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Abstract

Background: Rapid progress in high-throughput sequencing (HTS) and the development of novel library
preparation methods have improved the sensitivity of detecting mutations in heterogeneous samples, specifically in
high-depth (>500×) clinical applications. However, HTS methods are bounded by their technical and theoretical
limitations and sequencing errors cannot be completely eliminated. Comprehensive quantification of the background
noise can highlight both the efficiency and the limitations of any HTS methodology, and help differentiate true
mutations at low abundance from artifacts.

Results: We introduce MERIT (Mutation Error Rate Inference Toolkit), designed for in-depth quantification of
erroneous substitutions and small insertions and deletions. MERIT incorporates an all-inclusive variant caller and
considers genomic context, including the nucleotides immediately at 5′and 3′, thereby establishing error rates for 96
possible substitutions as well as four single-base and 16 double-base indels. We applied MERIT to ultra-deep
sequencing data (1,300,000×) obtained from the amplification of multiple clinically relevant loci, and showed a
significant relationship between error rates and genomic contexts. In addition to observing significant difference
between transversion and transition rates, we identified variations of more than 100-fold within each error type at
high sequencing depths. For instance, T>G transversions in trinucleotide GTCs occurred 133.5± 65.9 more often than
those in ATAs. Similarly, C>T transitions in GCGs were observed at 73.8± 10.5 higher rate than those in TCTs. We also
devised an in silico approach to determine the optimal sequencing depth, where errors occur at rates similar to those
of expected true mutations. Our analyses showed that increasing sequencing depth might improve sensitivity for
detecting some mutations based on their genomic context. For example, T>G rate of error in GTCs did not change
when sequenced beyond 10,000×; in contrast, T>G rate in TTAs consistently improved even at above 500,000×.

Conclusions: Our results demonstrate significant variation in nucleotide misincorporation rates, and suggest that
genomic context should be considered for comprehensive profiling of specimen-specific and sequencing artifacts in
high-depth assays. This data provide strong evidence against assigning a single allele frequency threshold to call
mutations, for it can result in substantial false positive as well as false negative variants, with important clinical
consequences.
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Background
The rising utilization of high-throughput sequencing
(HTS) in clinical oncology has transformed our under-
standing of cancer evolution and has provided clini-
cians with an invaluable tool for precise diagnosis and
prognosis.
In clinical cancer genomic testing, target-capture library

preparation assays are favored over whole genome or
whole exome sequencing approaches because of their
lower cost in obtaining higher sequencing depth – the
number of reads covering a specific locus [1]. High-
depth DNA sequencing enables confident detection of
small clones of somatically mutated cells in heteroge-
nous tumor samples, where in addition to genomi-
cally diverse cancer cells, contaminating normal cells
may also be present. Using polymerase chain reaction
(PCR)-based amplicon or hybridization-capture enrich-
ment techniques, clinical-grade cancer sequencing panels
are capable of producing 500 to > 10,000 reads mapping
to each targeted locus [2, 3]. Specifically, a minimum
average depth of 500× is strongly advised by regulatory
bodies for reliable detection of somatic mutations with
variant allele frequencies (VAFs) as low as 5% in tumor
specimens [4].
The power to detect small clones in heterogenous sam-

ples may improve by increasing depth; however, confident
detection and differentiation of true mutations with low
VAFs, e.g., < 0.1%, from the sequencing artifacts remains
a challenge. HTS errors are dominated by misreading a
base within the instrument or nucleotide misincorpora-
tions during library enrichment with PCR. Differential
rate of substitution errors in HTS has been observed and
attributed to common DNA damaging events such as
spontaneous deamination, presence of oxidized bases in
cells in addition to ex vivo oxidation during DNA extrac-
tion [5], or short-lived high temperatures during acoustic
shearing [6]. Such events often lead to higher rates of tran-
sitions versus transversions [7–11] or increased number
of errors in specific genomic contexts. These differences
can be more pronounced at higher sequencing depths and
directly impact the sensitivity for detecting truemutations
with low VAFs. Here, we hypothesize that the genomic
context of substitution errors, i.e., the nucleotides imme-
diately at their 5′ and 3′, is a determinant factor in esti-
mating their rates at high sequencing depths. To this end,
we generated ultra-deep sequencing data (1,300,000×)
and developed MERIT (Mutation Error Rate Inference
Toolkit), a comprehensive pipeline designed for in-depth
quantification of erroneous HTS calls. Using MERIT, we
show a significant relationship between substitution error
rates and their sequence contexts. In addition to observing
more than three orders of magnitude difference between
transition and transversion error rates, we identify vari-
ations of more than 130-fold within each error type at

high sequencing depths. We also propose an in silico
depth reduction approach to provide insights on estimat-
ing optimal depth – where sequencing errors exist at rates
similar to those of true mutations. Finally, we propose an
assay for detailed assessment of nucleotide-incorporation
fidelity for four high-fidelity DNA polymerase molecules.

Methods
DNA sample
We obtained HapMap NA19240 human genomic DNA
(5 μg) from Coriell, purified from immortalized lympho-
cytes using the Qiagen Autopure LS instrument in TE
buffer (10 mM Tris, pH 8.0/1 mM EDTA) with con-
centration of 301 ng/L. We assessed sample quality and
concentration using Nanodrop and Qubit dsDNA assays
before library preparation.

DNA polymerase enzymes and primer design
We used four high-fidelity DNA polymerase enzymes –
NEBNext® High-Fidelity 2X PCR Master Mix (Hi-Fi 2X),
NEBNext® UltraTM II Q5® Master Mix (Ultra II), KAPA
HiFi PCR kits with ReadyMix (KAPA), and InvitrogenTM
PlatinumTM SuperFiTM DNA polymerase (SuperFi) –
for PCR amplification. We designed the primers using
Primer3 [12] to target four loci in the TP53 and SF3B1
genes such that the paired-end reads (R1 and R2) are
significantly overlapped (Additional file 1: Tables S1
and S2).

PCR amplification, indexing, and sequencing
We performed twenty PCR cycles using the Hi-Fi 2X,
KAPA, and SuperFi polymerases, and 16 cycles using the
Ultra II polymerase in the first round of amplification
(Additional file 1: Table S3). The cycle numbers were
determined after initial PCR amplification tests in order
to obtain similar amount of DNA for each enzyme. The
second round of PCR for multiplexing and cluster gen-
eration included seven cycles for all four polymerases
(Additional file 1: Table S4). After each PCR amplifica-
tion, AMPure Bead cleanup was performed. First, 0.4×
ratio (20 μL AMPure bead to 50 μL PCR product) was
used to remove gDNA and larger fragments (i.e., > 600
bp). For the saved supernatant, additional 80 μL AMPure
Bead was added to bring the total to a 2× ratio. The
beads were eluted with 22 μL EB (10 mM Tris, pH
8.0). The annealing temperature of 66°C was determined
based on the product specificity and yield for all poly-
merases after performing gradient PCR optimization at
eight different temperatures (Additional file 1: Figure S3).
Qubit quantification and Bioanalyzer analysis were per-
formed for quality assessment. Custom amplicon-based
sequencing and library preparation were performed at
GeneWiz (South Plainfield, NJ) using Illumina HiSeq2500
Rapid Run.
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MERIT: a comprehensive error rate estimator
Comparative performance analysis of the commonly used
HTS variant callers [13–15] suggests a significant dis-
agreement between their identified variants [16–18].
These differences are mainly rooted in each pipeline’s
specific filtering and statistical methodology. For exam-
ple, a number of filters is automatically applied to reads
by HaplotypeCaller implemented in the Genome Analy-
sis Toolkit (GATK) [13] to exclude uninformative reads
from the analysis. This practice is aligned with the goal
of the majority of variant callers, which is distinguishing
true mutations from the artifacts. However, for a precise
quantification of the sequencing noise, i.e., error rate pro-
filing, all the reads need to be included in the analysis as
the ultimate goal is understanding the nature of artifacts.
SAMtools [14] is the basis of a number of alignment-based
variant callers [19, 20], and has high flexibility for changes
in its filters. Therefore, MERIT uses SAMtools to iden-
tify all positions with alternate alleles from the aligned,
indexed sequencing reads. By extracting allele frequencies
of substitutions directly from the Pileup file generated by
SAMtools mpileup, we make sure all reads are included in
the analysis.
As MERIT is designed for ultra-deep HTS applica-

tions, the input options of its SAMtools mpileup are
set to accommodate high depths while providing the
users the ability to modify these parameters based on
each sequencing data’s characteristics. Additional file 1:
Table S5 summarizes the default input parameters of
SAMtools mpileup versus those used in MERIT. These
parameters allow MERIT to probe SAMtools Pileup data
and extract sequencing information for all substitutions,
even when they are present in only a single read amongst
tens of thousands. Accurate identification of indels is a
challenging problem [21, 22] and beyond the scope of this
work. Specifically, SAMtools’s filtering criteria in intro-
ducing and extending gaps, could affect calling complex
indels, especially insertions, rendering error rate estimates
sequencing depth-dependent.
Next, MERIT obtains the Phred quality score of base

substitutions as well as the average Phred quality of bases
before and after indels. These quantities are not provided
in the VCF files generated by SAMtools. Of note, we
observed that the alternate allele and total depths at indel
loci are only accurate in SAMtools’s Pileup files and not
in its VCF. Therefore, to ensure allele frequency accu-
racy for both indels and substitutions identified, MERIT
extracts the reference and alternate alleles’ depths as well
as the total depths for all the variants from the Pileup
file. MERIT also extracts the position-in-read for all
variants. Such information, especially in hybrid-capture
sequencing, helps to better quantify the source of errors
in HTS platforms. An optional annotation step is also
available. Finally, MERIT obtains the genomic context of

the variants from the reference genome, including the
nucleotides immediately at their 5′ and 3′, and estimates
error rates for 96 possible single nucleotide substitutions
as well as four single-base and 16 double-base inser-
tions/deletions (indels). Details of MERIT’s workflow are
shown in Fig. 1.

Error rate estimation
We used a single HapMap sample to generate ultra-deep
data, and although there may be small, uncharacterized
variations within initial cell population, we assumed that
all detected variants were errors accumulated in library
preparation or during sequencing.
We considered context-specific erroneous base calls at

each locus to follow a binomial distribution. More pre-
cisely, the probability of a single nucleotide Xi with the
genomic context ZXiZ′, Z,Z′ ∈ {A,C,T ,G}, in a specific
locus i being misread as Yi, i.e., PZXiZ′→ZYiZ′ followed

PZXiZ′→ZYiZ′ = P(xi|ni, p) =
(
ni
xi

)
pxi(1 − p)ni−xi ,

Fig. 1MERIT’s workflow. MERIT is designed for comprehensive
characterization of the sequencing error rate in ultra-deep HTS
applications
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where p is the combined PCR and sequencing error rate
and ni and xi are the total read depth and the number
of erroneous calls at position i, respectively. Assuming a
position-independent p, the probability of observing m
instances of ZXZ′ → ZYZ′ error within each sample was
then given by

PZXZ′→ZYZ′ = P
( m∑

i=1
xi|

m∑
i=1

ni, p
)

=
(∑m

i=1 ni∑m
i=1 xi

)
p

∑m
i=1 xi (1 − p)

∑m
i=1(ni−xi) .

(1)

(See Remark 1 in Additional file 1 on the sum of bino-
mial random variables.) For the case of indels, a binomial
model was used to describe the error rate as well, but
instead of categorizing them based on their context, indels
were classified based on the type of inserted/deleted base,
as no differential error rates were observed for context-
specific indels.

Polymerase fidelity estimation
The estimated error rate in Eq. (1) has a unit of
[error/base]. It is also common to report the fidelity of
polymerase enzymes as [error/base/doubling] in the liter-
ature where template doubling d is given by

2d = final DNA amount after PCR
starting DNA amount for PCR

.

Since precise amounts of input and output DNA were
known for our experiment in its second round of PCR, we
calculated template doubling and estimated polymerase
replication efficiency as the ratio of template doubling d
over the number of PCR cycles performed (Additional
file 1: Table S4). To obtain the total amount of template
doubling after performing two rounds of PCR amplifica-
tion, the total number of PCR cycles were multiplied by
the polymerase efficiency which resulted in 20.83, 16.19,
16.87, and 20.98 total template doubling for the Hi-Fi 2X,
Ultra II, KAPA, and SuperFi polymerases, respectively.

Alignment andmerging
We cleaned the paired-end (PE) reads of adapters using
bcl2fastq Conversion Software (v2.17), and aligned them
to the reference human genome hg19 assembly using the
Burrows-Wheeler Aligner (BWA) tool [23] (bwa sampe
for PE and bwa samse for merged reads along with bwa
aln). We then merged the PE reads that properly mapped
to the targeted loci. In our merging scheme, if R1 and
R2 reads did not match at a base, an N was assigned
for that position. We discarded read pairs with smaller
than 50 base overlaps or with more than five mismatches.
We calculated Phred quality score (Q) of a successfully
merged locus as the sum of the qualities in R1 and R2

reads since these are independent events; Q is given by
Q = −10 log10 p where p is the probability that the base
is called incorrectly. Merged reads were then mapped to
the reference human genome hg19 assembly, and were fil-
tered so that they were uniquely mapped (BWA tags X0:1
and X1:0). Finally, in order to make a fair comparison
between the error rate of merged and PE reads, we only
considered PE reads that were merged successfully and
uniquely mapped. Additional file 1: Table S2 represents
the average depth of merged and PE reads in different loci.
To assess the effect of alternate alignment approaches, we
tested Bowtie [24] in addition to BWA to map the merged
reads to the reference genome.

In silico depth reduction
The sequencing assay was designed to obtain an average
depth of > 1, 000, 000× bp, but for some amplicons the
average depth was substantially larger (Additional file 1:
Table S2). Therefore, an in silico depth reduction pro-
cedure was performed to reduce the high depths and
more importantly, generate enough independent samples
to estimate low error rates confidently. It should be noted
that one of the main hurdles in error rate estimation of
high fidelity polymerases via HTS is the lack of signal as
errors occur infrequently with increased fidelity, hence,
a large number of samples is required to accurately esti-
mate errors. As performing ultra-deep sequencing on a
large number of samples is not cost-effective, alternatively,
in silico data at lower depths can be generated from one
ultra-deep sequencing run by randomly selecting reads
from the original raw sequencing data.

Clinical samples
We obtained 29 hematopoietic samples collected from 9
patients with chronic lymphocytic leukemia, previously
analyzed by amplicon deep-sequencing (NCBI BioProject
PRJNA411889). These samples were sequenced using a
custom 88-gene panel, targeting 92 amplicons on Illu-
mina HiSeq (2x150bp) at GeneWiz (South Plainfield, NJ)
(Supplementary Table 5 in [25]). The reads were cleaned,
merged, and aligned to the reference genome as previously
described [25]. We removed previously detected germline
and somatic mutations to ensure that the remaining vari-
ants represented only the errors.

Results and discussions
Impact of merging reads on context-specific error
correction
Independent analysis of R1 and R2 reads at 1,300,000×
indicated significant variations in estimated error rates
across 96 possible sequence contexts (Fig. 2). High error
rates and low Phred quality scores observed in R2 rel-
ative to R1 may be associated with sequencing errors
caused by misreading a base, attributed to image analysis
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a

b
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d

Fig. 2 Estimated context-specific substitution error rates for polymerase Hi-Fi 2X. a) R1 reads. b) R2 read. c) �, the ratio of error rate in R1 over R2.
P-values were computed by performing a two-tailed z-test. d) �, the difference between their corresponding Phred quality scores. We reduced the
depth of paired-end reads to approximately 1,300,000× through an in silico depth reduction procedure. Results were obtained by averaging over
100 independent samples to establish error bars which indicate one standard deviation from the average

biases [26] or phasing/pre-phasing [11]. These sequenc-
ing errors that dominated the R1 and R2 profiles can
be distinguished from polymerase errors by merging the
overlapped paired-end reads [27–29]. Merging, however,
cannot eliminate errors randomly accumulated during
the amplification processes and present in both reads. In
contrast to higher rates of transversion versus transition
errors in paired-end reads (Fig. 3a), the remaining PCR-
related errors in the merged reads were dominated by
transitions, often with high Phred quality scores (Fig. 3b).
MERIT provides further insight for profiling these errors,
which are themain hurdle in distinguishing real mutations
from sequencing noise:

• Merging R1 and R2 reads lowered all the
context-specific error rates. The highest reduction in
rate was observed for GTA>GGA transversions

(5,025± 2, 794×) while GCG>GTG transition errors
only improved by a factor of 1.22± 0.07×. Moreover,
these improvements were context-specific. For
example, T>A transversion in GTA trinucleotides
showed substantial reduction (568± 249×) compared
to those in CTAs (1.43± 0.31×).

• Transition errors occurred at higher rates relative to
transversions, in agreement with previous reports
[7–11]. This difference was pronounced further when
errors were classified based on their context,
denoting a rate of 1.29± 0.04 × 10−3 [error/base] for
GCG>GTG versus that of 2.17± 0.92 × 10−6

[error/base] for GTA>GAA (Fig. 3b). MERIT also
revealed considerable variation within each
substitution type. For example, T>G transversions in
GTCs occurred 133.5± 65.9× more often than those
in ATAs. Similarly, C>T transitions in GCGs were
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a

b

Fig. 3Merging of overlapped PE reads reduces context-specific error rates. a) R1 and R2 reads. b) Merged reads. Depth of merged reads for
polymerase Hi-Fi 2X were reduced in silico to approximately 650,000×. Error bars indicate one standard deviation from the average of 100
independent sub-samples

observed at 73.8± 10.5× higher rate than those in
TCTs (Fig. 3b).

• The rate of C>A errors in ACCs was the highest of
all such transversions. These errors are linked to the
conversion of guanine to 8-oxoG resulting in
mismatched pairing with adenine [30, 31]. Oxidation
of guanine to 8-oxoG happens naturally in living cells
and can be increased by DNA damaging factors such
as acoustic shearing [32].

• Merging R1 and R2 can correct for the low quality
erroneous bases associated with sequencing errors.
Our analysis suggests that such sequencing errors can
be identified and eliminated based on their quality,
when merging the reads is not possible (e.g., in
hybrid-capture-based sequencing where read pairs
are not designed to necessarily overlap).

Finally, we tested whether an alternative alignment
method, such as Bowtie [24], would affect error rate
estimations, and found minimal changes across the 96
genomic contexts (Additional file 1: Figure S4).

Effect of mutation context on amino acid variations
In a single codon, the context-specific rate of error for
each base change directly affects the sensitivity of detect-
ing the resulting amino acid variation. Our data indicated
that the most commonly mutated residues in TP53 and
SF3B1 were often more prone to errors and hence com-
paratively less likely to be distinguished from sequencing
errors. For example, in TP53, R248Q and R248W are
among the most common mutations found in cancer
patients [33]. The transition base changes that result in
these mutations could be confounded by the HTS errors

at an 8-fold higher rate than the transversion alterations
that lead to R248L, and 55-fold higher than those that
lead to R248G (Fig. 4a). Similarly, the K700E mutation
in SF3B1 is the most frequently mutated residue in the
gene’s exon 10 [34, 35]; it results from a T>C mutation
in a TTC trinucleotide that showed the highest rate of
error for a non-synonymous amino acid change in its
codon (4.74± 0.42 × 10−5 [error/base]). In contrast, the
comparatively rarer I704Fmutation – a T>A in aATG ref-
erence trinucleotide – had one of the lowest rates of error
in its respective codon (5.15± 1.13 × 10−6 [error/base];
Fig. 4b). K700E’s 9-fold higher rate of error than that of
I704F indicated marked reduction in its relative detection
sensitivity.

Optimal sequencing depth
Insufficient sequencing depth reduces the sensitivity of
detecting variants and leads to loss of statistical sig-
nificance for a confident variant calling [36]. Conse-
quently, sequencing at higher depths is expected to
provide robust error rate estimates and improved sensi-
tivities in detecting true mutations. Accurate estimation
of optimal sequencing depth, beyond which the inferred
background error is not further reduced, not only pro-
vides a precise view of intrinsic limitations in HTS assays,
but also leads to preserving time and resources by avoid-
ing unproductive ultra-deep sequencing experiments.
To provide insight on optimal sequencing depth,

we performed in silico experiments and estimated
context-specific error rates as a function of depth. We
randomly selected merged reads and constructed simu-
lated sequencing data at depths ranging from 1,000× to
700,000×, with 500 independent replicates at each depth
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a

b

Fig. 4 Significant variation in error rates for possible amino acid changes at individual codons. a) Six frequently mutated residues in the TP53 gene.
b) Two hotspot residues in the SF3B1 gene. The higher the rate of error for a specific base change, the lower the power to distinguish true mutations
from sequencing artifacts at its position. Here, the error rates represent the amplification by the Hi-Fi 2X polymerase. Error bars represent one
standard deviation from the mean of 100 independent sub-samples

to establish confidence intervals (Fig. 5). MERIT showed
that the type of substitution error was an important deter-
minant in estimating the optimal depth (Fig. 5a). The
error rate estimates for all transitions as well as C>A
transversions did not significantly change as sequencing
depth increased beyond 200,000×; however, the inferred
rates for the remaining transversions marginally improved
at higher depths. More importantly, this analysis high-
lighted the importance of context-specific error profiling
in determining detection sensitivity thresholds for true
mutations. For example, at 5000×, the corresponding
error rates for all T>A errors, T>A errors in CTAs, and

T>A errors in GTTs were 2.19± 0.37× 10−4 [error/base],
4.27± 2.28 × 10−4 [error/base], and 1.96± 0.02 × 10−4

[error/base], while at 700,000×, these rates were reduced
to 2.02± 0.73 × 10−5 [error/base], 2.5± 0.99 × 10−4

[error/base], and 2.1± 0.89 × 10−6 [error/base], respec-
tively. Selecting a frequency threshold for these variants
at 5000× based on the general T>A rate may not yield
significant number of false calls independent of their
sequence contexts; however, at depths > 5000×, set-
ting a threshold based on all T>A errors would lead
to substantial false positive CTA>CAA and false nega-
tive GTT>GAT calls, as their corresponding error rates
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a b c

Fig. 5 Context-specific optimal sequencing depth. Substitution error rates are classified based on their type (column a) and context (columns b and
c) at nine different depths: 1,000×, 5,000×, 10,000×, 25,0000×, 50,000×, 100,000×, 200,000×, 400,000×, and 700,000×. In silico depth reduction
procedure was performed on merged reads, amplified by polymerase Ultra II to an average depth of 1,930,473×. The shaded areas are uncertainty
bounds of one standard deviation around the average, derived from 500 independent sub-samples

diverge at high depths, reaching a difference of two orders
of magnitude at 700,000×.
It should be noted, however, that SAMtools might

not be able to detect all indels at all depths [21, 22].
Although comparing indel error rates might be only
statistically meaningful at fixed sequencing depths, we
did observe a reduction in estimated rate of error
for single-nucleotide deletions relative to sequencing
depth (Additional file 1: Figure S6). Calling all com-
plex indels, especially when they are present in only
a few reads, may require more sophisticated variant
callers whose results can be combined with substi-
tution calls to obtain a comprehensive error profile
by MERIT.

DNA polymerase fidelity estimation
High-fidelity DNA polymerases – equipped with proof-
reading – result in fewer base misincorporations in PCR
enrichment step, and thus, can reduce HTS error rates.
The Hi-Fi 2X, Ultra II, KAPA, and SuperFi enzymes
are marketed as high-fidelity polymerases, specifically
designed for efficient amplification of complex templates
such as those with GC-rich regions. Their providers have
reported a fidelity 100× better than wild-type Taq DNA
polymerase [37–40].
We applied MERIT to merged reads at equal depths

of 650,000×, ensuring that the estimated fidelities were
not affected by sequencing depth. When all errors were
included in the analysis, global error rates suggested
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that these polymerases performed fairly similarly to each
other, with the highest and lowest error rates belonging
to KAPA and SuperFi enzymes, respectively. Specifically,
the global substitution error rates for Hi-Fi 2X, Ultra II,
KAPA, and SuperFi were estimated at 2.66± 0.21 × 10−6,
1.91± 0.19 × 10−6, 6.95± 0.54 × 10−6, and 1.76± 0.25 ×
10−6 [error/base/doubling], respectively (Additional file 1:
Figure S1a).
Because different assays, quantification methods, and

descriptive units [21, 41] are often used to estimate the
polymerase fidelity, comparing the reported rates in the
literature is a challenging task and beyond the scope
of this work. More importantly, error rate profiles in
HTS data are reported to be platform as well as batch
dependent [42]. For example, using single cell sequencing
technique error rates of 5.3× 10−7 [sub/base/doubling]
and 1.6× 10−5 [sub/base/doubling] are reported in [21]
for Ultra II and KAPA polymerases, respectively. In
another study [43], a barcoding sequencing approach
yielded a rate of 4× 10−6 [substitutions/base] for Ultra
II while 2.8× 10−7 [substitutions/base] is reported for
KAPA enzyme in [39]. Here, we use MERIT to emphasize
on the importance of context-specific polymerase fidelity
estimation and provide a robust comparison of these com-
monly used high-fidelity enzymes performed on a single
sequencing platform.
Relying solely on global error rates for comparing the

replication accuracy of these high-fidelity enzymes may
be misleading [44]. Previous HTS-based analyses of poly-
merase fidelity estimation have classified substitutions
into transition and transversion types and have showed
preferential rates of error [21, 41, 44, 45]. Additional
file 1: Figure S1b represents such classification of the
substitution errors in our ultra-deep data, providing a
more detailed understanding of the replication fidelity
of these enzymes. For example, the global substitution
fidelity of SuperFi was found 3.95± 0.65× better than
that of KAPA’s; however, specific substitution fidelity dif-
fered widely. C>G errors of SuperFi were 6.88± 2.16× less
frequent than those of KAPA. In contrast, for C>A sub-
stitutions, SuperFi’s advantage over KAPA was reduced to
only 1.85± 0.30×.
For a more comprehensive analysis, we used MERIT to

estimate 96 context specific substitutions and observed
substantial variations (Fig. 6a). For example, TTA>TGA
error rate of SuperFi was found 132± 35× lower than
KAPA, while for GCG>GAG errors, KAPA performed
just slightly better than SuperFi. Such classification of sub-
stitution errors based on their genomic context enabled
us to perform robust statistical comparisons between
the replication accuracy of different DNA polymerases
using Spearman’s rank correlation coefficients presented
in Fig. 6d, rather than just comparing them using a single
global error rate. Moreover, using the data from multiple

regions of the TP53 and SF3B1 genes, we found lim-
ited change in overall error profiles as the similarities
between the genomic content of the amplified amplicons
decreased (Fig. 7).

Application of MERIT to clinical samples
Sample preservation and library preparation of clinical
samples can lead to specimen-specific errors. MERIT
provides a tool to assess and compare such error profiles.
Additional file 1: Figure S5 represents the substitution
error rates estimated for hematopoietic samples collected
from leukemia patients presented in [25]. The error rate
estimates for these clinical samples showed a high rate
of transition errors similar to previous results from a
cell line. A major difference, however, was that the C>A
errors proceeded by C and T bases were more frequent
than those proceeded by A and G. Our data did not show
a preferred 3′ base trailing the misread C base. This high
rate of C>A errors has been observed in previous studies
[32, 46], specifically an abnormally high rate of
CCG>CAG errors in both tumor and normal samples
from cancer patients [32].

Conclusions
Novel library preparation methods have succeeded in
reducing the background sequencing noise, which has led
to improving the sensitivity of detecting true mutations
in heterogenous samples. PCR-free library preparation
methods [47, 48] have forgone the bias associated with
the polymerase base incorporation [49, 50], however, the
large amount of input DNA required in these techniques
is the main burden for their application in clinical cancer
genomic testing. As the exponential PCR amplification is
a crucial step in HTS, other techniques have focused on
minimizing polymerase errors rather than abolishing the
PCR step entirely, including Safe-Seq [6], Duplex-Seq [51],
Circle-Seq [52], Cypher-Seq [53], and maximum-depth
sequencing [54]. Despite all improvements, the back-
ground noise is not completely eliminated. The additional
cost and complexity of these methods as well as their
lower yield [54] limit their utilization in clinical cancer
genomic testing. Specifically, a limited starting material,
as is usually the case for tumor specimens, could results in
poor sample representation due to inefficiencies in adapte
r ligation and loss of genetically diverse small clones [55].
In this paper, we provided a comprehensive method for

profiling sequencing artifacts and discussed their impact
on accurate variant detection in amplicon-based HTS
data. We proposed an approach for determining the
optimal sequencing depth, where errors occur at rates
similar to those of true mutations. Our data obtained
from Illumina platforms confirmed previous results on
the differential rates of errors in paired-end sequencing
reads [11], and indicated that merging the overlapping
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Fig. 6 In-depth comparison of the error rates for four high-fidelity polymerases. a) Context-specific substitutions. b) Single-base insertions. c)
Single-base deletions. d) Spearman’s rank correlation coefficient between context-specific error profiles. Results are obtained by averaging over 100
independent samples to establish error bars, which indicate one standard deviation from the average

read pairs, independent of alignment approach, can
notably correct errors that accumulate in sequencing
instruments [55].
We also reported the application of MERIT to ultra-

deep sequencing data obtained from the amplification of
multiple clinically relevant loci using four high-fidelity
polymerase enzymes. Although there is limited varia-
tion in both the rates of error and dependence on the
genomic content of the amplified region, our results
indicated that profiling polymerase misincorporation pat-
tern according to genomic context has important clinical
consequences. Specifically, we showed that error rates
obtained from deep-sequencing of clinical specimens may
reflect processes that affect DNA quality during sample
preparations.

Sample heterogeneity, especially when low-abundance
mutations are present, can confound MERIT’s sequenc-
ing error profiles. Therefore, when MERIT is applied to
clinical specimens from which true mutations are not
removed, the estimated rates represent the upper bound
of true sequencing error rates. Our results also demon-
strated that assigning a single allele frequency threshold
to detect mutations may result in substantial false posi-
tive as well as false negative calls. Not only were neigh-
boring mutational hotspots in one gene affected with
markedly different error rates, there was significant vari-
ation in the sensitivity of detecting common amino acid
changes within each residue. These data suggested that
some of these mutations may in fact be more prevalent
at sub-clonal levels in disease populations than previously
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Fig. 7 Relationship between amplicon genomic content and error profiles. Spearman’s rank correlation coefficient between the context-specific
error profiles of the targeted genes as a function of the symmetric Kullback-Leibler distance between their content profiles presented in Additional
file 1: Figure S2

reported. For instance, small mutated clones in the TP53
gene, present in > 0.1% of alleles, are shown to be strong
predictors of poor survival and possible resistance to ther-
apy in various neoplasms [56–59]; thus, their detection
at very low abundances is pertinent for patient care. Put
together, our results strongly advocated mutation-specific
approaches that go beyond estimating fixed detection
thresholds for all variants [60–62].
As deep sequencing of patient samples becomes a rou-

tine part of precision medicine in the clinic, we believe
that the application of our data-driven pipeline to tumors
increases the speed with which patient data can be eval-
uated for presence of small prognostic mutations, hence,
contributing significantly to combating drug resistance
and increasing positive outcomes.

Additional file

Additional file 1: SI Materials. (PDF 4187 kb)
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