
METHODOLOGY ARTICLE Open Access

Algorithms designed for compressed-gene-
data transformation among gene banks
with different references
Qiuming Luo, Chao Guo* , Yi Jun Zhang, Ye Cai and Gang Liu

Abstract

Background: With the reduction of gene sequencing cost and demand for emerging technologies such as precision
medical treatment and deep learning in genome, it is an era of gene data outbreaks today. How to store, transmit and
analyze these data has become a hotspot in the current research. Now the compression algorithm based on reference
is widely used due to its high compression ratio. There exists a big problem that the data from different gene banks
can’t merge directly and share information efficiently, because these data are usually compressed with different
references. The traditional workflow is decompression-and-recompression, which is too simple and time-consuming.
We should improve it and speed it up.

Results: In this paper, we focus on this problem and propose a set of transformation algorithms to cope with it. We
will 1) analyze some different compression algorithms to find the similarities and the differences among all of them, 2)
come up with a naïve method named TDM for data transformation between difference gene banks and finally 3)
optimize former method TDM and propose the method named TPI and the method named TGI. A number of
experiment result proved that the three algorithms we proposed are an order of magnitude faster than traditional
decompression-and-recompression workflow.

Conclusions: Firstly, the three algorithms we proposed all have good performance in terms of time. Secondly, they
have their own different advantages faced with different dataset or situations. TDM and TPI are more suitable for small-
scale gene data transformation, while TGI is more suitable for large-scale gene data transformation.

Keywords: Reference-based compression, DNA sequence compression, Gene data transformation

Background
With the development of the sequencing technologies,
the cost for sequencing has become lower and lower,
while the speed of sequencing has become faster and
faster. As a result, we will find that the gene data from
various species is experiencing an explosive growth and
we have been in an era of gene big data. Human Gen-
ome Project [1], launched in 1990, using the first gener-
ation of gene sequencing technology, took 13 years and
cost 3 billion dollars, finally completed by a number of
scientists from multiple countries around the world.
Now Illumina’s latest gene sequencing platform, the
HiSeq X Ten system, requires only $1000 to sequence

the whole gene of a single person and can complete se-
quencing of more than 18,000 human genomes through-
out a year [2, 3]. Nowadays, more and more gene
projects are set up [4–8], so gene data will continue to
accumulate expansion. Facing with such a large amount
of data, how to store, transmit and analyze will be a big
problem for researchers [9].
For dealing with the problem of storing, gene com-

pression is an essential mean [10, 11]. So far, there are
some gene compression algorithms which are effective
have been proposed. Generally, these methods are di-
vided into two categories depending on whether they are
based on reference or not. These algorithms based on
non-reference, such as BIND [12], DNACompress [13],
GeNML [14], XM [15] and POMA [16], could not han-
dle these gene data that is going through explosive
growth effectively. On the contrary, algorithms based on

* Correspondence: 2150230422@email.szu.edu.cn
NHPCC/Guangdong Key Laboratory of popular HPC and College of
Computer Science and Software Engineering, Shenzhen University, Shenzhen
518060, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Luo et al. BMC Bioinformatics (2018) 19:230
https://doi.org/10.1186/s12859-018-2230-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2230-2&domain=pdf
http://orcid.org/0000-0002-2417-4887
mailto:2150230422@email.szu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

reference are the state-of-the-art approach, because they
exploit the similarity between sequences (e.g., humans
have at least 99.5% of gene similarity and the similarity
between gorilla and human is as high as 99% [17]). With
the algorithms based on reference, many countries has
built their own gene bank, such as NCBI (National
Center for Biotechnology Information), The EMBL
(European Molecular Biology Laboratory), DDBJ (DNA
Data Bank of Japan) and CNGB (China National Gene
Bank). However, there exists a big obstacle for sharing in-
formation among all of these institutions, because these
institutions may select different sequences as the refer-
ence. The traditional workflow is decompression-and-
recompression workflow, which means that we should
decompress the dataset that is compressed with one refer-
ence, and then compress it with another reference.
Obviously, it is not direct and time-consuming.
Focusing on the problem, in this article, we propose a

set of transformation algorithms to cope with it. The
traditional workflow just exploits the similarity between
dataset and reference, but it ignores the similarity be-
tween references. Our new transformation algorithms
exploit the similarity of references to avoid the trad-
itional decompression-and-recompression workflow.
They simplify the original workflow to reduce large
amounts of time.

Related work
Due to the traditional compression tools and algorithms
based on non-reference not dealing with gene data ef-
fectively, we will pay our attentions on the algorithms
based on reference.
The main concept of referential compression is, given

a to-be-compressed sequence and a reference, writing an
output file containing only the differences between the
two input sequences. Generally, there is three steps in
the framework:

1) Build an index for the given reference;
2) Search the corresponding position of to-be-

compressed sequence in the reference, using the
index,

3) Finally encode the to-be-compressed sequence with
the information from step 2 and then encode the
preliminary results to produce the final file.

Though a great deal of efficient referential compres-
sion algorithms have been proposed [18–22], we just se-
lect FRESCO [23], ERGC [24] and ODI [25] as typical
tools. We will discuss these tools in detail next.
FRESCO is a referential compression algorithm pro-

posed by Sebastian et al. in 2013. Ignoring the time of
building index, it is the fastest compression algorithm
while its compression ratio is pretty good. It uses a hash

table to index the complete reference genome. Its value
is the position where k-mer is found in the reference
and its key is the hash value calculated by each k-mer in
the reference. With the index, FRESCO use the same
hash function to get the key of each non-overlapping
k-mer in the to-be-compressed sequence, and then
search them with the index. A successful lookup returns
a list of positions where the k-mer can be found in the
reference. For each match, we extend the match through
direct comparison with the reference and pick out the
longest match. If the length of the longest match is lon-
ger than the threshold, a new entry which record a tuple
containing position PF and the length of the match LEN
is created in the result and the next lookup on the table
will use the k-mer starting on position PF + LEN. If not,
the base pair on position PF + 1 is set as a difference
between matches and a new lookup will be made using the
k-mer starting on position PF + 1. This method will repeat
until the entire to-be-compressed sequence is processed.
FRESCO need too much time to build the index struc-

ture, which will caused that if the gene data required to
compressed is small-scale, the time for building index is
far more than the time for compression. ODI algorithm
exploits the fact that the similarity rate of the homolo-
gous species at the corresponding position is far higher
than that at other positions to build partial index
structure. There are four main methods in the compari-
son compression process (RP represent the pointer to
the reference and CP represent the pointer to the
to-be-compressed sequence):

� SNP detection algorithm. Match segments from the
reference and the to-be-compressed sequences
directly.

� SNP test. Test if the previous match ended in a
Single Nucleotide Polymorphism.

� Brute-force search. Execute a brute-force search for
a match within δ base pairs.

� Index lookup. Index Δ base pairs from the reference
starting on the current RP and perform one table
lookup (using the k-mer starting at CP), just like
FRESCO. If the lookup returns more than one entry,
we choose the one most close to the RP.

Generally, we always build index with the whole refer-
ence sequence, making the index structure is too large.
In the process of searching, the positions of most match
is close to the target sequence’s corresponding position
in the reference sequence. ERGC employs a divide and
conquer strategy. At first ERGC divides the entire refer-
ence and target genomes into parts of equal sizes and
processes each pair of parts sequentially. For each part,
ERGC build a hash index structure with the length of K
which is decided by the length of the part and is the

Luo et al. BMC Bioinformatics (2018) 19:230 Page 2 of 12

length of k-mer at the same time. If lookup return an
empty list, ERGC rebuild the index structure with a fac-
tor less than K and do search again. Then ERGC calcu-
late the edit distance of the mismatched area and decide
whether the edit distance or character information need
to be recorded into the result. Finally, ERGC compress
the stored information using delta encoding [26] and en-
code the stored information using PPMD encoder [27].
Referential compression algorithm is mainly used to

compress sequences which are highly similar to the refer-
ence, recording the same and the differences between
to-be-compressed sequences and the reference. Obviously,
compression and decompression are very dependent on
the reference. For the homologous species in different
gene banks, the compressed data could not share directly,
because they may use different sequence as reference in
the compression process. As a result, when we need to
merge the data from two different gene banks based on
different references, the traditional workflow is
decompression-and- recompression, which is a waste of
time. Given this, we should propose a more succinct algo-
rithm to make the data transformation from one gene
bank to another faster. At the same time, we can know
that these compression algorithms are so different and
each of them has its own peculiarity, which we should
take into account when we design our own algorithms.

Methods
Framework
According to the features of referential compression algo-
rithms, it is obvious that with the compressed data of tar-
get sequence and the reference, we can get the
distribution of the target sequence on the reference. Given
a compressed dataset compressed with the reference Ref1,
our goal is to get the compressed dataset compressed with
the reference Ref2, which means we replace Ref1 with
Ref2 for the dataset. The traditional process is decompres-
sing the dataset with Ref1 and then compressing the
former result with Ref2. However, the work above just ex-
ploit the similarity between the sequences in dataset and
Ref1 and the similarity between the sequences in dataset
and Ref2, ignoring the similarity between Ref1 and Ref2.
This is right where we can improve it.
To make full use of the similarity between Ref1 and

Ref2, what we do is to compress Ref1 with Ref2, getting
the distribution of Ref1 on Ref2. Supposed that we have
get the distribution of the sequences in dataset on Ref1
and the distribution of Ref1 on Ref2, we can easily get
the distribution of the sequences in dataset on Ref2
through transformation process. The framework is
shown below. Exploiting the similarity between Ref1 and
Ref2 to transform compressed data, it can avoid the
process of decompression-and-recompression to save a
lot of time Fig. 1.

Data process
To obtain the distribution of one sequence on another
sequence, we must know how to encode the match and
the mismatch. For the match, we record its position and
length, while for the mismatch we record its character.
Like the Fig. 2 showing, the target sequence will be

encoded through reference as triples, which is like
(start_pos, end_pos, misstr).
Having known how to encode target sequence with

reference, we also need to know how to encode a refer-
ence with another reference in order to figure out the
distribution between two references. Given that there
exists two references Ref1 and Ref2. We can encoded
Ref2 with Ref as tuples, which is like (Ref2start_pos,Re
f2end_pos,Ref1start_pos,Ref2end_pos, misstr).

TDM
There exist a target sequence T and two references Ref1
and Ref2. Supposed we have known the distribution of T
on Ref1 and the distribution of Ref1 on Ref2, there exist
four types of relationships among all of gene fragments
as Fig. 3 shows:

1. Case A: T matches Ref1 and Ref1 matches Ref2.
2. Case B: T mismatches Ref1 but Ref1 matches Ref2.
3. Case C: T matches Ref1 but Ref1 mismatches Ref2.
4. Case D: T mismatches Ref1 and Ref1 mismatches

Ref2.

The above four cases are the most typical correspond-
ing relationships between target sequence and two refer-
ences. For case A, we should do match process, i.e. get

Fig. 1 Through this transformation framework, we get the distribution
of target sequence on Ref1 and the distribution of Ref1 on Ref2 when
processing the compressed data. Then we can make full use of the
similarity between Ref1 and Ref2 to make transformation faster

Luo et al. BMC Bioinformatics (2018) 19:230 Page 3 of 12

and record the start position and end position of target
sequence on Ref2 with the distribution of Ref1 on Ref2.
For case B, C and D, we all do mismatch process, i.e.
record the characters in this part, while in case C, we
should use the partial decompression to achieve it.
According to the above-mentioned workflow, we put

forward the simplest direct transformation algorithm,
named TDM (transform by Direct Match). Its pseudo-
code is as the algorithm1 shows below. TDM just exploit
distribution between Ref1 and Ref2.

TPI
As we can see, for case B, C and D in Fig. 4, TDM do mis-
match process, resulting a decrease in compression ratio.
To improve the compression ratio, we optimize this algo-
rithm. According to the feature of encoding, we propose a
more heuristic algorithm, named TPI (Transform by
Partial Index). Its flowchart is as below.
As shown in the Fig. 4, TPI mainly optimize the mis-

match process of TDM. For the four cases in the Fig. 3,
we customize four different solutions:

1. In case A, if the length of match is short, doing
match process will waste storage, so we should
check whether it should do match process or
mismatch process according to its length.

2. In case B, matches are not aligned. Such as slice
alignment compression adapted by ERGC, when the
start of target sequence can get longer match in the
end of reference, it means that it is a misplaced
match, so the characters in mismatch should do
alignment and compression to improve the ratio.

3. In case C, like case B, for the target sequence, in
the match, we should do partial decompression to
get the characters and then do alignment and
compression.

4. In case D, we can not get the relationship between
T and Ref2, so for T and Ref2, in the mismatch, we
should do small-range alignment and compression
to improve the ratio.

Obviously, partial index compression algorithm is
adopted in case B, C and D. The pseudocode of partial
index compression algorithm is shown below.

In algorithm2, we first extend the length of the latest
match and then build the index of Ref2 within a certain
range to do alignment and compression. This exploit the
feature that genomes have high similarity at correspond-
ing position. Generally, a match whose position is close
to corresponding position is called a good match, be-
cause it need more space to encode the relative position
if the relative is too far away. TPI can guarantee the

(a)

(b)

Fig. 2 In (a), T(target sequence) can be encoded with Ref(reference) as (0.6)(7,7,T)(8,12)(13,14,G)(15,21)(22,23,TC)(24,25)(26,26,C)(27,30). In (b), Ref2(references)
can be encoded with Ref1(reference1) as (0,6,0,6)(7,7,7,7,A)(8,11,8,11)(12,12,12,12,A)(13,13,13,13)(14,14,13,13,G)(15,21,14,20)(22,24,21,23,GAT)(25,30,24,29)

Luo et al. BMC Bioinformatics (2018) 19:230 Page 4 of 12

relativity between the target sequence and reference by
small-range alignment and compression.

TGI
TDM and TPI are mainly designed for small-scale gene
data transformation. Next, we will introduce an

algorithm named TGI(Transform through Global Index)
based on global index, which do transformation between
gene banks faster at the price of taking more time to
construct index.
Different with TPI, the input of TGI is two reference se-

quences and all compressed gene data in the gene bank.

Fig. 4 RD presents the reference the original dataset compressed with and the RT presents the reference we want transform RD to

(a) (b)

(c) (d)
Fig. 3 Case (a) means that in this area, T is same to Ref1 and Ref1 is same to Ref2, so T is same to Ref2. Case (b) means that in this area, T is
different with Ref1 but Ref1 is same to Ref2, so T is different with Ref2. Case (c) means that in this area, T is same to Ref1 but Ref1 is different
with Ref2, so T is different with Ref2. Case (d) means that in this area, T is different with Ref1 and Ref1 is different with Ref2, so we could not
figure out the relationship between T and Ref2

Luo et al. BMC Bioinformatics (2018) 19:230 Page 5 of 12

TGI consists of 6 steps as below:

1. Construct the index of Ref2, which we will introduce
later, and then get the distribution of Ref1 on Ref2
through aligning Ref1 with Ref2 using the index.

2. Pre-process the compressed gene data in gene bank
to remove the effects of general compression, using
general compression tool to obtain the intermediate
compressed data. Then process the intermediate
compressed data to get the distribution of target
sequence T on Ref1.

3. Do alignment with the distribution of T on Ref1 and
the distribution of Ref1 on Ref2 using the TGI
matching algorithm, which will get more details later.

4. Return the match if what the step 3 return is match
and the length of match is longer than the given
threshold k. If the length of match is shorter than k,
we decompress the segment and return the
corresponding decompressed character information.

5. Do index alignment if step 3 or step 4 return the
mismatch and the number of characters is more than
k. If the number is less than k, we recorded the
corresponding decompressed character information.

6. If step 4 return the match, we get the relative start
position through start position of current matched
area minus end position of previous match and get
the length information through end position of
current match minus start position of current match.
Then record both. If this is the first match, we just
need to get the length information. Return step 3.

Have known the framework of the algorithm TGI, we
will get more details as follow.

Construction of index
The index of Ref2 is hash table. Different with the strat-
egy of dynamic memory allocation adopted by FRESCO,
we pre-allocate the memory according to Mem(Index) ∝
Length(Ref2) to avoid reallocating the memory, copying
the data and destroying the memory.
The Fig. 5 show the structure of the index. It is a

one-dimensional array. Its index position is the hash key
value and its value is the corresponding position in the
memory pool. The entry in the memory pool is as below.

We can use the Rabin-Karp algorithm to void repeti-
tive computation when we construct the index, which

facilitate the similarity between the post k-mer subse-
quence and the previous k-mer subsequence.

Match algorithm of TGI
The essential part of the algorithm TGI is the match algo-
rithm. As the Fig. 6 below shows, first, we should build
the index of Ref2 and get the distribution of Ref1 on Ref2
through the index. There also are 4 cases like Fig. 3:

1. Case A: code1 is match and code2 is mismatch.
If the length of the start position of code1 minus
the end position of code1 is longer than the
threshold, we take code1 as misplace match.
Then we decompress the area, align and compress
it with the index. If the length is shorter than the
threshold, we take code1 as match. If the length of
match is more than k, we record the start position
and the length, if not, we record the character
information of this area. The pseudocode of this
part like Algorithm3.

2. Case B. code1 is match and code2 is mismatch.
If the match length is long, we can partially
decompress and get the character information to
enhance the compression ratio. Then we align and
compress character information using the index of
Ref2. If the matched length is short, we decompress
this part directly and record the character information.

3. Case C: code1 is mismatch and code2 is match. Except
the decompression, the process is same as case B.

4. Case D: code1 and code2 are both mismatch. If the
previous transformation result is match, we align
directly and compare characters of both area to
extend the length of previous result. Then we check
if we need to align and compress depending on the
length of the rest part. If the previous

Luo et al. BMC Bioinformatics (2018) 19:230 Page 6 of 12

transformation result is not match, we check if we
need to align and compress depending on the
length of the subsequence in Distr1.
The pseudocode of this part like below:

Results
The test machine was two 2.50 GHz Intel Xeon E5–
2680 v3 CPU with 64GB RAM running CentOS6.6
whose kernel version is 2.6.32 and GCC version is 4.4.7,
JVM version is 1.6.0.
The dataset for test is same to the dataset used in

ERGC. We selected the first Chinese standard
genome sequence map YH-1 [28] sequenced by BGI,
Korean gene data KOREF_200090131 (KOR131 for
short) and KOREF_20090224 (KOR224 for short) [29].
All of these three datasets are human gene, which
contain 24 chromosomes, each about 2990 MB in
size. There exists a feature with these three datasets
that they not only consist of {‘N’, ‘C’,‘A’,‘T’,‘G’}, but also
contain some special characters like ‘U’,‘R’,‘S’,‘K’ and so
on. ERGC can help us to handle all these special
characters.

Fig. 5 Index structure of memory pool

Fig. 6 Flowchart of TGI

Luo et al. BMC Bioinformatics (2018) 19:230 Page 7 of 12

Next, we will use the datasets in the Table 1 below
to do cross test for transformation algorithms, and
then analyze our algorithms from three aspects of
transformation time, compression ratio and memory
consumption.
The main process of our test is getting the com-

pressed data of Tar (as Table 1 shows, it means the
target sequence) based on Ref2 from compressed data
of Tar based on Ref1. The D1 in the Table 1 means
that target sequence YH-1 based on KOR131 is trans-
formed into compressed data based on KOR224. We
can get the test result in Table 2 according to the ex-
periment scheme in Table 1. The result is get by ac-
cumulating the processing time of all chromosomes
and file size is the sum of all chromosomes.
The main contribution of our new algorithms is

simplifying the traditional workflow to attain the aim
to reduce transformation time. As the Fig. 7 shows
above, we can figure out that the transformation time
of all three algorithms is an order of magnitude less
than ERGC which adopts the traditional workflow. At
the same time, it is obvious that TGI is much faster
than TDM and TPI. This is because TGI constructs
index for the reference. We also need to notice that
building index is time-consuming.
Next, we will analyze the performances of these three

algorithms on other indicators.
At first, let us pay attention on compression ratio.

As Fig. 8 shows below, we can find that in dataset
D1、D2、D4 and D6, the compression ratio of trans-
formation algorithms are almost same to ERGC algo-
rithm while TGI is a little higher than TDM and TPI.

At the same time, in dataset D3 and D5, these three
transformation algorithms, especially TGI, have some
less in compression ratio. This is because dataset D3
is transformation from compressed KOR131 based on
YH-1 to compressed KOR131 based on KOR224 and
dataset D5 is transformation from compressed
KOR224 based on YH-1 to compressed KOR224
based on KOR131. KOR131 and KOR224 are both
Korean gene, the similarity between them is high than
the similarity between them and Chinese gene. So,
when the similarity between target sequence and Ref1
and the similarity between references is low, while
the similarity between target sequence and Ref2 is
high, our transformation will significantly reduce the
compression ratio.
Figure 9 below shows the comparison of the peak

of memory consumed by the three algorithms when
they are running. TDM just facilitate the similarity
between references, so its memory consumption is
low and it is positively related to the size of chromo-
some. TPI builds partial index, so its memory
consumption will larger the than TDM. TGI is almost
same to TPI. The memory consumption of ERGC is
related to the compression of each fragment, so its
memory consumption is unstable. At the same time,
too much indexes make the memory consumption of
ERGC is much more than the three transformation
algorithms.
As we know, TGI need build index for reference. It

can obviously reduce the transformation time, but it
also cause expenses in other places. Next, we will
analyze the efficiency of building hash index of refer-
ences. In this experiment, we selected the gene dataset
shown in Table 1 as reference. We compared the effi-
ciency of building index by comparing FRESCO and
TGI with the time of constructing index and the mem-
ory size of index. Since each dataset has 24 chromo-
somes, we selected chromosomes 1(236 MB),
chromosomes X(148 MB), chromosomes 13(109 MB)
and chromosomes 21(45 MB) from the YH dataset and
chromosomes 3(189 MB) and chromosomes 28(75 MB)
from the HG dataset by file size to analyze.

Table 1 Experiment datasets

dataset Target sequence(Tar) Reference 1(Ref1) Reference 2(Ref2)

D1 YH-1 KOR131 KOR224

D2 YH-1 KOR224 KOR131

D3 KOR131 YH-1 KOR224

D4 KOR131 KOR224 YH-1

D5 KOR224 YH-1 KOR131

D6 KOR224 KOR131 YH-1

Table 2 Result of transformation

ERGC TDM TPI TGI

dataset Trans time size Trans time size Trans time size Trans time size Index time

D1 965.97 8.79 71.94 9.06 83.59 8.93 14.91 8.58 113.00

D2 989.05 8.97 71.77 9.12 119.67 9.06 14.85 8.50 113.25

D3 761.63 5.98 72.94 9.07 143.53 8.16 15.73 13.64 112.98

D4 847.25 13.05 72.08 13.28 84.20 12.86 8.26 8.89 99.69

D5 769.74 4.69 72.68 8.03 119.21 6.91 16.41 13.74 113.40

D6 824.82 11.57 72.07 12.04 129.52 11.44 8.25 9.07 102.32

Luo et al. BMC Bioinformatics (2018) 19:230 Page 8 of 12

In Fig. 10, we compared the time of constructing index
of 4 chromosomes from YH dataset at 4 different values
of k. As we can see, the time significantly reduce after
using a memory pool, for the dynamic allocation of
memory is the most time-consuming. The time con-
sumed by TGI combining the memory pool and the fast
hash function is nearly twice the time consumed by the
method using memory pool, and is 10 times less than
the time consumed by FRESCO.
Because index structure of memory pool is same to

index structure of TGI, we just compared memory
consumption of TGI and FRESCO in Fig. 11. As we
can see, the size of the index constructed by the two
methods is positively related with size of the gene
data. The size of index created by TGI using memory
pool is larger than that by FRESCO using dynamic
memory method, but doesn’t double.

Discussion
We have introduced our three algorithms and the ex-
periment results. There exists some points that we need
to focus on.

Firstly, all of these are much faster than conven-
tional decompression-and-compression method.
These is the main attribution of this paper. We ex-
ploit the similarity between of references to reduce
three steps to two steps. Secondly, as the most im-
portant indicator of compression algorithms,
compression ratio of three new algorithms is almost
same to the traditional algorithms. This is an im-
portant embodiment of them as good transformation
methods. Finally, the transformation time of TGI is
about 10 times faster than TDM and TPI, but the
time of constructing index of TGI is much longer.
Index just need to be constructed one time, so if
there exists few data to transform, it is not worth
wasting time to construct index. On the contrary, if
there exist a large collection of gene data to trans-
form, the construction time will be far less than the
time we spend to align target sequence with refer-
ence. As a result, we can find that TDM and TPI
are more suitable for small-scale gene transformation
while TGI is more suitable for large-scale gene
transformation.

Fig. 7 The unit of time is seconds and the transformation time of ERGC is the sum of decompression time of compressed data based on Ref1
and compression time of decompressed data based on Ref2

Fig. 8 The original size of dataset is 2986.68 MB and the compression ratio presents like original data size: compressed data size

Luo et al. BMC Bioinformatics (2018) 19:230 Page 9 of 12

As for the small-scale gene transformation, selecting
TDM or TPI is also a question. TDM is a little faster
than TPI and its memory consumption is less than
TPI, but the compression ratio of TPI is better than
TDM when the target dataset and destination dataset
are not much similar. Our selection depend on what
we care about.

Conclusion
Trough discussion above, we can conclude that TDM
and TPI are more suitable for small-scale gene data
transformation and we select one of them depending
on what we care about is transformation speed or

compression ratio, while TGI is more suitable for
large-scale gene data transformation.
Although the transformation speed of three algo-

rithms we proposed is obviously faster than conven-
tional decompression-and-recompression process,
there are some aspects for optimization in the future.

1. Our algorithms mainly optimized the
transformation time. Although we have
adopted some methods to improve the
compression ratio, there is still a certain loss
in compression ratio. We can improve the
compression ratio in the future.

Fig. 10 Time of constructing index at different values of k and different chromosomes

Fig. 9 Memory consumption when running

Luo et al. BMC Bioinformatics (2018) 19:230 Page 10 of 12

2. In this paper, we just studied three compression
tools, and the subsequent research can be done for
more compression tools.

3. Due to the memory required of our algorithms is
low, we can choose process pools or thread pools
to improve the computation speed, or we can use
the distributed file system speed up the IO by
distributing the IO pressure on a single node to a
number of nodes through a high-speed network.

Abbreviation
k-mer: It is each motif of length k observed in a DNA sequence. Clearly, the number
of k-mer in a sequence of length L we can obtain is L – k

Acknowledgements
We would like to thank all the comments and suggestions.

Funding
The research was funded by project granted from Shenzhen Science Technology
Foundation:
JCYJ20170302153920897/JCYJ20150930105133185/JCYJ20150324140036842,
Guangdong Pre-national Project 2014GKXM054, and Guangdong Natural
Science Foundation: 2017B030314073/2016A030313036.

Availability of data and materials
The Korean gene data can get from ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/
and the first Chinese standard genome sequence map YH-1 can get from http://
yh.genomics.org.cn/.

Authors’ contributions
QL: idea initiation, method development, manuscript writing and data analysis;
CG: method development and manuscript writing; YZ: idea initiation, method
development; YC: method development and manuscript writing; GL: method
development and manuscript writing; All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 16 September 2017 Accepted: 4 June 2018

References
1. Consortium GP, Abecasis GR, Altshuler D, et al. A map of human genome

variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.
2. Reuter JA, Spacek D, Snyder MP. High-throughput sequencing technologies.

Mol Cell. 2015;58(4):586.
3. Illumina Int, HiSeq X Series of Sequencing Systems Specification Sheet.

access at https://www.illumina.com/documents/products/datasheets/
datasheet-hiseq-x-ten.pdf

4. Karsakov A, Bartlett T, Ryblov A, et al. Parenclitic network analysis of
methylation data for Cancer identification. PLoS One. 2017;12(1):e0169661.

Fig. 11 Memory size of index at different values of k

Luo et al. BMC Bioinformatics (2018) 19:230 Page 11 of 12

ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/
http://yh.genomics.org.cn
http://yh.genomics.org.cn
https://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf
https://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf

5. Joly Y, Dove ES, Knoppers BM, et al. Data sharing in the post-genomic world:
the experience of the international Cancer genome Consortium (ICGC) data
access compliance office (DACO). PLoS Comput Biol. 2012;8(7):e1002549.

6. Nelson KE, Peterson JL, Garges S. Metagenomics of the human body[M].
Springer; 2011.

7. Gevers D, Knight R, Petrosino JF, et al. The human microbiome project: a
community resource for the healthy human microbiome. PLoS Biol. 2012;
10(8):e1001377.

8. CONSORTIUM E P. An integrated encyclopedia of DNA elements in the
human genome. Nature. 2012;489(7414):57–74.

9. Kahn SD. On the future of genomic data. Science. 2011;331(6018):728.
10. Nalbantog̃Lu OU, Russell DJ, Sayood K. Data compression concepts and

algorithms and their applications to bioinformatics. Entropy. 2009;12(1):34.
11. Pennisi E. Will computers crash genomics? Science. 2011;331(6018):666–8.
12. Bose T, Mohammed MH, Dutta A, et al. BIND - an algorithm for loss-less

compression of nucleotide sequence data. J Biosci. 2012;37(4):785–9.
13. Chen X, Li M, Ma B, et al. DNACompress: fast and effective DNA sequence

compression. Bioinformatics. 2002;18(12):1696–8.
14. Korodi G, Tabus I, Rissanen J, et al. DNA sequence compression - based on

the normalized maximum likelihood model. IEEE Signal Process Mag. 2007;
24(1):47–53.

15. Cao MD, Dix TI, Allison L, et al. A simple statistical algorithm for biological
sequence compression[C]//Data Compression Conference, 2007. DCC'07.
IEEE; 2007. p. 43-52.

16. Zhu Z, Zhou J, Ji Z, et al. DNA sequence compression using adaptive
particle swarm optimization-based Memetic algorithm. IEEE Trans Evol
Comput. 2011;15(5):643–58.

17. Christley S, Lu Y, Li C, et al. Human genomes as email attachments.
Bioinformatics. 2009;25(2):274–5.

18. Deorowicz S, Grabowski S. Robust relative compression of genomes with
random access. Bioinformatics. 2011;27(21):2979.

19. Brandon MC, Wallace DC, Baldi P. Data structures and compression
algorithms for genomic sequence data. Bioinformatics. 2009;25(14):1731–8.

20. Xie X, Zhou S, Guan J. CoGI: Towards compressing genomes as an image.
IEEE/ACM Trans Comput Biol Bioinform. 2015;12(6):1275–85.

21. Ochoa I, Hernaez M, Weissman T. iDoComp: a compression scheme for
assembled genomes. Bioinformatics. 2015;31(5):626–33.

22. Wang C, Zhang D. A novel compression tool for efficient storage of
genome resequencing data. Nucleic Acids Res. 2011;39(7):e45.

23. Wandelt S, Leser U. FRESCO: Referential compression of highly similar
sequences. IEEE/ACM Trans Comput Biol Bioinform. 2014;10(5):1275–88.

24. Deorowicz S, Grabowski S, Ochoa I, et al. Comment on: “ERGC: an efficient
referential genome compression algorithm”. Bioinformatics. 2015;31(21):
3468–75.

25. Alves F, Cogo V, Wandelt S, et al. On-demand indexing for referential
compression of DNA sequences. PLoS One. 2015;10(7):e0132460.

26. Hunt JJ, Vo KP, Tichy WF. Delta algorithms:an empirical analysis. Acm Trans
Softw Eng Methodol. 1998;7(2):192–214.

27. Moffat A. Implementing the PPM data compression scheme[J]. IEEE Trans
Commun. 1990;38(11):1917–21.

28. Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian
individual. Nature. 2008;456(7218):60–5.

29. Ahn SM, Kim TH, Lee S, et al. The first Korean genome sequence and
analysis: full genome sequencing for a socio-ethnic group. Genome Res.
2009;19(9):1622–9.

Luo et al. BMC Bioinformatics (2018) 19:230 Page 12 of 12

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work

	Methods
	Framework
	Data process
	TDM
	TPI
	TGI
	Construction of index
	Match algorithm of TGI

	Results
	Discussion
	Conclusion
	Abbreviation
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	References

