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Feature extraction method for proteins
based on Markov tripeptide by
compressive sensing
C. F. Gao1,2*† and X. Y. Wu1†

Abstract

Background: In order to capture the vital structural information of the original protein, the symbol sequence was
transformed into the Markov frequency matrix according to the consecutive three residues throughout the chain.
A three-dimensional sparse matrix sized 20 × 20 × 20 was obtained and expanded to one-dimensional vector.
Then, an appropriate measurement matrix was selected for the vector to obtain a compressed feature set by
random projection. Consequently, the new compressive sensing feature extraction technology was proposed.

Results: Several indexes were analyzed on the cell membrane, cytoplasm, and nucleus dataset to detect the
discrimination of the features. In comparison with the traditional methods of scale wavelet energy and amino
acid components, the experimental results suggested the advantage and accuracy of the features by this new
method.

Conclusions: The new features extracted from this model could preserve the maximum information contained in the
sequence and reflect the essential properties of the protein. Thus, it is an adequate and potential method in collecting
and processing the protein sequence from a large sample size and high dimension.
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Background
Protein feature extraction is a key step to construct a pre-
dictor based on machine learning technique. Theoretically,
the critical attributes within the protein can be obtained by
extracting its features from amino acid sequences, then, by
comparing the different features of proteins to predict the
homologous biological function or identifying proteins for
the localization of subcellular sites. Some software tools
have been established to generate various protein features,
such as Pse-in-One [1], BioSeq-Analysis [2], Pse-Analysis
[3], etc. Pse-in-One is a powerful web server which covers
8 different modes to obtain protein feature vectors based
on pseudo components. BioSeq-Analysis is a useful tool for
biological sequence analysis which can automatically
complete three steps: feature extraction, predictor construc-
tion and performance evaluation. Pse-Analysis a python
package which can automatically complete five procedures:

feature extraction, optimize parameters, model training,
cross validation, and evaluation. These tools have been
widely and increasingly used in many areas of computa-
tional biology. Since feature extraction is a necessary
precondition for almost all existing prediction algorithms,
the subsequent studies is based on the maximum retention
of the protein attribute as assessed from the amino acid
sequence.
The extraction of features for pattern recognition is

challenging as a majority of the discriminant features are
often difficult to find or cannot be measured due to some
conditions that might complicate the feature extraction
task. The initial sequences may be very large or complex
that cannot be used directly without transformation in the
process of identification, and therefore, we can use the
projection method such that the sample data can be
reduced to low-dimensional space. Thus, obtaining the
maximum representative features of the nature of the
characteristics is known as feature extraction [4].
Compressive Sensing (CS) established a new theory for

signal processing based on sparse representation and
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optimization issue [5–7]. The CS theory transforms the
sampling of a large number of sparse signals into that of
a small amount of useful information while ensuring
that crucial details are not destroyed. Previous studies
found that when a signal is compressible or can be
sparsely represented on a transform base, the high di-
mensional signal can be projected to a low-dimensional
space through a measurement matrix (not related to the
transform base). If the signal is sufficiently sparse, then
it can be discriminative. Due to the excellent perform-
ance of the CS theory in collecting high-density informa-
tion, it has been applied in other fields, and some new
methods of feature extraction and recognition have been
developed, including the classification algorithm based
on sparse representation and its application in medical
image [8], digital signal feature extraction [4], and video
watermarking [9].
In order to acquire the effective and discriminative

features of the protein, we used the sparse vector for
feature representation of the protein sequence. The key
idea is that the amino acid sequence is transformed into a
sparse vector representation, followed by the extraction of
the discriminating feature by the compression perception
technique from the sparse vector.

Methods
Compressive sensing theory
Compressive Sensing (CS) theory is a new method of data
acquisition by achieving the sparse signal. The CS theory
discovered that when a signal is compressible or sparse in
a transform domain, then a higher dimension sparse signal
can be projected onto a lower dimension space with an
appropriate measurement matrix, and the initial signal
can be reconstructed by an optimized algorithm with a
relatively high probability (Fig. 1).
Supposingx ∈ RN is a one-dimensional signal of length

N, which can be expanded by a set of orthogonal bases
(sparse base) ψ, that is

x ¼
XN
i¼1

ψiθi ¼ ψθ ð1Þ

Where ψ = [ψ1, ψ2,…ψN] is a Ν ×Ν matrix and ψi is a
Ν × 1 vector. θ = {θ1,…,θN} is a N-dimensional vector

composed of N sparse coefficients θi = ψi
Tx. If the signal

x only contains K (K < <N) non-zero coefficients on the
orthogonal basis ψ, then signal x is generally considered
as sparse or compressible.
Consequently, signal x can be projected onto the

measurement matrix Φ = {ϕ1,⋯, ϕm} to obtain the M-di-
mensional compressive vector of the signal x, which can
be expressed as:

s ¼ Φx ð2Þ
Where, Φ represents the Μ ×Ν measurement matrix,

and s represents the measurement vector of length M.
The eq. (1) is substituted into eq. (2) to obtain.

s ¼ Φψθ ¼ Θθ ð3Þ
Herein, the original N-dimensional signal is reduced to

the M-dimensional observation signal s (measured value)
by projection. The Eq. (3) indicated that the measured
value is the combined function of the original signal,
which contains a small amount of high-density informa-
tion from the entire original signal; thus, it is the optimal
combination value of the original signal.
Notably, the measurement matrix Φ is required to

meet the following conditions: the rows of the measure-
ment matrix Φ, and the rows of the sparse matrix ψ can-
not be represented by each other. In the current study,
we selected a random matrix that follows the Gaussian
distribution as a measurement matrix and can fulfill the
requirements with high probability [10, 11].

Feature extraction for proteins by CS
Since every protein is composed of a linear sequence of
amino acids that are presented as symbolic sequences, it
cannot be used as data for computerized analysis. There-
fore, these symbol sequences are required to be translated
into data sequence to obtain a digital feature vector. The
purpose of feature extraction is to derive a valid mathem-
atical expression of the sequence that can truly reflect the
inherent properties of the protein. The projection process
of CS can preserve the vital information and the structure
of the signal; and therefore, CS theory is a promising and
potential extraction method, which distinctly satisfies our
requirements.
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Fig. 1 Block diagram of CS theory
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The Markov model is widely used in the analysis of
biological data for finding new genes from open reading
frames and predicting protein structures [12, 13]. There-
fore, the processed amino acid sequence can be trans-
formed into the sparse matrix by Markov chain model,
and then, the sparse data can be projected by the CS
theory, followed by extraction of accurate features.

Preparation of the data set
In the most abundant and most widely used protein
database UniProt, we obtained a significant number of
amino acid sequences according to the protein subcellu-
lar location, while constructing the experimental data
set. The feature vectors were extracted by different
methods: compressive sensing, amino acid composition,
and scale wavelet energy. Finally, the different feature
vectors extracted by each method are verified by Fuzzy
C-means algorithm (FCM) for the corresponding classi-
fication accuracy (Fig. 2).
The standard data set used in the experiment is from

the platform, http://www.uniprot.org, which is com-
posed of three large databases of TrEMBL, Swiss-Prot,
and PIR-PSD, wherein the data are characterized by high
quality, no redundancy, and manual annotation for the

protein sequence with high credibility and operational
value.
The protein chain is commonly described as an amino

acid sequence, and the element on the chain is the name
of the amino acid. Suppose Ф is denoted as the basic
character set of the 20 amino acids in alphabetical order,
wherein each character represents a specific amino acid.

Ф ¼ A;C;D;E; F;G;H; I;K;L;M;N;P;Q;R; S;T;V;W;Yf g

Occasionally, in the current collected protein sequence,
an unidentifiable amino acid (represented as the letter ‘X’)
is present. The unknown specific amino acids will directly
affect the subsequent sequence feature extraction. Thus,
such sequence of the samples is removed automatically by
the program, i.e., the sequences with letters not belonging
to the set Ф are abandoned, in order to ensure the oper-
ational value and reliability of the sample and avoid cum-
bersome process of manual elimination in a large dataset.
Five hundred sequences of datasets of the nucleus and

cell membrane were collected from the website based on
the subcellular localization. Henceforth, this dataset is
termed as A (Table 1) for convenience.

Collect the data set

Process symbol 
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results

Compressive sensing

Conclusion

Fig. 2 Block diagram of the experimental procedure

Table 1 Dataset A of 1000 Samples

Subcellular localization category Number of samples

Nucleus 500

Cell membrane 500

Table 2 Dataset B of 2400 Samples

Subcellular localization category Number of samples

Nucleus 800

Cell membrane 800

Cytoplasm 800
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The scale of datasets is further expanded, and nucleus
(cell nucleus), cell membrane, and cytoplasm data are
collected and labeled as dataset B (Table 2).

Construction of Markov transfer matrices of protein
sequences
The Markov model has a solid mathematical basis. The
system transfer from one state to another is known as
the Markov process. Essentially, it is a critical stochastic
process and a mathematical model for the complex state
transition. Markov chain is a collection of the state
distributions. The amino acid sequences are commonly
represented by a sequence of symbols that can be
regarded as the Markov transition state, and the order
between the symbols reflect the intrinsic relationship
between the states. Thus, the amino acid sequence can
be ascribed as a Markov process.
To ensure the sparseness of the Markov transfer matrix

obtained from the protein, the state distribution of the
transfer behavior of amino acids is described by a 20 ×
20 × 20 frequency matrix M, where 20 types of amino

acids are arranged in rows, columns, and longitudinally,
respectively, followed by the construction of an adjacent
matrix that reflects the composition of the tripeptide of
the sequence.
Supposing Li, j, k = {(X,Y,Z, p)} denotes the adjacent rela-

tionship of the tripeptide ‘XYZ’, wherein p is the occurring
frequency of segments ‘XYZ’ throughout the sequence.
We assigned

M i; j; kð Þ ¼ p ð4Þ

Wherein the ith row corresponds to amino acid X and
the jth column corresponds to Y, while the kth longitu-
dinal corresponds to Z. All the existing tripeptides were
searched in the protein sequence and the corresponding
values assigned in matrix M. Consequently, the informa-
tion about the intrinsic relation of the protein is shown
to satisfy the sparse conditions of the CS theory, i.e., the
Markov’s transfer frequency matrix.
The following is a protein sequence, whose subcellular

localization is cell membrane and Swiss-Prot ID is

Table 3 Sample information of ZIG1_CAEEL

Entry Length Sequence Subcellular location

G5EGI7 265 MKNLLLITFFVVSTVTALGGRGSKSALVLVA
ARSSENHPLHATDPITIWCAPDNPQVVIKTAH
FIRSSDNEKLEAALNPTKKNATYTFGSPSVK
DAGEYKCELDTPHGKISHKVFIYSRPVVHSH
EHFTEHEGHEFHLESTGTTVEKGESVTLTCP
VTGYPKPVVKWTKDSAPLALSQSVSMEGST
VIVTNANYTDAGTYSCEAVNEYTVNGKTSK
MLLVVDKMVDVRSEFQWVYPLAVILITIFLL
VVIIVFCEWRNKKSTSKA

SUBCELLULAR LOCATION: Cell membrane
{ECO:0000305}; Single-pass type I membrane
protein {ECO:0000305}.

Fig. 3 Three-dimensional Markov frequency matrix of ZIG1_CAEEL
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ZIG1_CAEEL (Table 3). The sequence is converted into
Markov frequency matrix (Fig. 3).
The Markov frequency matrix is a three-dimensional

square matrix. The elements in the matrix are integers
(representing the frequency that the state transition
actually occurs), different from the probability matrix
(the elements are the decimal numbers within [0,1]). If
the elements in the Markov frequency matrix are divided
by the sum of the elements of the matrix, then they
could be transformed into a Markov probability matrix
and would possess all the properties of the Markov
probability matrix. For convenient description, we used
the shortened form of the Markov matrix for Markov
transition frequency matrix in the following evaluations.

Extraction features from proteins by CS
Since the integers in the matrix represent the frequency
of the three adjacent amino acids, the non-zero value
would not exceed L-2, where L is the length of the
protein. Thus, the Markov matrix harbors a crucial
characteristic of sparseness, which is consistent with the
property of sparse signal (relative to the signal length,

only a few coefficients are non-zero, and the remaining
is primarily zero).
The Markov matrix is expanded to obtain a

one-dimensional vector x with length 8000 (L < < 8000)
and the signal x is sufficiently sparse, such that the unit
orthogonal matrix can be sued directly as the sparse
base. As mentioned in section “Methods”, we selected
independent and identically distributed Gaussian
Random matrix (denoted byΦ) as the measurement
matrix for the compressive projection. The inner
product obtained by Eq. (3) was the low-dimensional
observation signal s, which was the extracted feature
set of the protein.
In Fig. 4:
Q is the initial amino acid sequence;
U is a 20 × 20 × 20 three-dimensional Markov transfer

frequency matrix;
x is an expanded one-dimensional sparse signal with

length 8000;
ψ: is an 8000 × 8000 sparse base;
θ: is the conversion of the signal x under sparse base ψ;
Φ is a m × 8000 measurement matrix;

Fig. 5 Schematic of the verification with different features

Fig. 4 Schematic diagram of the feature extraction method by CS
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s is the compressed measurement signal with the length
of m, and s indicates the extracted protein features.
The advantage of the CS method is that the sparse sig-

nal can be compressed while reflecting the transfer be-
havior in the Markov matrix. Thus, the low-dimensional
measurement signal s indicates the high-density features
and maintains the structure information adequately; this
is precisely as expected of the intrinsic properties of the
protein.

Results and discussion
Dataset A is divided into two types according to the
subcellular location, and the feature vectors are
extracted in batches. Subsequently, the classification
accuracy by FCM algorithm is calculated in order to
examine whether the CS method is correct and feasible.
Furthermore, we extracted the feature vectors from the
amplified dataset B by CS method, amino acid compos-
ition, and scale wavelet energy, and these features were
verified by FCM algorithm. The comparison results
suggested that the feature extracted by CS was superior
to the other methods (Fig. 5).

Evaluation indexes for the feature set
Effectiveness
The validity of the features needs to be tested by specific
indexes, especially comparison of the features of scale

wavelet energy and amino acid composition. In this case,
the following indicators were used in the experiments.
The criteria were as follows: the intraclass distance as
small as possible and the interclass distance as large as
possible.

Sw ¼
XC

k¼1

XNk
i¼1

x kð Þ
i −mk

� �
x kð Þ
i −mk

� �T
ð5Þ

Sb ¼
XC

k¼1

Nk mk−mð Þ mk−mð ÞT ð6Þ

Where C is the class number, Nk is the number of
samples in the kth class, mk is the mean vector of the kth

class, m is the mean vector of all samples, tr(Sw) is the
intra-class distance, tr(Sb) is the interclass distance, and
the smaller the ratio tr(Sw)/tr(Sb), the better the recogni-
tion effect.

Entropy function
Entropy can be used to evaluate the performance of the
features of different species and present the percentage
of all those identified accurately. The entropy function is
defined as:

Etp ¼ −
1
n

XC

k¼1

Xn
i¼1

uik log2 uikð Þ ð7Þ

Where n is the number of samples in a given dataset,
C is the number of clusters and uik represents the
membership of the ith sample belonging to kth class, and
accordingly, the smaller the Etp value, the better the
clustering effect.

Clustering accuracy
FCM algorithm is widely used in pattern recognition,
whereby the clustering performance is adequate. Compared

Fig. 6 Two-dimensional distributions of CS features on dataset A

Table 4 Indicators of three features on dataset A by different
methods

Feature extraction
method

Identification indicator

Accuracy Etp tr(Sw)/tr(Sb)

Compressive Sensing 0.8460 0.225 7.83

Amino acid composition 0.7130 0.999 13.11

Scale wavelet energy 0.8400 0.252 8.71
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to the other common recognition algorithm, FCM is a
more efficient and rapid data analysis method, such that it
can be selected objectively for the clustering accuracy test.
Since datasets A and B are collected from UniProt

database according to the subcellular localization, the
actual categories of the dataset have been determined in
advance. Then, the accuracy of the clustering results is
calculated, i.e., the ratio between the correctly recog-
nized sample size and the total sample size to assess the
effect of classification and compare the discriminative
effect of different methods of feature extraction. We
defined the clustering accuracy as:

Accuracy ¼ 1
N

XC

k¼1

Xnk
i¼1

xik ð8Þ

Where, N is the total number of samples in the dataset,
C is the number of clusters, nkis the actual sample size in
the kth class, and xik represents the two-value clustering
result of the ith sample in the kth class (if the classification
is correct, then the value is 1, or else 0).

Recognition results and analysis of features
Recognition results of dataset A
Dataset A was collected according to the subcellular
localization (nucleus and cell membrane, Table 1) that
can be categorized into two classes by FCM algorithm.
The features of dataset A are extracted by three methods
and the corresponding indicators as shown in Table 4.
For the sample size of 1000 with two categories, the

result of compression perception was optimal. In order
to intuitively observe the distribution of the features
extracted by the CS method and maintain the distance
between the original samples considerably, we used
linear mapping [14] to project the extracted CS feature

vector into a two-dimensional plane. Thus, the distribu-
tion of two proteins was distinguishable (Fig. 6).
Consecutively, the convergence of the objective function

of FCM algorithm with the CS features was satisfactory
(Fig. 7), and the results demonstrated the reasonability of
FCM algorithm in the current experiment.

Recognition results of dataset B
Based on dataset A, the effect of the two methods of
compression sensing and scale wavelet energy did not
vary significantly (Table 4), which could be attributed to
the small sample size. Furthermore, dataset B (subcellu-
lar localization for the nucleus, cell membrane, and
cytoplasm) was collected by amplifying the capacity of
the dataset and subcellular localization categories. The
identification result of dataset B is shown in Table 5.
When the category and the sample size increases, the

complexity of data analysis increases. Consequently, the
effective indicators based on Eqs. (5, 6, 7 and 8) of the
three methods have declined. However, Table 5 demon-
strated that the clustering effect based on the CS features
continued to be superior to the amino acid composition
and the scale wavelet energy features. Thus, the feature
extraction method by CS was optimal.
The executions of several previous identification algo-

rithms required an additional prior knowledge of training
samples. Nevertheless, the method in this study can

Fig. 7 Variation of objective function of FCM algorithm on dataset A

Table 5 Indicators of the three features on dataset B by
different methods

Feature extraction
method

Identification indicator

Accuracy Etp tr(Sw)/tr(Sb)

Compressive Sensing 0.7588 0.392 2.092

Amino acid composition 0.6946 1.585 1.306

Scale wavelet energy 0.7125 0.460 2.014
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achieve the relatively high recognition accuracy in the case
of unsupervised clustering without any training samples,
which reflects the advantages of CS theory in collecting
vital information. In order to intuitively illustrate the effect
of each feature extraction method, the clustering results
are shown in Figs. 8, 9, and 10.
Figures 8, 9 and 10 demonstrated that the recognition

effect with CS features was better than the others. In
accordance with the theoretical analysis in section
“Methods”, the CS theory exhibited a great advantage in
the collection of critical information to obtain the
discriminative features. On the contrary, amino acid
composition features showed excessive overlap resulting
in unsatisfactory recognition with mispartition.

Compression scale analysis
We used dataset A to investigate the relationship be-
tween the compression scale of the measurement matrix
(i.e., the dimension of the feature vector after extraction)
and the effect of feature expression.

Table 6 compared the features with different compres-
sive dimensions, the distance between the class, and the
distance within the class, and only slight differences
were observed. The small difference in the clustering
validity index arose from the randomness of the meas-
urement matrix; however, it did not affect the clustering
accuracy. The results in Table 6 suggested that the CS
features were not sensitive to the dimension of the
measurement matrix.

Methodological discuss
The Markov transfer frequency matrix contains both the
number of residues and the order of sequence and also
reflects the intrinsic structural information. Altogether, it
can be regarded as the synthesis method of the amino acid
component [15], the sequence order method [16], and the
wavelet decomposition method [17]. Therefore, the feature
extracted by the CS method showed better robustness in
the experiments as compared to the other two traditional
methods based on the fact that feature is extracted from

Fig. 9 Classification result and objective function variation with amino acid composition features on dataset B

Fig. 8 Classification result and objective function variation with CS features on dataset B
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the same sample data set using the scale wavelet energy
and the amino acid component, respectively.
Since our methods is focus on the expression formulate

of sequence and feature extraction, consequently it is
suitable for discriminative prediction models. Besides the
recognition of proteins subcellular localization in current
study, an important and suitable task in protein sequences
analysis and/or performance evaluation is remote homology
detection, e.g. protein features representation can be
combined to improve the sensitivities of predictors [18],
discriminative models and ranking approaches are comple-
mentary for the improvement of predictive performance
[19]. These ideas in protein remote homology detection
would provide a promising direct for future research.

Conclusions
The CS theory can capture sufficient information while
a sparse signal is compressed, and the projection vector
is an excellent discriminant which is the combination
function of the sparse signal. In the present study, this
theory is introduced to develop a new feature extraction
method of the protein sequence. Herein, the amino acid
frequency, the order of the sequence, the structure, and
other vital information of the protein is transferred into
a sparse signal by the Markov transfer matrix, and then,

the accurate feature expressions are extracted from the
sparse vector by CS theory.
The new bioinformatics theoretical framework of

protein is constructed based on the Markov model
and the theory of compression sensing. It is an ad-
equate feature extraction method in collecting and
processing the protein sequence with large sample
size and high dimension. Moreover, it is suitable for
the development of biological information processing
and has the potential of extension and application in
several other fields [20, 21]. However, there is yet
room for improvement in this method with respect to
the following aspects:

(1) The Markov transfer frequency matrix used in our
method is excellent and feasible; however, it is not
the sole method to quantify the amino acid
sequence of the protein, and other methods can be
attempted to quantify the symbol sequence in the
future. In addition, if the measurement matrix can
satisfy the adaptive requirements according to the
observation data, the compressive performance of
the CS technology would be improved further.

(2) Several investigations to the CS theory are
primarily focused on the fixed orthogonal space.
Consecutively, finding the sparse domain of the
signal is a critical prerequisite for the application
of the CS theory. Several studies have shown that
the sparse representation of the signal is effective
under the super-complete redundancy dictionary.
Interesting studies in this area have made some
progress, which would provide a promising
direction for future exploration in terms of
improvement in the method.

Abbreviations
CS: Compressive sensing; FCM: Fuzzy C-means algorithm

Table 6 Indicators of CS features with different dimensions on
dataset A

Feature vector tr(Sw)/ tr(Sb) Clustering accuracy

5 - dimensional CS features 7.83197 0.8460

10 - dimensional CS features 7.82934 0.8460

15 - dimensional CS features 7.82953 0.8460

20 - dimensional CS features 7.83036 0.8460

30 - dimensional CS features 7.83051 0.8460

50 - dimensional CS features 7.83031 0.8460

Fig. 10 Classification result and objective function variation with scale wavelet energy features on dataset B
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