thresholds to find the optimal value
that gives the smallest error (i.e. sum of false positives
and negatives). While PCA was able to achieve good
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sensitivity for Apodemus and Mammuthus (Fig. 5a), and
good specificity for Apodemus, Lepus, Rangifer and
Coelodonta (Fig. 5b), its performance for other species
was much less satisfactory.

To test for hierarchical clustering, we computed the
distance matrix based on Euclidean distances between
binary vectors and constructed the hierarchical tree.
The tree was cut down into n clusters for a given
parameter n. We screened the parameter n from 10
to 200 and observed optimal performance at »n=69.
For most taxa, hierarchical clustering achieved similar
sensitivity to ML and slightly higher sensitivity for
Equus (Fig. 5a). However, its relatively lower specifi-
city in Ursus, Bos/Bison and Canid indicates that it
might be prone to false discoveries (Fig. 5b). In
addition, the results for PCA and hierarchical cluster-
ing represent the best-case scenario since we screened
for the optimal parameters against the validation set.
In reality, it is rarely achievable since the validation
set would be unknown to the user. Therefore a con-
siderable amount of manual work would be required
for parameter optimisation. In contrast, machine
learning was able to run on a small training set and
achieve similar or higher performances.

Systematic identification of biomarkers

The drawback of machine learning is that its logic is
difficult to interpret since the final decision on spe-
cies assignment is voted by numerous decision trees.
To obtain a simplified view of the classification re-
sults, we also investigated which biomarkers can be
used to separate species or higher taxonomic groups.
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We first constructed the phylogenetic tree based on
centres of each taxon in the ML output, which pro-
duced a topology largely consistent with that expected
for the megafauna (e.g., individual groupings of Car-
nivora, Artiodactyla and Perissocatyla. However, some
of the deeper associations were clearly inconsistent
with known relationships, such as the lagomorph

(Lepus) being with the carnivores, and the deep root-
ing of the rodent Apodemus). At each tree node, we
searched for biomarkers that can separate the two
branches with accuracy >90%. In addition to previ-
ously known biomarkers, we identified a number of
new biomarkers that can be used to separate taxo-
nomic groups (Fig. 6).
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Discussion

In this study, we used machine learning (ML) to estab-
lish the pipeline for automated species identification
from PMF data. The main issue of using simple prob-
abilistic classifiers is the potentially limited performance
due to small available training sets. Therefore, we devel-
oped an ensemble algorithm based on iterations of ran-
dom forest that progressively expands the training set
and learns towards the final classification scheme. In
each cycle, we chose decision trees over support vector
machines (SVM) or neural networks for their fast train-
ing speed and easy interpretation, given that using SVM
as tree constructor yields similar classification results to
decision trees (Additional file 2: Figure S3). We initially
included closely related species such as Crocuta and
Panthera or Alopex, Vulpes and Canis. However, ML
failed to accurately classify some of these species (Add-
itional file 2: Figure S2). Pooling closely related species
significantly improved ML performance. Using pooled
species as input, we were able to identify >85% of the
samples at family/subfamily level with low false discov-
ery rates. Parameters used in the algorithm were arbi-
trary rather than optimised since optimisation increases
the chance of overfitting. Nevertheless, a scan over vari-
ous combinations of parameters confirmed the robust-
ness of this approach as long as arbitrary parameters are
not of extreme values (Additional file 2: Figure S4). ML
differs from clustering methods in the way that it is in-
trinsically selective towards certain markers since major-
ity voting almost always favours some markers over
others, whereas clustering methods usually treat markers
with equal weights. Higher performance of ML indicates
that using differential weights on markers could be im-
portant for distinguishing low level taxonomic groups,
which agrees with previous work on keratin for species
identification [3].

This approach does not have the support of sequence
information, which allows for the confirmation of hom-
ology between different markers. One issue is that of
PTMs shifting the m/z of the peptides being studied. In
the case of deamidation, affecting peptides that contain
asparagine and glutamine residues, this is relatively pre-
dictable and managed by including allowance for the + 1
shift per affected residue (rarely more than 2 or 3 per
peptide). In the case of oxidation, for the most part this
is a frequent occurrence on collagen’s many proline (and
lysine) residues but it is a biological phenomenon not
strictly related to decay. However, the oxidation of me-
thionine residues is known to occur by laboratory decay
in proteins, but this is a rare amino acid in collagen (e.g.,
[28]), with the only known exception of one of the
manually proposed markers being in one species of mar-
ine mammal [29]) and therefore not considered prob-
lematic in this study.
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The main advantage of this machine learning approach
is that it allows for the relaxation of the manual screen-
ing criteria that were previously employed to reduce
time wasted on manual study of poorer spectra. It is also
particularly convincing that there is a very low false posi-
tive score for a study of this nature. However, by includ-
ing an indication of how likely a sample belongs to a
taxon (e.g., the similarity score proposed in Fig. 2c; Add-
itional file 5: Table S4), it would allow the user to manu-
ally check the most likely spectra to have been falsely
identified.

Conclusion

Here we developed a machine learning approach for au-
tomated species identification that vastly reduces the
manual work required for analysing high-throughput
collagen PMF data of ancient bone samples. This
method was able to reach taxonomic resolution at fam-
ily/sub-family levels within the vertebrata which would
provide useful information for ancient samples where
DNA was unavailable.
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