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Abstract

Background: Part of the missing heritability in Genome Wide Association Studies (GWAS) is expected to be
explained by interactions between genetic variants, also called epistasis. Various statistical methods have been
developed to detect epistasis in case-control GWAS. These methods face major statistical challenges due to the
number of tests required, the complexity of the Linkage Disequilibrium (LD) structure, and the lack of consensus
regarding the definition of epistasis. Their limited impact in terms of uncovering new biological knowledge might be
explained in part by the limited amount of experimental data available to validate their statistical performances in a
realistic GWAS context. In this paper, we introduce a simulation pipeline for generating real scale GWAS data,
including epistasis and realistic LD structure. We evaluate five exhaustive bivariate interaction methods, fastepi,
GBOOST, SHEsisEpi, DSS, and IndOR. Two hundred thirty four different disease scenarios are considered in extensive
simulations. We report the performances of each method in terms of false positive rate control, power, area under the
ROC curve (AUC), and computation time using a GPU. Finally we compare the result of each methods on a real GWAS
of type 2 diabetes from the Welcome Trust Case Control Consortium.

Results: GBOOST, SHEsisEpi and DSS allow a satisfactory control of the false positive rate. fastepi and IndOR present
an increase in false positive rate in presence of LD between causal SNPs, with our definition of epistasis. DSS performs
best in terms of power and AUC in most scenarios with no or weak LD between causal SNPs. All methods can
exhaustively analyze a GWAS with 6.105 SNPs and 15,000 samples in a couple of hours using a GPU.

Conclusion: This study confirms that computation time is no longer a limiting factor for performing an exhaustive
search of epistasis in large GWAS. For this task, using DSS on SNP pairs with limited LD seems to be a good strategy to
achieve the best statistical performance. A combination approach using both DSS and GBOOST is supported by the
simulation results and the analysis of the WTCCC dataset demonstrated that this approach can detect distinct genes
in epistasis. Finally, weak epistasis between common variants will be detectable with existing methods when GWAS of
a few tens of thousands cases and controls are available.
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Backgrounds
During the past decade, Genome-Wide Association Stud-
ies (GWAS) have focused on individual Single Nucleotide
Polymorphisms (SNPs), looking at variants exhibiting
independent, additive and cumulative effects on pheno-
types. To date thousands of SNPs have been associated
with diseases and other complex traits [1], but in most
cases those variants independently explain only a small
fraction of the estimated heritability [2, 3]. For example, in
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Crohn’s Disease, cumulative additive effects explain 10.6%
of the variability while the estimated heritability is 53%
in Type-2 diabetes, 4.7% for an estimated heritability of
26% and in Lupus, 6.6% for an estimated heritability of
44% [4]. The correct estimation of this missing heritabil-
ity is still a subject of research interest [5] which may
be due to a limitation of this additive model, confirming
geneticist’s hypothesis that most phenotypes are not only
driven by genetic variants acting independently, but that
other phenomenons have to be taken into account includ-
ing, but not limited to: epigenetics, environment interac-
tions, and genetic interactions between loci (epistasis) [6].
Zuk et al. [7] evaluated that up to 80% of the missing

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2229-8&domain=pdf
http://orcid.org/0000-0001-7265-6410
mailto: clement.chatelain@sanofi.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Chatelain et al. BMC Bioinformatics  (2018) 19:231 Page 2 of 17

heritability could be due to epistasis in some diseases.
Genome Wide scan for epistasis are therefore seen as
potentially a very fruitful approach to better understand
the genetics of these diseases and to identify new thera-
peutic strategies.
A vast number of methods for detecting epistasis have

been developed in recent years, ranging from exhaustive
bivariate tests to machine learning methods (for recent
reviews see [8, 9]). Exhaustive bivariate methods (referred
to as bivariate methods hereafter) test all pairs of SNPs in
a case control GWAS for epistasis that we define as depar-
ture from additivity on a logit scale [10]. These methods
are adapted to a full analysis of GWAS data, because
require less computation than other methods such as ran-
dom forests and they might be less impacted by high
dimensionality. Moreover bivariate methods do not intro-
duce prior biological knowledge, such as network meth-
ods, which may limit the discovery of new biology. Finally,
we note that epistasis definitions are not always equivalent
to other types of approaches, such as Random Forest. The
present paper focuses therefore on a selection of bivari-
ate methods. The performance of other types of methods
will be evaluated in future work. Bivariate methods face
major technical challenges due to the vast number of com-
binations to be tested even for pairwise analysis (billions
to trillions for a typical GWAS): controlling the number
of false positive while maintaining sufficient power and
ensuring computing time remains acceptable.
The direct evaluation of the statistical performance of

these methods on real GWAS is not possible, as true
epistatic interactions underlying complex diseases are still
largely unknown. In contrast the power and false positive
rate of these methods can be easily evaluated in simu-
lated GWAS where the phenotype-genotype relationship
is predefined. Evaluations using different types of simu-
lations have been performed. Wang et al. [11] and Frost
el al. [12] compared their methods on simulated datasets
with independant SNPs. Emily [13], Goudey et al. [14],
and Yu et al. [15] compared their methods to PLINK, χ2,
and BOOST on simulated contingency tables with two
SNPs including linkage disequilibrium (LD). Wan et al.
[16] compared BOOST and PLINK under H0 using evo-
lutionary simulations [17] to generate datasets of 38836
SNPs with simulated LD. Other studies also evaluated the
performance of Gene-based bivariate methods [18, 19] or
interaction tests for quantitative traits [20] in simulated
GWAS. Some of these endeavours have in particular high-
lighted the influence of LD on the control of the type
1 error rates (see [20] for instance). However, the pre-
vious simulations present generally two important sim-
plifications compared to real GWAS: (i) the absence of
realistic, population specific LD pattern between simu-
lated SNPs and (ii) the limited number of SNPs compared
to a real GWAS. LD presents a complex structure at the

genome-wide scale and accurate evaluation of the false
positive rate of exhaustive bivariate methods would there-
fore require simulation of such realistic data. Moreover,
most comparisons includes few scenarios, less than three
methods and are performed in the context of papers
introducing a new method to highlight its performances.
There is therefore a lack of independent and exhaustive
comparisons of these methods.
Several approaches have been implemented to simulate

case control GWAS on a genome wide scale with realistic
LD using a reference panel: HAPGEN2 [21], GenomeS-
IMLA [17], GWASIMULATOR [22], and waffect [23]. For
instance Spencer et al. [24] evaluated the power of the uni-
variate χ2 test with various SNP chips on genome wide
HAPGEN simulations. Perduca et al. [23] evaluated the
power of univariate tests in PLINK on waffect simulations
including more than 105 SNPs. However, no study eval-
uating the performance of epistatic detection softwares
with these approaches has been reported, even if all three
approaches have the capacity to simulate epistatic interac-
tions. Because GWASIMULATOR is not able to simulate
epistasic interactions between SNPs on a same chromo-
some, and therefore in LD, we introduce a new simulation
pipeline combining the approaches of GWASIMULATOR
[22] and waffect [23].
The objective of the present work is to provide an

evaluation of the performance of a set of representative
epistasis detection methods in simulated GWAS with fea-
tures close to a real GWAS, both in terms of size and
LD pattern. Five methods are selected due to their abil-
ity to scale for exhaustive genome wide bivariate analysis
with a GPu implementation, their performances in pre-
vious studies, their popularity, and their representation
of different approaches (LD, regression, Haplotype, ROC
curve). Fastepi [25] is implemented in the software PLINK
(option –fast-epistasis) and used as a fast method to test
for interactions. It is based on a 2 × 2 contingency table
of allele counts and tests a SNP pair for epistasis by com-
paring their LD in cases and controls. SHEsisEpi [26]
is another LD based method based on a 3 × 3 contin-
gency table. Both methods use a χ2 statistics with one
degree of freedom and may therefore be more power-
ful than other approaches. IndOR [13] is also based on
the correlation between two SNPs in cases and controls,
inspired by a biological definition of epistasis, the effect
of one gene masking the effect of another. GBOOST [27]
compares two regression models with or without an inter-
action term using a likelihood ratio test to detect epistasis.
GBOOST corresponds to Ficher’s definition of epistasis
and has been used as benchmark method in several stud-
ies as discussed above. Finally DSS [14] is a model free
approach based on the ROC curve to test the improve-
ment of the discriminative power when using both
SNPs together or independently. For each method the
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following performances are evaluated: power, false pos-
itive rate control, and computational performance. This
article presents firstly a simulation pipeline for generat-
ing semi-simulated GWAS with realistic LD and epistasis,
and then the performance comparison of the five meth-
ods. Finally the results of each method applied to a GWAS
of Type 2 Diabetes (T2D) from the Welcome Trust Case
Control Consortium [28] are presented.

Methods
Three-step GWAS simulation
We consider a set of template genotypes X i ∈ R

p, i ∈
{1, .., n}, with Xijc ∈ {0, 1, 2} representing for sample i
the number of minor alleles at locus jc of chromosome
c ∈ {1, ..,C}, with pc the number of loci on chromosome c
and p = ∑C

c=1 pc the total number of loci.
For step one a population of m individuals (m � n)

with genotype reproducing the LD structure of the tem-
plate genotypes is simulated following the method of Li
et al. [22]: for each simulated genotype k ∈ {1, ..,m} and
for each chromosome c, (i) a start locus dc is selected uni-
formly at random, (ii) a (2l+1)-SNP haplotype [ dc−l, dc+
l]∈ {0, 1, 2}2l+1 is sampled uniformly from the template
genotypes, (iii) the right part of the chromosome is gener-
ated by choosing the allele at locus dc+ i randomly among
template genotypes corresponding to the simulated hap-
lotype at loci [ dc − 2l + i, dc − 1 + i] for l < i ≤ pc − dc,
(iv) similarly the left part of the chromosome is generated
by choosing the alleles at loci dc − i given the simulated
haplotype at [ dc + 1 − i, dc + 2l − i] for l < i < dc. In the
following we use the European (EUR) samples from the
1000 Genomes Project phase 3 [29] as template genotypes
and 129,238 SNP markers selected from the Affymetrix
500K chip to generate a population of 100,000 female
samples. Markers with low MAF (< 0.05) or not in Equi-
librium of Hardy Weinberg (p < 10−3) in the template
genotypes were excluded. This step allows the accurate
replication of the LD structure of the EUR group for an
accurate evaluation of the false positive rate in the present
benchmark.
For step two we consider a set I of SNPs causal for a

disease D, with a disease probability pk = P(D|Gk) given
a genotype Gk described with a logit model:

log
(

pk
1 − pk

)

= α +
∑

x∈I
βx1xk

︸ ︷︷ ︸
main effect

+
∑

(x,y)∈I2
1Txkβx,y1yk

︸ ︷︷ ︸
2nd order epistasis

(1)

with α the intercept, βx ∈ R
2 the main effect parameter

vector for SNP x, βx,y ∈ R
2×2 the matrix of interaction

coefficients between SNPs x and y, and 1xk ∈ {0, 1}2 the
indicator vector for the value of SNP x in sample k. In
the present work we restrict SNP interactions to the sec-
ond order and to disease models with two causal SNPs

(a, b). However the simulation procedure can be easily
generalized to higher order interactions by adding the cor-
responding terms in Eq. 1. Each disease scenario is defined
by the following parameters: (i) prevalence K = 0.15, (ii)
MAF fa and fb of each causal SNP, (iii) LD r2 between
SNP a and b, (iv) marginal risk ratios Ra = (ra, ra)T and
Rb = (rb, rb)T (only dominant models were considered),
and (v) epistasis model matrix ρ parametrized as depar-
ture from product relative risk, with a risk ratio given by
RT
aρRb. The disease prevalenceK = 0.15 represents a high

estimate for a complex disease such as diabetes (estimated
K = 0.12 according to the American Diabetes Associa-
tion) or NAFLD (estimated K = 0.13 [30]). The disease
model is constructed as follows: (i) the SNP pair best sat-
isfying the MAF and LD constraints is selected through
an exhaustive genome-wide search, (ii) the disease model
(Eq. 1) is solved numerically to satisfy the prevalence and
risk ratio constraints. The 234 scenarios considered are
summarized in Table 1.
For step three n1 + n0 cases and controls are selected at

random without replacement from them individuals with
probability pgwas = n1pk/(mK) + n0(1 − pk)/(m − mK).
Cases and controls are then affected using the backward
sampling method waffect introduced by Perduca et al.
[23]. This step is repeated for each disease scenario repli-
cate. In the present work n0 = n1 = 1000 and 500 repli-
cates are generated per scenario. The number of replicates
were chosen as a compromise between statistical accuracy
and computation time, 2 months on a 30 Tesla K40 GPU
cluster. The cohort size corresponds to a medium size
GWAS and is sufficient to observe dominant-dominant
epistasis effect with parameter ρ ≈ 4 with a reasonable
power. The relationship between the cohort size and the
statistical power of each method for various scenarios is
presented in the “Results” section.

Methods benchmark
The following bivariate methods are selected for compar-
ison: SHEsisEpi [26], fastepi [25], IndOR [13], DSS [14],
and GBOOST [27]. All analyses are performed on Nvidia
Tesla K40 graphic cards. We use the GPU implementation
provided by their respective authors for GBOOST and
DSS, and a GPU implementation in the GWISFI platform
[31] for the other methods. The 2χ2 test [32] included
in the GWISFI distribution is excluded from the anal-
ysis because the related score diverges for contingency
tables with at least one empty cell. Numerical issues can
occur as well for IndOR when inverting the covariance
matrix V� (see [13] for definition). This issue is treated
by affecting a zero score to SNP pairs with non invert-
ible V�. The information gain [33] and epiblaster [34]
methods implemented in the GWISFI distribution require
computing empirical p-value and are not included in the
benchmark.
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Table 1 Two hundred thirty four disease scenarios considered in the simulations

Epistasis model ρ MAF (fa , fb) LD r2 Main
effect
(ra , rb)

Interaction ρ # scenarios

M0 =

⎛

⎜
⎜
⎝

1 1 1

1 1 1

1 1 1

⎞

⎟
⎟
⎠ (0.15, 0.15)

(0.3, 0.3)
0, 0.2, 0.5 (1, 1)

(1.5, 1.5)
(1, 1.5)

1 18

M1 =

⎛

⎜
⎜
⎝

1 1 1

1 ρ ρ

1 ρ ρ

⎞

⎟
⎟
⎠ (0.15, 0.15)

(0.3, 0.3)
0, 0.2, 0.5 (1, 1)

(1.5, 1.5)
(1, 1.5)

2, 3, 5 54

M2 =

⎛

⎜
⎜
⎝

1 1 1

1 1 1

1 1 ρ

⎞

⎟
⎟
⎠ (0.15, 0.15)

(0.3, 0.3)
0, 0.2, 0.5 (1, 1)

(1.5, 1.5)
(1, 1.5)

2, 5, 10 54

M3 =

⎛

⎜
⎜
⎝

1 1 1

1 ρ ρ2

1 ρ2 ρ4

⎞

⎟
⎟
⎠ (0.15, 0.15)

(0.3, 0.3)
0, 0.2, 0.5 (1, 1)

(1.5, 1.5)
(1, 1.5)

2, 3, 5 54

M4 =

⎛

⎜
⎜
⎝

1 1 1

1 1 ρ

ρ ρ ρ

⎞

⎟
⎟
⎠ (0.15, 0.15)

(0.3, 0.3)
0, 0.2, 0.5 (1, 1)

(1.5, 1.5)
(1, 1.5)

2, 3, 5 54

234

Each scenario includes two causal SNPs a and b with MAF fa and fb respectively, and with a LD r2. The relative risk of genotype (a, b) = (i, j) vs genotype (0, 0) is given by
Ri,j = ra,i rb,jρi,j . The matrix ρi,j is given by the epistasis model (null, dominant-dominant, recessive-recessive, multiplicative or alternative from top to bottom) and the scalar
interaction parameter ρ . The main effect for SNP a is ra,i = ra if a �= 0, and ra,0 = 1, and similarly for SNP b. For each epistasis model we consider all the combination of MAF,
LD, main effect and interaction parameter

For each replication of each scenario, all 5 methods are
applied to detect the SNP pair in epistasis in the resulting
GWAS. Each method outputs a list of SNP pairs ranked
by their respective epistasis score which were converted
to p-value using the asymptotic score distribution corre-
sponding to each method. For a given p-value threshold
p0 the True Positive Rate (TPR) for a given method and
scenario is defined at a SNP level as the probability that
the causal pair (a, b) has an epistasis p-value p < p0, and
the False Positive Rate (FPR) as the mean number of non-
causal pairs with epistasis p-value p < p0 normalized by
the number of SNP pairs. Grouping SNPs by LD blocks is
a usual post-processing step in GWAS univariate analysis
[35] and can be extended to the case of bivariate analysis.
The LD blocks are defined a priori on the whole simu-
lated population of sizem using the plink options –blocks
no-small-max-span –blocks-max-kb 500, which is based
on the haplotype block definition of Haploview [36] sug-
gested by Gabriel et al. [37]. SNPs that are not affected to
a block via this procedure are affected to a single-SNP LD
block. The whole set of SNPs map to 68819 LD blocks.
The SNP pairs passing the epistasis p-value threshold are
mapped to LD block pairs, with the causal LD block pair
defined as the unique block pair (A,B) such that (a, b) ∈
(A,B) with (a, b) the causal SNP pair. TPR (resp. FPR) is

defined at LD block level as the detection rate of the causal
block pair (resp. the mean detection rate of the non causal
block pairs).
The effect of the disease parameters on statistical power

is evaluated by performing a canonical correlation analysis
between (i) the power of the methods for each scenar-
ios (normalized matrix Pij for method i and scenarios j)
and (ii) the value of the parameters for each scenarios
(normalized matrix Vkj for parameter k and scenario j).
The effect of cohort size and MAF on statistical power

is assessed in a separate set of simulations that consider
only two SNPs. The disease penetrance P(D|Gk) for each
9 genotypes Gk ∈ {0, 1, 2}2 is computed as in step two
of the previous three step simulation (Eq. 1). The geno-
types of the n0 controls and n1 cases are simulated using
Bayes formula P(Gk|D) = P(D|Gk)P(Gk)/K , with the
genotype frequency P(Gk) controlled by fa = fb = f and
r2. For the simulations with varying cohort size we con-
sider f = 0.3, r2 ∈ {0, 0.2}, dominant-dominant epistasis
models (model M1 in Table 1) with main effect (ra, rb) ∈
{(1, 1), (1.5, 1), (1.5, 1.5)}, and GWAS with n0 = n1 =
n, n ∈ {500, 1000, 2500, 5000, 10000}. For the simulation
with varying MAF we consider n = 1000. For a given
scenario and epistasis parameter ρ we compute the sta-
tistical power in 1000 replicates with a p-value threshold
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p = 0.05/(1.25 × 1010), corresponding to a threshold
p = 0.05 with a Bonferroni correction for a bivariate anal-
ysis of a GWAS with 5 × 105 SNPs. For each scenario
and method the epistasis parameter ρ giving a power 0.8
is identified using Brent’s algorithm [38]. For this set of
simulations GBOOST and DSS were reimplemented in
Python using the information provided by the authors
in [16, 39] respectively for computational performances
reasons.

Bivariate analysis of the WTCCC T2D
We applied each method on the WTCCC GWAS data
on T2D [28], genotyped on the Affymetrix 5.0 platform.
The standard Quality Control (QC) procedure suggested
by the WTCCC is applied to the dataset except that
SNPs with missing data are excluded because the bivari-
ate methods implemented in the GWIS platform do not
handle missing data. 363387 SNPs, 1953 cases and 2978
controls remain after QC. For each method interact-
ing SNPs with FDR < 0.05 are selected. Univariate
association was performed using plink with the –fisher
option. LD blocks are defined as in the simulations using

the plink command –blocks no-small-max-span –blocks-
max-kb 500 and SNPs are mapped to LD blocks in a
n-1 relation. Each block is associated to a gene if the
block region overlap with the gene region augmented
by a 10kb margin. Consistently with the simulations two
genes (A,B) are defined in epistasis if it exists two snps
(a,b) detected in significant epistasis such that a ∈ A
and b ∈ B).

Results
Type 1 error rate
The score distributions of each method in several M0
simulations are represented in Fig. 1. In the absence of
marginal effect the tail of the score distribution of all five
methods is well described by their asymptotic distribu-
tion, even in presence of a realistic LD structure. We note
that for high scores (>50) the FPR of IndOR is underesti-
mated by its asymptotic distribution. In the presence of a
main effect on two SNPs in LD an important inflation of
the far tail distribution is observed for IndOR and fastepi.
The FPR for M1 simulations with no main effect, i.e. the
ratio of non-causal pairs detected, is depicted in Fig. 2

Fig. 1 Score distribution inM0 simulations (no epistasis). Survival function of the scores (SF(score) = P(S > score)) output by each method for
variousM0 models (continuous line) and theoretical survival functions under H0 (dashed line). For IndOR, fastepi and SHEsisEpi only the top 104 pairs
are observed and the survival function therefore reach a plateau for P > 104/npairs = 1.19 × 10−6. For GBOOST a score threshold was set at 30 and
therefore reach a plateau for lower scores. For DSS a score −log10(fltDSS) is returned by the software only for pairs passing a prefilter test as defined
in [14], thus overestimating the p-value for small scores
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Fig. 2 False positive rate in presence of epistasis without marginal effect. False Positive Rate with a p-value treshold after Bonferroni correction
0.05/npairs = 5.99 × 10−12 (dashed line). Model 1 with no marginal effect (ra = rb = 1.0)

for a p-value threshold of 0.05 after Bonferroni correction
and present a similar behaviour: a good, slightly conser-
vative, control of the FPR is observed for DSS, GBOOST
and SHEsisEpi, while a two- to five-folds FPR increase is
observed for IndOR and fastepi in presence of two SNPs
in LD and in epistasis. Similar conclusions can be made
in the M2, M3 and M4 models (Additional file 1: Figures).
These findings suggest that grouping SNPs by LD blocks
could improve the FPR control of IndOR and fastepi. The
FPR at a SNP and LD block level are compared in Fig. 3
in the absence of epistasis and with main effect. In pres-
ence of SNPs in LD the FPR of IndOR and fastepi is only
improved by one-fold at block level compared to the SNP
level.
These observations indicate that analysis using IndOR

and fastepi should focus on interactions between SNPs
that are not in LD to ensure a good control of the false
positive rate (under the definition of epistasis we assume
in this work). Moreover caution should be taken when
interpreting IndOR p-values for high scores. As men-
tioned in the “Methods” section, computing the IndOR
score requires an inversion of the estimation of a variance-
covariance matrix V� (see [13] for definitions), which
can be singular with a non zero probability for finite
cohort sizes. In the authors R implementation and in the
present work, this issue is treated by affecting zero to
SNP pairs with non invertible V�. However, given the
number of tests performed in exhaustive bivariate analy-
sis of GWAS, such a situation occurs at an important rate

among SNPs with high scores and a deviation from the
asymptotic χ2

4 distribution in the far tail can be expected.
This situation highlights the importance of evaluating the
performance of statistical methods on GWAS simulations
of real size to identify finite size effects affecting method
performances.

Statistical power
The statistical power of each method is evaluated with a
Bonferroni corrected p-value threshold of 0.05 as in the
previous section. The relative power of each method is
reported in Fig. 4: fastepi is the most powerful method in
61 scenarios, IndOR in 45, DSS in 38, GBOOST in 5, and
SHEsisEpi in 5. Among methods with a good FDR con-
trol DSS is the most powerful in most scenarios (46 vs
41 for SHEsisEpi). However fastepi was the only method
with a non null measured power for scenarios with strong
LD r2 = 0.5. Interestingly DSS is the most powerful
method in almost all scenarios with no LD. GBOOST was
the most powerful method in 5 scenarios with no LD,
while none of the remaining method were the most pow-
erful in any of the scenarios. The influence of the disease
parameters on the methods power is illustrated through a
canonical correlation analysis in Fig. 5, where we focus on
the two first components. Component 1 is anti-correlated
to r2 , whereas component 2 is positively correlated to
f and ρ. βa and βb are not correlated to components 1
or 2. The power of DSS and fastepi are similarly corre-
lated to f and ρ (component 1) but the power of DSS
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Fig. 3 False positive rate at SNP and block level in absence of epistasis and with marginal effect

is anticorrelated to r2, whereas the power of fastepi is
positively correlated to r2 (as seen on Fig. 4). Conversely,
the power of GBOOST and SHEsisEpi is not correlated to
component 1 or component 2. The variations of power of
GBOOST appear very similar to SHEsisEpi and the oppo-
site to fastepi. This analysis also suggests as well that the
variation of power of IndOR and DSS on one hand, and
GBOOST, SHEsisEpi on the other are only weakly cor-
related. This observation is consistent across all models
M1-M4 considered here (the separated canonical corre-
lation analysis for each model are reported in Additional
file 1). LD between the causal SNPs was the parame-
ter most correlated to power variations, while the SNPs
main effect coefficients ra, rb were only weakly correlated.

fastepi is the only method that shows a clear increase of
power with LD. Figure 6 depicts the difference of power
at SNP and LD block level for each method and sce-
nario (one point per method-scenario). Analyses located
on the first diagonal provided equal power at both the
SNP and block level, while those in the top left have a
gain in power when performing the analysis at SNP level.
With no LD (r2 = 0) the difference of power at SNP and
LD block level is limited for all methods. For intermedi-
ate LD (r2 = 0.2) a strong increase of power at LD block
level was measured for all methods in almost all scenar-
ios. For strong LD (r2 = 0.5) the estimated power of DSS,
GBOOST and IndORwas null for all scenarios at SNP and
LD block level, the estimated power of SHEsisEpi is null

Fig. 4Methods relative power. Power of each method (rows) normalized by the highest power for each scenario (columns). scenarios in which no
method achieved a power larger than 0.01 were excluded. Panels represent results for LD parameter r2 = 0, r2 = 0.2, and r2 = 0.5 from left to right
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Fig. 5 Canonical correlation analysis of methods power and disease
parameter. Two first components of the canonical correlation analysis
between the power of each method in all scenarios and the scenarios
parameters: ρ , r2, f, ra and rb

for all scenarios at SNP level and increases up to 0.86 at
LD block level, whilst fastepi presented similar power at
both level.
For studies focusing on interaction between SNPs that

are not in LD our results indicate that DSS will be themost
powerful method, while maintaining good control of the
FPR. GBOOST appears as to be a good complementary
solution to DSS.

Impact of cohort size
Table 2 summarizes for cohort sizes ranging from n =
n0 = n1 = 500 to n = 10, 000 the smallest epistasis
effects ρ0.8 detectable at a power of 0.8 for each method,

for dominant-dominant epistasis. For n = 500 no method
can detect epistasis effect ρ < 5 between common vari-
ants (f > 0.3), while for n = 5000 IndOR, DSS, GBOOST
and SHEsisEpi can detect epistasis effect ρ < 2. DSS is the
most powerful method in all simulations, except for small
cohort sizes (n ≤ 1000), small MAF (f = 0.15), and one
SNP with no main effect (ra = 1), were GBOOST is the
most powerful. Results for all models and for LD values in
{0., 0.2, 0.5} are reported in the Additional file 1.

Impact of MAF
Figure 7 depicts the influence of MAF on the smallest
epistasis effect ρ0.8 detectable with a power of 0.8. Results
are given for each method, and for the 4 disease mod-
els M1 to M4. DSS is the most powerful method in all
scenarios considered, except for f < 0.2 in the dominant-
dominant (M1) model and for f < 0.3 in the multiplicative
(M3) model, where GBOOST is slightly more powerful.
The good performance of GBOOST in the multiplicative
model can be explained by the simulated model corre-
sponding to the full logistic regression model used in the
likelihood ratio test underlying GBOOST. For models M1
and M3 all methods except DSS reach maximum power
between f = 0.15 and f = 0.35 with a significant decrease
in power in the vicinity of f = 0.5. In M1 models epista-
sis effect ρ < 5 can be detected by DSS for f > 0.125,
by GBOOST for 0.125 < f < 0.3, by SHEsisEpi for
0.175 < f < 0.25, and by IndOR for 0.3 < f < 0.4. Fastepi
is not able to detect epistasis effects ρ < 10 and reachs a
maximum power at f = 0.175.

AUC comparison.
To have a global view of how the methods perform we
compute the Receiver Operating Characteristic (ROC)
curves, defined by the true positive detection rate of the
causal pair of SNPs vs the false positive rate for various p-
value thresholds. The area under the ROC curve (AUC) is
represented for each method and each scenario in Fig. 8.

Fig. 6 Power at block and SNP level. Each point represents for a given method and scenario the True Positive Rate (TP) at SNP level (x-axis) vs power
at block level (y-axis). Panels represent results for LD parameter r2 = 0, r2 = 0.2, and r2 = 0.5 from left to right. The estimated power of DSS,
GBOOST and IndOR for r2 = 0.5 is null at SNP and block level for all scenario and are not represented in the right panel
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Table 2 Smallest epistasis effect ρ detectable with a power 0.8 for each method for various cohort size

f = 0.15 f = 0.3

Method IndOR DSS fastepi GBOOST SHEsisEpi IndOR DSS fastepi GBOOST SHEsisEpi

n = n0 = n1 ρ

500 > 20 8.2 > 20 6.9 12.9 10.5 4.6 > 20 8.1 10.5

ra = 1
1000 > 20 4.6 10.5 4.3 5.5 4.6 2.8 > 20 4.6 4.6

rb = 1
2500 > 20 2.4 3.4 2.5 2.9 2.3 1.6 4.6 2.5 2.5

5000 > 20 1.7 2.5 2.0 2.1 1.8 1.4 2.6 1.9 1.8

10000 > 20 1.4 1.8 1.6 1.7 1.5 1.2 1.8 1.6 1.5

500 > 20 8.7 > 20 6.9 15.2 > 20 4.6 > 20 8.7 15.2

ra = 1
1000 > 20 4.7 12.9 4.0 5.8 4.6 3.0 > 20 4.6 4.7

rb = 1.5
2500 > 20 2.5 3.7 2.5 2.8 2.4 1.6 6.3 2.6 2.5

5000 > 20 1.8 2.4 1.9 2.0 1.8 1.4 2.8 1.9 1.9

10000 > 20 1.4 1.9 1.6 1.7 1.5 1.2 2.0 1.6 1.5

500 > 20 5.8 > 20 8.1 > 20 > 20 3.4 > 20 8.1 > 20

ra = 1.5
1000 > 20 3.2 12.9 4.0 5.8 5.8 2.0 > 20 4.3 5.2

rb = 1.5
2500 > 20 1.9 4.0 2.4 2.8 2.6 1.1 8.1 2.5 2.6

5000 > 20 1.5 2.5 1.9 2.1 2.0 1.2 3.1 1.9 1.9

10000 > 20 1.2 1.9 1.5 1.7 1.6 1.1 2.0 1.5 1.5

Dominant-dominant model (M1 in Table 1), fa = fb = 0.15 (left columns) and fa = fb = 0.3 (right columns), r2 = 0, from top to bottom panel interaction between SNPs with
no main effects (ra = rb = 1), only one with main effects (ra = 1, rb = 1.5), and both with main effect (ra = rb = 1.5)

Fig. 7 Influence of MAF on the smallest epistasis effect detectable. Smallest epistasis effect ρ detectable with a power 0.8 for each method
depending on the MAF of causal SNPs (fa = fb = f ). n0 = n1 = 1000, and βaβb = 1.0 (no main effect)
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Fig. 8 Area under the ROC curve. The global performance of each method is evaluated through the Area Under its ROC Curve (AUC). A piecewise
linear approximation of the ROC curve is used to compute its AUC. Random classifiers area caracterized by AUC = 0.5 and perfect classifiers by
AUC = 1. The AUC is represented for each method (rows) and each scenarios (columns), classified by their LD

This approach directly evaluates the capacity of each
method to separate causal SNPs pairs, independent of the
method used to compute the p-value. As found previously
DSS, presents the highest AUC for most scenarios with no
LD. fastepi is the only method to efficiently identify causal
SNP pairs with high LD values (r2 = 0.5). IndOR has the
lowest AUC in all scenarios. Similar conclusions are found
at a block level.

Computational performance
Fastepi and SHEsisEpi are the two fastest methods (31s
and 33s respectively), DSS has a intermediate speed
(148s), and IndOR and GBOOST are the slowest meth-
ods (270s and 248s respectively). Table 3 reportsmeasured
and extrapolated computation time for 4 common SNP
chips with up to 2.5M SNPs (Illumina Omni2.5-8) [40]
and for cohort sizes up to 5 million (today GIANT is the

Table 3 Measured and extrapolated computation time of each method for various commercially available SNP chips and total number
of samples in the GWAS

Method DSS GBOOST IndOR fastepi SHEsisEpi

snps samples (k)

0.6M (Axiom GW EU) 5 48.7 min* 1.8 h* 1.6 h* 13.5 min* 14.2 min*

15 1.2 h* 5.3 h 4.8 h 32.5 min* 31 min*

50 8.1 h 17.7 h 15.8 h 2.2 h 2.4 h

300 2.0 days 4.4 days 4.0 days 13.5 h 14.2 h

5000 1.1 months 2.5 months 2.2 months 9.4 days 9.9 days

0.7M (OmniExpress) 5 1.1 h 2.4 h 2.2 h 17 min* 19 min*

15 3.3 h 7.2 h 6.5 h 55.1 min 58.0 min

50 11.0 h 1.0 days 21.6 h 3.1 h 3.2 h

300 2.8 days 6.0 days 5.4 days 18.4 h 19.3 h

5000 1.5 months 3.4 months 3.0 months 12.7 days 13.4 days

1M (Omni1S-8) 5 2 h* 4.9 h 4.4 h 33 min* 35 min*

15 6.8 h 14.8 h 13.2 h 1.9 h 2.0 h

50 22.5 h 2.1 days 1.8 days 6.2 h 6.6 h

300 5.6 days 12.3 days 11.0 days 1.6 days 1.6 days

5000 3.1 months 6.8 months 6.1 months 26.0 days 27.4 days

2.5M (Omni2.5-8) 5 14.1 h 1.3 days 1.1 days 3.9 h 4.1 h

15 1.8 days 3.8 days 3.4 days 11.7 h 12.3 h

50 5.9 days 12.8 days 11.5 days 1.6 days 1.7 days

300 1.2 months 2.6 months 2.3 months 9.8 days 10.3 days

5000 1.6 years 3.5 years 3.1 years 5.4 months 5.7 months

Extrapolation based on one Nvidia Tesla K40 with the present implementation. Comutation time measured are indicated with a star
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largest GWAS identified and includes more than 300,000
patients [41]). As computation can be easily parallelized
we can extrapolate that a giant GWAS with 5 million sam-
ples sequenced with an Omni2.5-8 Chip can be exhaus-
tively analyzed in less than 20 days with DSS using a 30
Tesla K40 GPU cluster.

Application to WTCCC T2D
Table 4 report the number of SNP pairs with FDR <

0.05 for each method and the consensus between each
two methods (off diagonal elements). IndOR detected 446
pairs in interactions but as observed above one has to
consider that the current implementation might not allow
for an accurate control of the false positive. GBOOST
detected 230 pairs, DSS 119, fastepi 9, and SHEsisEpi
none. The lowest number of SNPs detected by fastepi is
coherent with the lowest power of the method observed
in the simulations. While there is a relative large overlap
between the pairs detected by GBOOST and IndOR, DSS
detected a completely distinct set of pairs from the other
methods.
Table 5 represents the overlap between the SNPs

detected by epistasis tests and those detected by univari-
ate association tests. The majority of SNPs detected in
epistasis are not detected by univariate test (388 pairs
over 654 have no detected main effect). IndOR is the only
method to detect epistasis between SNPs having both
main effects. We notice that in this situation our simula-
tions indicate that the type 1 error rate might be incor-
rectly controlled by IndOR. None of the SNPs detected by
DSS are detected by univariate test. Finally the majority
of SNP pairs detected by gboost presents a main effect on
one of the two SNPs.
These observations confirm that GBOOST and DSS

detects different types of epistasis and could be combined
for a potential increase in power.
Figure 9 presents the distribution of MAF for the SNPs

detected by each method. For DSS the distribution of
MAF is uniform between 0.1 and 0.5 which is coherent
with the results of the simulations. The pairs detected
by gboost and IndOR are present a larger proportion of

Table 4 Number of SNP pairs with FDR<0.05 for each method
(diagonal) and overlap between the pairs detected between two
methods (off diagonal)

GBOOST IndOR fastepi DSS SHEsisEpi

GBOOST 230 143 6 0 0

IndOR 143 446 2 0 0

fastepi 6 2 9 0 0

DSS 0 0 0 119 0

SHEsisEpi 0 0 0 0 0

Table 5 For each method number of SNP pairs (a,b) detected in
interaction (FDR<0.05) such that (first line) both a and b are
identified by univariate association test (FDR<0.05), (second line)
one of a or b is identified, and (last line) neither a or b is identified

IndOR DSS fastepi gboost SHEsisEpi

a and b 33 0 0 0 0

a xor b 189 0 2 174 0

none 224 119 7 56 0

common SNPs with MAF greater than 0.3. This obser-
vation is coherent with the results of the simulations in
non-dominant models (M2-M4). Figure 10 depicts the
distribution of LD of the SNP pairs detected by each
method. Most SNP pairs are in linkage equilibrium of
in weak LD (r2 = 0.05 to 0.01). GBOOST is the only
method to detect a larger proportion of SNP pairs in
weak LD.
The type of genomic regions including SNPs with

interactions are reported in Table 6. IndOR is the only
method to detect more interaction between protein cod-
ing regions. This observation might indicates that IndOR
tends to detect interactions corresponding to a biologi-
cal definition of epistasis as claimed by its authors [13].
GBOOST and DSS detect mostly epistasis between SNPs
in intergenic regions. Among the 211 genes detected by
the three methods DSS, GBOOST and IndOR only 2 are
detected by univariate tests (Fig. 11).The Genes detected
by DSS are distinct from those detected by other meth-
ods (10% of overlap only), which is consistent with the
observation at SNP level. Only two genes are detected
by univariate association tests. Interestingly each method
detects distinct gene-gene interactions (see the epistasis
networks in the Additional file 1).

Fig. 9MAFs of SNPs detected in epistasis in the WTCCC GWAS on
T2D. For each method MAF distribution of the SNPs in a pair detected
in epistasis
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Fig. 10 LD of SNP pairs detected in epistasis in the WTCCC GWAS on
T2D. For each method LD distribution of the SNP pairs detected in
epistasis

Discussion
Ten years after the first large scale GWAS from the
Welcome Trust Case Control Consortium (WTCCC) [28]
many results are available about the influence of sin-
gle variants on various phenotypes. More than 35000
unique SNP-trait associations with p-values < 10−8 are
reported in GWAS catalog [42]. Meta-analysis and repli-
cation studies [43] have identified and validated many
susceptibility loci, for instance in type 2 diabetes [44],

Alzheimer’s disease [45], cardiometabolic diseases [46],
and ovarian cancer [47]. A large panel of tools are avail-
able to interpret the association at a biological level, these
include fine mapping of GWAS signal, genome annota-
tion, SNP prioritization tools, and gene set analysis tools
such as DEPICT [41, 48]. Conversely results regarding
genetic interactions, expected to explain an important
proportion of the heritability of complex diseases [7],
are far less established. In particular, accurate control of
the power and type 1 error rate of the statistical tests
of interaction in real GWAS has still to be improved.
Indeed, recent studies on the WTCCC datasets have
identified that significant differences exist in terms of
stability and results overlap between epistasis detection
methods [14, 49].
The objective of this work was to evaluate the per-

formances of epistasis detection methods in quasi real
GWAS conditions, where true causal interactions are
known. We introduced a new GWAS simulation pipeline
that combines the advantages of previous simulations
approaches: generation of a large set of genetic samples
with realistic LD [22], and simulation of a realistic GWAS
cohort that can take into account disease models with
epistasis between SNPs in LD using backward sampling
[23]. We evaluated five epistasis detection methods using
this pipeline: SHEsisEpi [26], fastepi [25], IndOR [13], DSS

Table 6 Number of SNP pair (a,b) identified on each type of locus pair for each method

fastepi GBOOST IndOR DSS SHEsisEpi

Locus type a Locus type b

RNA, long non-coding RNA, long non-coding 0 0 0 2 0

RNA, micro 0 1 0 0 0

gene with protein product 0 2 6 0 0

RNA, micro RNA, micro 0 0 0 1 0

gene with protein product 0 0 0 2 0

intergenic 0 4 4 2 0

gene with protein product RNA, long non-coding 0 0 14 2 0

RNA, micro 0 0 1 1 0

gene with protein product 2 22 148 17 0

intergenic 0 23 104 6 0

pseudogene 0 1 1 0 0

intergenic RNA, long non-coding 0 5 4 0 0

RNA, micro 0 3 2 0 0

gene with protein product 2 69 74 10 0

intergenic 5 105 89 68 0

pseudogene gene with protein product 0 1 0 0 0

pseudogene 0 1 0 0 0
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Fig. 11 Venn diagramm of the genes detected by each method (the
number of genes that were detect in univariate analysis is indicated in
parenthesis)

[14], and GBOOST [27]. In total 234 different disease
models were considered when generating GWAS, with
1000 cases and controls and 129,238 SNPs reproducing
the LD structure of the EUR group of the 1000 Genomes
Project [29].
Our results indicate that using the asymptotic χ2 distri-

bution to compute the p-value of IndOR and fastepi does
not enable an accurate control of the false positive rate
in presence of causal SNPs in LD. With respect to IndOR
the first reason for the apparent inaccurate control comes
from the definition of epistasis. IndOR relies on a defini-
tion of epistasis based on Odds ratio independence [13]
different from the statistical definition assumed in this
paper. Only biological investigation can validate whether
more true biological interactions are detected using one
definition or the other. The second reason is numerical.
Fixing an arbitrary score to SNP pairs with a singular Vφ

matrix is expected to modify the score distribution. For
GBOOST, DSS and SHEsisEpi the p-value computed from
the asymptotic χ2 distribution allows an acceptable con-
trol of the false positive rate, with Bonferroni found to
be slightly conservative, due to the correlation between
SNPs. When implementing epistasis detection methods it
should be noted that contingency tables with empty cells
occurs at an important rate: assuming independent SNPs
with uniform MAF distribution between 0.05 and 0.5 the
probability of having a bivariate contingency table with
no double recessive genotype in a GWAS of 1000 sam-
ples is

∫ 0.5
0.05

(
1 − f 4

)1000
/0.45 = 0.25. Using a Axiom GW

EU chip more than 1010 such contingency tables would be
expected, for which the χ2 approximation can be invalid,
and numerical issues can appear as in the case of the 2χ2

test [32] implemented in the GWISFI distribution.
DSS is themost powerfulmethod inmost scenarios with

no LD between the causal SNPs, with GBOOST being a

good complementary solution to DSS with close perfor-
mances in terms of power. In the presence of LD between
the causal SNPs, IndOR is the most powerful method in
most scenarios. However, given the more important false
positive rate of this method the false discovery rate might
be higher. Given that the power of DSS and GBOOST
are influenced differently by the disease model parame-
ter, a combination approach combining both scores might
improve the overall power. This strategy is to be sup-
ported by the results on the WTCCC data on T2D were
DSS and GBOOST detected distinct SNPs and genes
in epistasis.
DSS also has the largest AUC for almost all scenar-

ios, which confirms the good performance of the method.
IndOR had the lowest AUC in all scenarios, which can
be explained in part, by the different epistasis definition
underlying the method.
Similar results are obtained when grouping SNPs by LD

blocks, with only a limited increase of power for SNP pairs
that are not in LD, and an important increase of power for
SNP pairs in LD.
We show that strong dominant-dominant (M1) and

multiplicative (M3) epistasis effects expected to lie in the
range 2 < ρ < 5 can be detected with sufficient power
by all methods except fastepi in relatively small cohort
size of 2000 cases and controls. However we show that
such interaction will only be detected in a narrow MAF
window, except for DSS which is the only method able
to detect interacting SNPs with MAF ranging from 0.1 to
close to 0.5. Detecting weak epistasis effects ρ < 2 will
require GWAS with more than 10,000 cases and controls,
which may become available in the coming years.
We conclude that computation time is no longer a lim-

iting issue to perform exhaustive bivariate interaction
analysis of a large GWAS. Our results suggest that SNPs
with no or weak LD (r2 < 0.2) should be analyzed with
DSS complemented with GBOOST in order to achieve the
best statistical performances. The analysis of SNPs in LD
is more complicated, because fastepi is the best method
identified in terms of AUC but does not allow for a good
control of the FPR and also because most SNPs in LD are
located in the a same functional DNA region. The biolog-
ical interpretation of intra-region interaction can be more
complicated than for intergenic interactions. A possible
strategy could be, therefore, to focus only on SNP pairs
with no LD which would give valuable information on the
biology underlying the disease. If the missing heritability
in GWAS can be explained by epistasis between common
variants, the existing methods will be powerful enough to
detect them in GWAS with as few as tens of thousands of
cases plus controls, as is likely to be available in the coming
years.
In terms of disease understanding and new therapeutic

strategies, the most notable impact of these approaches
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might not be the additional heritability identified, but
the insight into disease network biology. While uni-
variate GWAS analysis can identify isolated candidate
genes, epistasis methods additionally identify interaction
networks between risk genes. Complex diseases such
as Diabetes or NASH results from the dysregulation of
complex genetic and metabolic networks. For at least a
decade it has been argued that disease complexity and
redundancy in biological pathways might be responsible
for the limited effect of many monotherapies [50]. The
recent success in cancer, HIV [51], and cardiology [52]
multitarget therapies appears to confirm this idea, cre-
ating a high interest in multitarget discovery in other
therapeutic area, which might be supported by epistasis
analysis of GWAS.

Conclusion
This study confirms that computation time is no longer
a limiting factor for performing an exhaustive search of
epistasis in large GWAS. For this task, using DSS on
SNP pairs with limited LD seems to be a good strategy
to achieve the best statistical performance. A combina-
tion approach using both DSS and GBOOST is sup-
ported by the simulation results and the analysis of the
WTCCC dataset demonstrated that this approach can
detect distinct genes in epistasis. Finally, weak epistasis
between common variants will be detectable with exist-
ing methods when GWAS of a few tens of thousands
cases and controls are available. The major remaining
challenges are (i) the lack of unique and well defined
epistasis definition at a biological level, and (ii) the rel-
atively limited amount of tools for translating statistical
interactions at a SNP level into biological mechanisms.
Several tools have recently emerged to fill this last gap.
For instance Emily [18] and Stanislas et al. [19] have
developed two methods for epistasis analysis at a gene
level, Ma et al. [20], an epistasis analysis at a gene level
for continuous phenotypes, and Lin et al. [53], intro-
duced an epistasis test in meta-analysis. The present
work could therefore be expanded to evaluate the per-
formance of these new tools in a realistic framework.
Other influencing factor should also be evaluated such as
chip coverage and imputation, or the effect of population
structure.

Additional file

Additional file 1: Simulation results on all scenarios and epistasis
networks detected in the T2D GWAS. (PDF 331 kb)
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