
Ren et al. BMC Bioinformatics (2018) 19:242
https://doi.org/10.1186/s12859-018-2236-9

RESEARCH ARTICLE Open Access

ProMotE: an efficient algorithm for
counting independent motifs in uncertain
network topologies
Yuanfang Ren*, Aisharjya Sarkar and Tamer Kahveci

Abstract

Background: Identifying motifs in biological networks is essential in uncovering key functions served by these
networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that
biological interactions are uncertain events further complicates the problem, as it makes the existence of an
embedding of a given motif an uncertain event as well.

Results: In this paper, we develop a novel method, ProMotE (ProbabilisticMotif Embedding), to count non-overlapping
embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We
develop three strategies to scale our algorithm to large networks.

Conclusions: Our experiments demonstrate that our method scales to large networks in practical time with high
accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show
that our method helps in uncovering key functional characteristics of biological networks.

Keywords: Independent motif counting, Probabilistic networks, Polynomial

Background
Biological networks describe a system of interacting
molecules. Through these interactions, these molecules
carry out key functions such as regulation of transcrip-
tion and transmission of signals [1]. Biological networks
are often modeled as graphs, with nodes and edges rep-
resenting interacting molecules (e.g., protein or gene) and
the interactions between them respectively [2–4]. Study-
ing biological networks has great potential to provide
significant new insights into systems biology [5, 6].
Network motifs are patterns of local interconnections

occurring significantly more in a given network than in a
random network of the same size [7]. Identifying motifs is
crucial to uncover important properties of biological net-
works. They have already been successfully used in many
applications, such as understanding important genes that
affect the spread of infectious diseases [8], revealing rela-
tionship across species [6, 9], and discovering processes
which regulate transcription [10].

*Correspondence: yuanfang@cise.ufl.edu
Department of Computer & Information Science & Engineering, University of
Florida, 32611 Gainesville, FL, USA

Network motif discovery is a computationally hard
problem as it requires solving the well-known sub-
graph isomorphism problem, which is NP-complete [11].
The fact that biological interactions are often inherently
stochastic events further complicates the problem [12].
An interaction may or may not happen with some prob-
ability. This uncertainty follows from the fact that biolog-
ical processes governing these interactions, such as DNA
replication process, inherently exhibit uncertainties. For
example, DNA replication can initiate at different chro-
mosome locations with various probabilities [13]. Besides
the replication time variance, other epigenetic factors can
also alter the expression levels of genes, which in turn
affect the ability of proteins to interact [14].
Existing studies model the uncertainty of biological

interactions using a probability value showing the confi-
dence in its presence [12]. More specially, each edge in
the network is associated with a probability value. Several
databases, such as MINT [15] and STRING [16], already
provide interaction confidence values. If a biological net-
work has at least one uncertain interaction, we call it a

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2236-9&domain=pdf
mailto: yuanfang@cise.ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ren et al. BMC Bioinformatics (2018) 19:242 Page 2 of 17

probabilistic network. Otherwise, it is a deterministic net-
work. In the rest of the paper, we represent a probabilistic
network using a graph denoted with G = (V ,E,P), where
V denotes the set of interacting molecules, E denotes the
interactions among them, and P : E → (0, 1] is the
function that assigns a probability value to each edge.
Several approaches have been developed to solve the

network motif discovery problem (e.g., [17–19]). How-
ever, most of them focus on deterministic network
topologies. The main reason behind this limitation is that
a probabilistic network summarizes all deterministic net-
works generated by all possible subsets of interactions.
Thus, a probabilistic network G = (V ,E,P) yields 2|E|
deterministic instances. The exponential growth of the
number of deterministic instances makes it impossible
to directly apply existing solutions to probabilistic net-
works. Relatively little research has been done on finding
motifs in probabilistic networks. Tran et al. [20] pro-
posed a method to derive a set of formulas for count
estimation. This study however has not provided a general
mathematical formulation for arbitrary motif topologies.
It rather requires a unique mathematical formulation for
each motif. Besides, it assumes that all interactions of the
probabilistic network have the same probability. Thus, it
fails to solve the generalized version of the problem where
each interaction takes place with a possibly different prob-
ability. Todor et al. [21] developed a method to solve the
generalized version of the problem. It computes the exact
mean and variance of the number of motif instances. Both
of above two methods count the maximum number of
motif instances using F1 measure, that is including all

possible embeddings regardless of whether they overlap
with each other or not.
There are two more restrictive frequency measures, F2

andF3, which avoid reuse of graph elements [19].F2 mea-
sure considers that two embeddings of a motif overlap if
they share an edge. F3 measure is more restrictive as it
defines overlap as sharing of a node. These two measures
count the maximum number of non-overlapping embed-
dings of a given motif. We explain the difference among
three frequency measures on a hypothetical deterministic
network Go (see Fig. 1a). Consider the motif patternM in
Fig. 1b. Go yields six possible embeddings of M denoted
with the embedding setH = {H1,H2,H3,H4,H5,H6} (see
Fig. 1c-h). Since F1 measure counts all possible embed-
dings, the F1 count is six. As embeddings H1 and H6 do
not have common edges, the F2 count is two. All pairs
of embeddings in this set share nodes. As a result, the F3
count is one.
F2 and F3 measures satisfy a fundamental character-

istic, the downward closure property, which F1 measure
fails to have. This property is essential for constructing
large motifs [22]. It ensures that the frequency of net-
work motifs is monotonically decreasing with increasing
size of motif patterns. For example, in the determinis-
tic network Go (see Fig. 1a), given the triangle pattern
(see Fig. 1i), there are two triangle embeddings in total
(Fig. 1j). Consider a larger motif pattern, such as the pat-
tern in Fig. 1b. The F1 count however becomes six, which
conflicts with the downward closure property. Besides,
non-overlapping motifs are needed in navigation methods
such as folding and unfolding of the network [23]. Taking

a b

e f

c d

i j

g h

Fig. 1 An example to explain three frequency measures. a A hypothetical deterministic network Go with seven nodes and eight edges. b A motif
patternM with four nodes and three edges. c - h Six possible embeddings of motif patternM in network Go denoted with the embedding set
H = {H1,H2,H3,H4,H5,H6}. i A triangle pattern. j An embedding set of triangle pattern

Ren et al. BMC Bioinformatics (2018) 19:242 Page 3 of 17

the importance of non-overlapping motifs into account,
Sarkar et al. [24] developed a method to count the non-
overlapping motifs in probabilistic networks using the F2
measure. Their study builds a polynomial to model the
distribution of the number of motif instances overlapping
with a specific embedding of that motif. However, the
exponential growth of the size of polynomial terms makes
it not scalable to large networks.

Contributions. In this paper, we develop a scal-
able method, named ProMotE (Probabilistic Motif
Embedding), to tackle the problem of counting indepen-
dent motifs in a given probabilistic network. We formally
define the problem in “Preliminaries and problem defini-
tion” section. We explain our method for the F2 measure,
yet the same algorithm can trivially be applied to the F3
measure. This study has three major contributions over
the existing literature: (1) The key bottleneck in counting
motifs in probabilistic networks is computing the dis-
tribution of the number of overlapping embeddings of
a given motif instance. We build a new method which
allows us to avoid computing this distribution whenever
possible. (2) Computing the distribution in (1) above
necessitates constructing a polynomial. We devise two
strategies, which compute bounds to the overlapping
motif count distribution prior to constructing the entire
polynomial. These bounds enable us to terminate the
costly computation of the distribution whenever possible.
(3)We develop a new strategy which allows multiplication
of arbitrarily large polynomials using a limited amount
of memory. Our experimental results demonstrate that
our algorithm is orders of magnitude faster than existing
methods. Our results on cancer and disease networks
suggest that our method can help in uncovering key func-
tional characteristics of the genes participating in those
networks.
We organize the rest of the paper as follows. We present

our algorithm in “Methods” section. We discuss our
experimental results in “Results and discussion” section
and conclude in “Conclusions” section.

Methods
In this section, we present our method, ProMotE. First,
we formally define the independent motif counting prob-
lem in probabilistic networks (“Preliminaries and prob-
lem definition” section). We next summarize the method

by Sarkar et al. [24] (“Overview of the existing solu-
tion” section). We then present the method developed
in this paper. Our method introduces three strategies
(Sections “Avoiding loss computation”, “Efficient poly-
nomial collapsation” and “Overcoming memory bottle-
neck”), which help us scale to large network size, for which
existing methods fail.

Preliminaries and problem definition
In this section we present basic notation needed to define
the problem considered in this paper. We denote the
given probabilistic network and motif pattern with G =
(V ,E,P) and M respectively. For each edge ei in G, we
denote the probability that ei is present and absent with pi
and qi respectively (i.e., pi + qi = 1). We denote the set
of all possible deterministic network topologies one can
observe from G with D(G) = {Go = (V ,Eo)| Eo ⊆ E}.
We denote a specific deterministic network which inher-
its all nodes and edges from G but assume that all of
its edges exist with G′ = (V ,E). Figure 2 depicts a
probabilistic network and its three possible deterministic
networks (i.e., in total there are 28 = 256 determinis-
tic networks). We denote the probability of observing a
specific deterministic network Go ∈ D(G) with

P(Go|G) =
∏

ei∈Eo
pi

∏

ej∈E−Eo
qj.

Given a deterministic network Go = (V ,Eo) and a
motif pattern M, we represent the set of all its embed-
dings with H(M|Go). We construct the overlap graph for
H(M|Go), denoted with Ḡo, by representing each embed-
ding Hk ∈ H(M|Go) as a node and inserting an edge
into two nodes if their corresponding embeddings share
at least one edge. Thus, for a specific embedding Hk , the
degree of its corresponding node in Ḡo equals the number
of embeddings overlapping with Hk . Figure 3 depicts the
overlap graph of the embeddings found in deterministic
network Go shown in Fig. 1. Consider a subset of embed-
dings Ho ⊆ H(M|Go). We define an indicator function
ζ() on Ho as follows: ζ(Ho) = 1 if no two embeddings in
Ho share an edge, and ζ(Ho) = 0 otherwise.
Consider a specific embedding Hk in G. Because of

the uncertain nature of the probabilistic network, each
embedding exists with a probability value. As a result,
the number of embeddings overlapping with Hk is also
uncertain. We represent it using a random variable Bk . To

Fig. 2 A probabilistic network G and three of its possible deterministic network topologies denoted with Go1, G
o
2 and Go3

Ren et al. BMC Bioinformatics (2018) 19:242 Page 4 of 17

Fig. 3 The overlap graph Ḡo of the deterministic network Go (Fig. 1a)
for its six embeddings (Fig. 1c-h)

calculate the distribution of Bk , we construct a bipartite
graph denoted with Gk = (V1,V2, E). V1 and V2 repre-
sent two node sets, and E represents the edges connecting
nodes of V1 with those of V2. Each neighboring node of
Hk in the overlap graph corresponds to a node in V1. Each
edge in the edge set, which constitutes all those over-
lapping embeddings of Hk , corresponds to a node in V2.
Notice that this edge set excludes the edges of embed-
ding Hk itself. An edge exists between nodes u ∈ V1 and
v ∈ V2 if the corresponding embedding of node u has the
edge denoted by v. Figure 4 shows the bipartite graph G4
of embedding H4 in Go (see Fig. 1). H1, H2, H3, H5 and H6
are neighbours of H4 in the overlap graph Ḡo (see Fig. 3).
Thus these embeddings are nodes in V1 ofG4. Their edges
include e1, e2, e3, e4, e5, e6, e7 and e8. As edges e3, e5, e6 and
e7 are also edges of H4, only e1, e2, e4 and e8 constitute V2
of G4.
To help better understand this paper, we introduce

another two notations x-polynomial and collapse opera-
tor. Given a bipartite graph Gk , we compute a polynomial,
called the x-polynomial as follows. For each node vi ∈ V1,
it defines a unique variable xi. For each node vj ∈ V2,
the probability that vj’s corresponding edge is present and
absent is pj and qj (qj = 1−pj) respectively. For each node
vj ∈ V2, we construct a polynomial called edge polynomial
Zj as

Fig. 4 The bipartite graph G4 of the embedding H4. Each xi denotes
the variable for each node in V1. Each Zj represents the edge
polynomial for each node in V2

Zj = pj
∏

(vi,vj)∈E
xi + qj. (1)

The first term of this edge polynomial consists of the
product of the variables of those overlapping embeddings
containing this edge. The second term only has the proba-
bility of the absence of this edge.We explain the concept of
edge polynomial using the example of the bipartite graph
in Fig. 4. In this example, the edge polynomial for edge e1
is Z1 = p1x1 + q1. Also the edge polynomial correspond-
ing to e2 is Z2 = p2x1x2x3 + q2. The first term of this
edge polynomial represents the case that when edge e2 is
present, it contributes to the existence of embeddings H1,
H2 and H3 with a probability p2. The second term how-
ever represents the case that when edge e2 is absent with
probability q2, none of those three embeddings exist. We
compute the x-polynomial of Hk denoted with ZHk as

ZHk =
∏

vj∈V2

Zj. (2)

Ren et al. BMC Bioinformatics (2018) 19:242 Page 5 of 17

The key characteristic of the x-polynomial in the above
equation is that its terms model all possible deterministic
network topologies for the edges denoted by V2. We write
the jth term of the x-polynomial as αj

∏
vi∈V1 x

cij
i , where

αj is the probability and cij is the exponent of the vari-
able xi. To compute this polynomial faster, we introduces
a collapse operator for each variable xr denoted with φr(),
as follows. Let us denote the degree of vi ∈ V1 with
deg(vi|Gk). For each node’s unique variable xi, we define
an indicator function ψi(c), where ψi(c) = 1 if c =
deg(vi|Gk), otherwise ψi(c) = 0. Using these notations,
for the jth term of the x-polynomial, we compute collapse
operator φr() as

φr

⎛

⎝αj
∏

vi∈V1

xciji

⎞

⎠ =[tψr(cij)+ (1−ψr(cij)]αj
∏

vi∈V1−{vr}
xciji .

(3)

Notice that, the collapse operator φr only changes the
variable xr . It either replaces it with t or completely
removes it depending on the outcome of ψr(). When
ψr() = 1 (i.e., crj = deg(vr|Gk)), it means that all edges of
embedding Hr are present (e.g., Hr exists). Thus, the vari-
able t replaces xr which means a motif is present. When
ψr() = 0 , it indicates that at least one edge ofHr is absent.
Thus, the entire Hr is missing. For example, consider one
of the terms resulting from the product of all edge polyno-
mials in ZH4 , q1p2p4q8x21x22x23x5. If we apply the collapse
operator φ1() to this term, the variable x1 will be removed
as ψ1() = 0 (deg(H1|G4) = 3 while the exponent of x1 in
this term is 2). Similarly, if we apply the collapse operator
φ2() to this term, the variable x2 will be replaced with t as
ψ2() = 1 (deg(H2|G4) = 2 and the exponent of x2 in this
term is also 2). After applying all collapse operators to this
term, it becomes q1p2p4q8t3 which indicates that when
only edges e2 and e4 are present, there are three embed-
dings present. And this case happens with a probability
q1p2p4q8. We apply the collapse operator ψr to the poly-
nomial terms as soon as it completes multiplication of the
final edge polynomial of the variable xr , which means that
no other edge polynomial can increase the exponent of xr .
Given these definitions, we formally define two different

independent motif counting problems next.

Definition 1 (INDEPENDENT MOTIF COUNTING IN
PROBABILISTIC NETWORK I). Given a probabilistic
network G = (V ,E,P) and a motif pattern M, find a
set of independent embeddings which yields the maximum
expected number of occurrences in G, which is

argmax
H′,H′⊆H(M|G′)

ζ(H′)=1

⎧
⎨

⎩
∑

Go∈D(G)

|H(M|Go) ∩ H′| · P(Go|G)

⎫
⎬

⎭ .

(4)

We explain the problem on a hypothetical probabilistic
network G(see Fig. 2). To better explain the problem, we
also list some possible deterministic networks in Fig. 2.
Notice that this probabilistic network has the same net-
work topology as the deterministic network Go in Fig. 1a.
As a result, G has six possible embeddings same with
Go, which are H1, H2, H3, H4, H5 and H6 (see Fig. 1c-h).
According to the problem definition, we seek to find a
set of non-overlapping embeddings which contributes to
the maximum expected number of motif count over all
possible deterministic network topologies. For those six
embeddings ofG, we are able to construct five sets of inde-
pendent embeddings, which are {H1,H6}, {H2}, {H3}, {H4}
and H5 (see Fig. 3 for the relationship between embed-
dings). For each set, we summarize the expected motif
count over the set of all alternative deterministic net-
work topologies based on Eq. 4. Table 1 lists the result.
Then, we choose the set with maximum motif count.
Notice that, the resulting embedding set with the maxi-
mum expected motif count is not guaranteed to always
have the largest motif frequency among all possible deter-
ministic networks. For example, in deterministic network
Go
1, the set {H1,H6} has the highest motif frequency; while

in network Go
3, it is the set {H2} achieves the largest motif

count. By requiring to select the set of embeddings with
highest frequency in each possible deterministic network,
we have our second independent motif counting problem.
We formally define it next.

Definition 2 (INDEPENDENT MOTIF COUNTING IN
PROBABILISTIC NETWORK II). Given a probabilistic
network G = (V ,E,P) and a motif pattern M, compute the

Table 1 {H1,H6}, {H2}, {H3}, {H4} and {H5} are the five possible independent embedding sets of the motifM (Fig. 1) in network G
(Fig. 2). The table shows the number of embeddings occurring at each deterministic network for each independent embedding set
and its expected value in G

Go1 Go2 Go3 . . . Expected motif count

{H1,H6} 2 1 0 . . . 2 × P(Go1|G) + 1 × P(Go2|G) + 0 × P(Go3|G) + . . .

{H2} 1 1 1 . . . 1 × P(Go1|G) + 1 × P(Go2|G) + 1 × P(Go3|G) + . . .

{H3} 1 1 0 . . . 1 × P(Go1|G) + 1 × P(Go2|G) + 0 × P(Go3|G) + . . .

{H4} 1 1 0 . . . 1 × P(Go1|G) + 1 × P(Go2|G) + 0 × P(Go3|G) + . . .

{H5} 1 1 0 . . . 1 × P(Go1|G) + 1 × P(Go2|G) + 0 × P(Go3|G) + . . .

Ren et al. BMC Bioinformatics (2018) 19:242 Page 6 of 17

expected number of maximum independent occurrences of
M in G, which is

∑

Go∈D(G)

argmax
Ho,Ho⊆H(M|Go)

ζ(Ho)=1

|Ho| · P(Go|G). (5)

Notice that in this problem, we are required to always
select the largest independent embedding set in each pos-
sible deterministic network topology. We compute the
expected number of independent motif by iterating over
all possible deterministic networks and summing up the
motif count. For example, in the example network (Fig. 2),
the expected independent motif count is calculated by
2 · P(Go

1|G) + 1 · P(Go
2|G) + 1 · P(Go

3|G) +
The former definition of the independent motif count-

ing problem above (Definition 1) seeks the genes, which
are more likely to carry out the function characterized by
the given motif across all possible deterministic topolo-
gies. The latter definition (Definition 2) does not care
about the identity of the set of genes engaged in the
process as the set of genes vary depending on the deter-
ministic network topology observed. It instead counts the
number of different ways we can observe the process sep-
arately for each topology even though that set may differ
from one topology to another. In this paper, we focus
on the first problem. The rationale is that we often do
not know the specific deterministic topology realized at
a given point in time. Furthermore, this topology can
vary over time. Notice that this problem can be solved by
enumerating all possible deterministic network topologies
and independent embedding sets. However, it is infeasible
to scale to large networks as the numbers of determinis-
tic network topologies and independent embedding sets
grow exponentially. In this paper, we develop a scalable
method to tackle this problem by utilizing a polynomial
model and three strategies. We discuss this polynomial
model and three strategies next.

Overview of the existing solution
Here, we briefly describe the method by Sarkar et al. [24]
for counting independent motif instances, as our method
utilizes the same polynomial model in that study. Given a
probabilistic graph G = (V ,E,P) and the specified motif
patternM, the algorithm works in three steps. First, it dis-
covers all motif embeddings in the deterministic network
G′ = (V ,E). It then builds an overlap graph for these
embeddings. Next, it uses a heuristic strategy to count
non-overlappingmotif embeddings; it calculates a priority
value for each node (we explain how to compute prior-
ity value below) and iteratively picks the node with the
highest priority in the overlap graph. It includes the corre-
sponding embedding to the result set, adds the probability
that this embedding exists to the motif count and removes
this node along with all of its neighbouring nodes from

the overlap graph. It repeats this process until the graph is
empty.
The key step of this method is calculating the prior-

ity value for each node in the overlap graph. The priority
value of a node primarily depends on the number of neigh-
bours of a node. In a probabilistic networks, both the
existences of an embedding and its overlapping embed-
dings are uncertain as the edges which make up those
embeddings are probabilistic. To accurately model this
uncertainty, for each embedding Hk , it first calculates a
gain value ak , which equals to the probability that Hk

exists
(
ak = ∏

e∈Hk
P(e)

)
. Then it computes a loss value

using the number of neighbours of Hk which is repre-
sented with a random variable Bk . It then computes the
loss value of Hk as a function of Bk , denoted with f (Bk).
Finally, it determines the priority value, denoted with ρk ,
as a function of gain value and loss value. In this paper, we
compute ρk as ak/f (Bk).
Sarkar et al. compute the distribution of Bk using a

x-polynomial. To construct this x-polynomial, it first
builds an undirected bipartite graph denoted with Gk =
(V1,V2, E). Then for each node vj ∈ V2, it constructs an
edge polynomial Zj. After multiplying all edge polyno-
mials and collapsing it, the x-polynomial takes the form

ZHk =
s∑

j=0
pkjtj. (6)

The coefficients of the polynomial ZHk is the true dis-
tribution of the random variable Bk (i.e., ∀j, the coefficient
of tj is the probability that Bk = j). For any further
information, we refer the interested readers to [24].

Avoiding loss computation
Recall that, we calculate the distribution of Bk for all nodes
of the overlap graph only to select the one that yields the
highest priority value ρk() (see “Overview of the existing
solution section”). Here, we develop a method to quickly
compute an upper bound to ρk . This allows us to avoid
computation of the distribution of Bk for the node vk when
the upper bound to ρk is less than ρj for any node vj
considered prior to vk . To explain this strategy, we first
present our theory which establishes the foundation of
the upper bound computation. We start by defining our
notation.
Consider Gk = (V1,V2, E) of an embedding Hk . For a

given subset V ′
2 ⊆ V2, let us denote the x-polynomial of

Hk after multiplying the edge polynomials of node set V ′
2

with ZHk ,V
′
2
. Below, we discuss our theory using a lemma,

a theorem, and a corollary.

Lemma 1 Consider the bipartite graph of motif
embedding Hk denoted with Gk = (V1,V2, E). For all nodes
vr ∈ V2 − V ′

2, ∀τ ∈ {0, 1, 2, . . . , |V1|}, we have

Ren et al. BMC Bioinformatics (2018) 19:242 Page 7 of 17

P
(
Bk ≥ τ |ZHk ,V

′
2

)
≤ P

(
Bk ≥ τ |ZHk ,V

′
2∪vr

)
.

Proof We expand P
(
Bk ≥ τ |ZHk ,V

′
2

)
as

P
(
Bk ≥ τ |ZHk ,V

′
2

)
=

|V1|∑

τ
′=τ

P
(
Bk = τ

′ |ZHk ,V
′
2

)
. (7)

We first discuss how to compute the probability that
exactly τ

′ neighboring embeddings ofHk exist. After mul-
tiplying edge polynomials and collapsing, ZHk ,V

′
2
takes the

following form:

ZHk ,V
′
2

=φ1

⎛

⎜⎜⎜⎜⎜⎝
φ2

⎛

⎜⎜⎜⎜⎜⎝
. . . φ|V1|

⎛

⎜⎜⎜⎜⎜⎝

∏

vj∈V ′
2

V ′
2⊂V2

Zj

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎠

=
∑

j
tj

⎛

⎝
∑

l

⎛

⎝αjl
∏

vi∈V1

xcijli

⎞

⎠

⎞

⎠ .

Here,
∑

l αjl, which sums up all the coefficients of the
polynomial terms containing tj, equals to the probability
that exactly j neighboring embeddings of Hk exist after
multiplying the edge polynomials of V ′

2. Next, we focus
on one polynomial term from the above x-polynomial. Let
us denote this polynomial term as A = αtj

∏
vi∈V1

xcii . Let

us define an indicator function δr(i), where δr(i) = 1 if
(vi, vr) ∈ E , otherwise δr(i) = 0. Then after multiplying
onemore edge polynomial, sayZr = pr

∏
(vi,vj)∈E

xi+(1−pr),

the polynomial termA expands into two polynomial terms
denoted as B + C, where B = prαtj

∏
vi∈V1

xci+δr(i)
i and

C = (1 − pr)αtj
∏

vi∈V1

xcii . Two cases may happen after the

collapsing of the polynomial terms B and C.
Case 1: There is no collapse. The exponent of the vari-

able t of polynomial terms B and C remains the same.
Adding up the coefficients of term tj, we get

αpr + α(1 − pr) = α.

Thus, after multiplying another edge polynomial, the
coefficient of term tj remains the same. In other words,
multiplying another edge polynomial has no effect
on P(Bk ≥ τ). Mathematically, P

(
Bk ≥ τ |ZHk ,V

′
2

)
=

P
(
Bk ≥ τ |ZHk ,V

′
2∪vr

)
.

Case 2: There is collapse. In this case, the exponent of
the variable t of polynomial term B will increase while it
stays the same for polynomial term C, since multiplying
the second term of Zr does not introduce any x variable.
Let us denote the increment in the exponent of t (i.e., the
number of xi variables which collapse after multiplying

Zr) with j0. Now the polynomial terms B and C become
prαtj+j0 ∏

vi∈V1

xcii and (1− pr)αtj
∏

vi∈V1

xcii respectively. How

this multiplication affects P(Bk ≥ τ) depends on the
relationship between j and τ . We have two cases:
Case 2.a When j < τ , polynomial term A does not

contribute to P(Bk ≥ τ) before multiplying Zr . After mul-
tiplying Zr , polynomial term C also does not contribute
to P(Bk ≥ τ). Whether polynomial term B contributes
to P(Bk ≥ τ) depends on the relationship between j + j0
and τ . If j + j0 ≥ τ , the probability that j + j0 neigh-
boring embeddings of Hk exist grows. Thus, based on the
Eq. 7, P(Bk ≥ τ) increases by prα (i.e., the coefficient of
t(j+j0)). On the other hand, if j + j0 < τ , polynomial term
B has no effect on P(Bk ≥ τ). In conclusion, after multi-
plying one more edge polynomial, the value of P(Bk ≥ τ)

either increases or remains the same. Mathematically,
P

(
Bk ≥ τ |ZHk ,V

′
2

)
≤ P

(
Bk ≥ τ |ZHk ,V

′
2∪vr

)
.

Case 2.b When j ≥ τ , the polynomial term A con-
tributes to P(Bk ≥ τ). From Eq. 7, before multiplying
Zr , the amount of contribution of polynomial term A to
P(Bk ≥ τ) is α. After multiplying Zr , the amount of con-
tribution is equal to the sum of the coefficients of the
polynomial terms B and C, where is αpr + α(1 − pr) = α.
Thus, P(Bk ≥ τ) remains the same. Mathematically,
P

(
Bk ≥ τ |ZHk ,V

′
2

)
= P

(
Bk ≥ τ |ZHk ,V

′
2∪vr

)
.

The above lemma leads to the following theorem:

Theorem 1 Consider a motif embedding Hk and its cor-
responding bipartite graph Gk = (V1,V2, E). Also consider
a subset V ′

2 ⊂ V2. Given a monotonic function γ () : R →
R such that γ (0) = 0 and for ∀x ≥ y ≥ 0, γ (x) ≥ γ (y) ≥ 0.
∀vr ∈ V2 − V ′

2, we have

|V1|∑

j=0
γ (j)P

(
Bk = j|ZHk ,V ′

2

)
≤

|V1|∑

j=0
γ (j)P

(
Bk = j|ZHk ,V ′

2∪vr
)
.

Proof From themonotonicity of γ () function, for ∀j ≥ 1,
we have

γ (j) − γ (j − 1) ≥ 0.

From Lemma 1, given V ′
2 and vr ∈ V2 −V ′

2, for ∀j ≥ 0, we
have

P
(
Bk ≥ j|ZHk ,V ′

2

)
≤ P

(
Bk ≥ j|ZHk ,V ′

2∪vr
)
.

For ∀j ≥ 1, bymultiplying both sides of the inequality with
(γ (j) − γ (j − 1)), we get

(γ (j) − γ (j − 1))P
(
Bk ≥ j|ZHk ,V ′

2

)

≤ (γ (j) − γ (j − 1))P(Bk ≥ j|ZHk ,V ′
2∪vr).

Ren et al. BMC Bioinformatics (2018) 19:242 Page 8 of 17

Thus, summing up this inequality ∀j ≤ |V1|, we get
|V1|∑

j=1
(γ (j) − γ (j − 1))P

(
Bk ≥ j|ZHk ,V ′

2

)

≤
|V1|∑

j=1
(γ (j) − γ (j − 1))P

(
Bk ≥ j|ZHk ,V ′

2∪vr
)
.

(8)

We rewrite the left side of this inequality as

|V1|∑

j=1
(γ (j) − γ (j − 1))P(Bk ≥ j|ZHk ,V ′

2
)

=
|V1|∑

j=1
γ (j)P

(
Bk ≥ j|ZHk ,V ′

2

)
−

|V1|∑

j=1
γ (j − 1)P

(
Bk ≥ j|ZHk ,V ′

2

)

=
|V1|∑

j=1
γ (j)P

(
Bk ≥ j|ZHk ,V ′

2

)
−

|V1|−1∑

j=0
γ (j)P

(
Bk ≥ j + 1|ZHk ,V ′

2

)

=
|V1|−1∑

j=1
γ (j)

[
P

(
Bk ≥ j|ZHk ,V ′

2

)
− P

(
Bk ≥ j + 1|ZHk ,V ′

2

)]

+ γ (|V1|)P
(
Bk ≥ |V1||ZHk ,V ′

2

)
− γ (0)P

(
Bk ≥ 1|ZHk ,V ′

2

)

(9)
Given P(Bk = j) = P(Bk ≥ j) − P(Bk ≥ j + 1) and

γ (0) = 0, we rewrite Eq. 9 as

|V1|∑

j=1
(γ (j) − γ (j − 1))P(Bk ≥ j|ZHk ,V ′

2
)

=
|V1|−1∑

j=1
γ (j)P

(
Bk = j|ZHk ,V ′

2

)
+γ (|V1|)P

(
Bk =|V1||ZHk ,V ′

2

)

=
|V1|∑

j=1
γ (j)P

(
Bk = j|ZHk ,V ′

2

)

Similarly, we rewrite the right side of Inequality (8) as
|V1|∑

j=1
(γ (j) − γ (j − 1))P

(
Bk ≥ j|ZHk ,V ′

2∪vr
)

=
|V1|∑

j=1
γ (j)P

(
Bk = j|ZHk ,V ′

2∪vr
)
.

Using the above equations, We rewrite the Inequality (8)
as
|V1|∑

j=1
γ (j)P

(
Bk = j|ZHk ,V ′

2

)
≤

|V1|∑

j=1
γ (j)P

(
Bk = j|ZHk ,V ′

2∪vr
)
.

As γ (0) = 0, using the above inequality, we get
|V1|∑

j=0
γ (j)P

(
Bk = j|ZHk ,V ′

2

)
≤

|V1|∑

j=0
γ (j)P

(
Bk = j|ZHk ,V ′

2∪vr
)
.

This theorem gives us a general form of f (Bk) func-
tion which is monotonically increasing. For example, the
expected value of Bk , Exp(Bk) falls into that category.
Corollary below proves it:

Corollary 1 Given V ′
2 and vr ∈ V2 − V ′

2, the expected
number of neighboring embeddings of Hk monotonically
increases with growing edge polynomial set:

Exp(Bk|ZHk ,V
′
2
) ≤ Exp

(
Bk|ZHk ,V

′
2∪vr

)
.

Proof The expected value of Bk can be computed as

Exp(Bk) =
|V1|∑

j=0
jP(Bk = j).

We have γ (j) = j which is a monotonical function. Thus,
from Theorem 1, we have

Exp
(
Bk|ZHk ,V

′
2

)
≤ Exp

(
Bk|ZHk ,V

′
2∪vr

)
.

Using Theorem 1, we develop our method for avoiding
the costly computation of the distribution of Bk for each
embedding Hk of the given motif in the target network.
Our method works for all monotonic loss functions (e.g.,
f (Bk) = Exp(Bk)). Assume that, ∃k > 1, ∀i 1 ≤ i < k, we
already computed the values ai, distribution of Bi, f (Bi),
and thus ρi. Let us denote the largest observed priority
value so far with ρ
 = max1≤i<k{ρi}. We explain next how
we use this information to avoid computation of the distri-
bution of Bk whenever possible. Let us denote the bipartite
graph of Hk with Gk = (V1,V2, E). Our algorithm itera-
tively multiplies the edge polynomials for all the nodes in
V2 one by one and collapses the resulting polynomial. Let
us denote the set of nodes in V2 with V2 = v1, v2, . . . , v|V2|.
Without losing generality, let us assume that we multi-
ply the edge polynomials in the order v1, v2, . . . , v|V2|. ∀j,
1 ≤ j ≤ |V2|, after multiplying the first j polynomials,
we get an intermediate probability distribution Bj

k . Using
that distribution Bj

k , we compute an intermediate priority
value for Hk and denote it with ρ

j
k . Recall that Theorem

1 states that ∀j, ρ j
k ≤ ρ

j−1
k (i.e., the priority value mono-

tonically decreases if loss value monotonically increases).
Following from this theorem, we terminate computation
of Bk as soon as ρ

j
k becomes less than the best prior-

ity value observed, ρ
. This eliminates costly polynomial
multiplication for Hk .
When to stop the calculation of Bk largely depends on

the best priority value ρ
 observed so far. The larger ρ

is, the sooner we terminate the computation of Bk . Thus,
the ideal ordering places embeddings with larger priority
values should earlier. The dilemma here is that we do not

Ren et al. BMC Bioinformatics (2018) 19:242 Page 9 of 17

know the priority values of the embeddings at this stage.
Therefore, we use a proxy value of each embedding Hk ,
denoted with Qk , which is trivial to compute, ak (i.e., the
gain value of Hk) divided by the number of overlapping
embeddings with Hk . We rank embeddings in descend-
ing order of their Qk values. The rationale behind using
the value Qk is as follows. Recall that the priority value of
Hk is determined by the gain value ak and the loss value,
which largely depends on the distribution of its neighbor-
ing nodes. Qk conjectures that the larger the degree of
the corresponding node of Hk is, the larger its loss value
is. Thus, Qk is inversely proportional to the number of
embeddings, which conflict with Hk .

Efficient polynomial collapsation
Collapsation plays an important role in calculating the
distribution of Bk of the embedding Hk efficiently. The
sooner we collapse the polynomial terms, the earlier we
compute an upper bound to ρk . Here, we introduce two
orthogonal strategies to ensure early collapsation during
the construction of the x-polynomial. We describe our
strategies on the bipartite graph Gk = (V1,V2, E) of Hk .
Our first strategy focuses on V1. The second one focuses
on V2.

Optimization on V1 In order to collapse an x-
polynomial term, which contains variable xi, we need to
multiply all the edge polynomials containing xi (see Eq. 3).
The degree of the node vi ∈ V1, deg(vi|Gk) is equal
to the number of edge polynomials that the variable xi
needs to be collapsed. Consider a node vi ∈ V1 with
deg(vi|Gk) = 1. Suppose that ∃vj ∈ V2, (vi, vj) ∈ E . We
collapse the variable xi as soon as the edge polynomial Zj
has been multiplied into the x-polynomial. In this case,
the collapse operator φi will replace the variable xi in x-
polynomial with t. Following from this observation, our
first strategy works as follows. Consider a node vj ∈ V2.
Let us denote the set of all nodes vi ∈ V1 for which
deg(vi|Gk) = 1 and (vi, vj) ∈ E with V1,j. We rewrite Eq. 1
(see Section “Preliminaries and problem definition”) as

Zj = pjt|V1,j| ∏

vi∈V1−V1,j
(vi,vj)∈E

xi + qj.

The above equation means that before we do any poly-
nomial multiplication, we first apply the collapse operator
φi (∀i, such that vi ∈ V1,j) to Zj. This preemptive collap-
sation prevents the exponential growth in the number of
collapsation operations for those vi satisfying the condi-
tions above. For example, in the example bipartite graph
(see Fig. 4), for edge e8, its original edge polynomial Z8 =
p8x6+q8 can be rewritten as Z8 = p8t+q8 to avoid apply-
ing the collapse operation φ6() in any further polynomial
multiplication.

Optimization on V2 The order in which edge polyno-
mials are multiplied has a great effect on the cost of
polynomial multiplication. Recall from “Preliminaries and
problem definition section” that each variable xr collapses
only after the multiplication of the final edge polynomial
for xr has been completed. Following from this obser-
vation, our second strategy conjectures that increasing
the number of collapsing variables after the product of a
given number of edge polynomials reduces both the run-
ning time and the amount of memory needed to store
the x-polynomial. We explain this on the bipartite graph
in Fig. 4. In our example, to simplify our notation, we
will only consider the optimization on V2 and ignore the
impact of the optimization on V1 described above. We
have four edge polynomials in total. If we multiply four
edge polynomials in the order of Z1,Z2,Z4,Z8, no collap-
sation takes place until we multiply Z4. This is because
Z4 is the final edge polynomial for x1, x2, x3 and x5. As
a result, this ordering requires in total 32 collapses (i.e.,
number of polynomial terms is 23 = 8, and we collapse
each of x1, x2, x3 and x5 resulting in 8 + 8 + 8 + 8
operations). Adding the collapsation cost of the last edge
polynomial, 24 = 16, we achieve 32 + 16 = 48 opera-
tions in total. Now, let us analyse the cost of the same
product when we multiply the edge polynomials in the
order of (Z4,Z2,Z8,Z1). In this ordering, Z4 is the final
edge polynomial for x5. Thus, we need another 21 = 2
operations for variable x5. The following edge polyno-
mial Z2 is the final edge polynomial for variables x2 and
x3. Therefore, once we multiply Z2, we can collapse vari-
ables x2 and x3. Thus, for variables x2 and x3, only 8
collapses are needed (i.e., there are 4 polynomial terms
and 2 collapse operators). Variables x6 and x1 collapses
after the product of Z8 and Z1 leading to eight and six-
teen more collapse operations respectively. In total, this
ordering yields only 34 (i.e., 2+8+8+16) collapses. By
reordering the edge polynomials, we reduce not only the
time for collapsation, but also the memory space for stor-
ing the variables. Furthermore, as we explain below, an
effective ordering has potential to avoid the loss com-
putation without losing the accuracy of the result. Next,
we formally define the problem of ordering of the edge
polynomials.

Definition 3 ORDERING OF THE EDGE POLYNOMIALS .
Assume a bipartite graph Gk = (V1,V2, E) and a specified
loss value denoted by ε are given. Each node vi ∈ V1 has
a unique variable xi and a collapse operator φi. Each node
vj ∈ V2 has an edge polynomial Zj. For each collapse oper-
ator φi, let us denote the number of the polynomial terms it
has been applied to with Nφi . Let us denote a permutation
of the integers in the [1 : |V2|] interval with π =[π1, π2,
. . . , π|V2|]. Our problem is to find the ordering π , for which
∃r, such that after multiplying the first r polynomials in the

Ren et al. BMC Bioinformatics (2018) 19:242 Page 10 of 17

order of π , we have f (Bk) ≥ ε and r|V1|2r + ∑|V1|
s=1 Nφs is

minimized.

Notice that in the definition above, we aim to minimize
the number of edge polynomials (i.e., variable r). Also if
there are multiple orderings with the same number of
edge polynomials, we prefer the one that requires the least
collapsation operations (i.e.,

∑|V1|
s=1 Nφs).

One straightforward method to solve this problem is
to calculate the collapsation cost for all possible order-
ings of the edge polynomials and choose the one with
the smallest cost. This, however, is infeasible as there are
|V2|! alternative orderings. Here, we develop a greedy iter-
ative algorithm to quickly estimate an ordering. Briefly, at
each iteration, our algorithm chooses the edge which con-
tributes to the collapsation of most variables. We explain
our algorithm using the bipartite graph shown in Fig. 4.
Our algorithmmaintains twomatrices.We denote these

two matrices at the ith iteration with Wi and Di. At each
stage, we update the Wi matrix and generate a Di matrix
based on Wi. We will explain these two matrices in detail
later. We choose a suitable edge polynomial using the
Di matrix, and repeat this process until the last edge
polynomial.
We first explain the twomatrices above. The first matrix

denoted by Wi maintains the relationship between the x
variables and edge polynomials. Let us denote the rth row
and sth column of Wi with Wi[r, s]. Also, let us denote
the bipartite graph of Hk at the ith iteration with Gi

k .
If the x-polynomial Zs contains the variable xr , we set
Wi[r, s]= 1/deg

(
vr|Gi

k
)
. Otherwise, we set Wi[r, s]= 0.

Conceptually, this number indicates the contribution
of the edge polynomial Zs to collapse variable xr . For
instance,Wi[r, s]= 1 implies that Zs is the final edge poly-
nomial of xr . Figure 5 presents matrix W1 corresponding
to the bipartite graph in Fig. 4. Here, Z2 and Z4 contain x2.
As a resultW1[2, 2]= W1[2, 3]= 1/2.
We construct matrix Di from Wi. This matrix counts

different levels of contributions of each edge polynomial.
It has |V2| rows and maxu∈V1{deg(u|Gi

k)} columns. We set
the entry Di[r, s] to the product of the number of entries

in the rth column ofWi having the value 1/s and the edge
probability in Zr . For example, in the matrix W1 in Fig. 5,
Z2 (i.e., column 2) contributes two variables at value 1/2
and one variable 1/3. As a result, we set the second row of
D1 to [0, 2p2, p2].
At the ith iteration, using the matrix Di, we choose the

next edge polynomial for multiplication as follows. We
start by looking at the first column of Di, and choose the
row (i.e., edge polynomial) with the largest value. If there
are multiple such rows, we use the second column of Di
among those polynomials. We repeat this process until
we find such a row with the largest value. If there are
still more than one rows after reaching the last column
of Di, we randomly choose the edge polynomial corre-
sponding to one of them. For example, in Fig. 5, both Z4
and Z8 has values in the first column. We choose one of
them depending on their edge probability. If they have
the same edge probability (i.e., p4 = p8), we look at
their values in the second column, where Z4 should be
selected.
At the ith iteration, assume that we pick the edge poly-

nomial Zr . We update Gi
k for the next iteration by remov-

ing the node vr from Gi
k along with all of its incident

edges.

Overcomingmemory bottleneck
The number of terms of the x-polynomial can grow expo-
nentially, particularly when collapsation does not take
place. This quickly leads to memory bottleneck especially
for dense overlap graphs. In this section, we present a
recursive strategy to overcome this bottleneck.
The main idea behind this strategy is as follows. Given

a new edge polynomial, we multiply it with only a subset
of the current x-polynomial terms, while deferring others.
After completing the multiplication of all edge polyno-
mials, we multiply the deferred polynomial terms using
last-in, first-out policy. Figure 6 depicts this idea. Here,
the shaded bar represents the subset of terms of the cur-
rent x-polynomial to be multiplied with the next edge
polynomial (e.g., Zi+1). Let us denote the number of terms
in this subset with N1 and the number of deferred terms

Fig. 5 The two matricesW1 and D1 we maintained to order the edge polynomials

Ren et al. BMC Bioinformatics (2018) 19:242 Page 11 of 17

Fig. 6 The change of the size of the polynomial terms. Bar with solid line: new generated polynomial terms after multiplying the current edge
polynomial; bar with dashed line: deferred polynomial terms; shaded bar: polynomial terms that are chosen to multiply

with N2 prior to multiplying with Zi+1. After multiplica-
tion with Zi+1, the number of terms become 2N1 + N2.
Repeating this process, after multiplying j edge polynomi-
als, we have only (j+1)N1+N2 terms. Notice that this is a
dramatic improvement over the original algorithm which
creates 2j(N1 + N2) terms. The number of deferred terms
is governed by the amount of available memory. That is we
choose N1 as large as possible while the maximum term
count ((j+1)N1+N2) remains less than available memory.

Results and discussion
In this section, we experimentally evaluate the perfor-
mance of ProMotE on synthetically generated (“Evalua-
tion on synthetic networks section”) and real networks
(“Evaluation on cancer networks” to “Evaluation on neu-
rodegenerative disease networks section”). We run our
experiments on a Linux server which has AMD Opteron
24 core processors (up to 1.4GHZ) and 32GB memory .

Evaluation on synthetic networks
Running time evaluation
The key computational challenge we aim to tackle in this
paper is to scale to large network sizes while existing
methods fail. Here, we evaluate how well we achieved
this goal. We compare the running time of ProMotE to
that of Sarkar et al. [24] as this is the most recent and
most efficient algorithm in the literature to the best of
our knowledge. As these two methods have the similar
expected motif count, we do not report their motif count.
We test bothmethods on synthetic networks.We generate
random networks with growing number of nodes using

three random network models, namely Erdős Rényi (ER)
[25], Watts Strogatz (WS) [26] and Barabási-Albert (BA)
[27] models. We synthetically assign a probability value
generated from the uniform distribution in the interval
(0,1) to each edge of networks. We set the average node
degree to two. For each number of nodes, we repeat the
experiments for 20 random networks. We measure the
total running time for four motif patterns (see Fig. 7).
Thesemotifs are also used in the study by Sarkar et al. [24].
To avoid the potential outlier, for the 20 networks of each
network size, we exclude the two networks with largest
running time, and another two with the smallest running
time. For the remaining networks, we report the aver-
age, minimum and maximum values. For each method,
we report the running time on networks if the algorithm
completes in less than 10,000 seconds. Figure 8 presents
the results.
We observe that our method is several orders of mag-

nitude faster than Sarkar et al. for all parameter settings.
As the network size increases, the gap between the run-
ning times of two methods grows. This indicates that our
optimization strategies are greatly helpful on large net-
works. The advantage of ProMotE stands out the most
for the networks generated using ER and BA models.
For instance, on networks generated using ER model
(see Fig. 8a), ProMotE successfully scales to massive net-
work sizes (i.e., thousands of nodes). On the other hand,
Sarkar et al. fails to run beyond 100 nodes. This implies
that ProMotE is not only practical but it is also essen-
tial to study real networks, as the size of real networks is
often large. Furthermore, we observe that the topological

Fig. 7 The four motifs with two and three edges

Ren et al. BMC Bioinformatics (2018) 19:242 Page 12 of 17

a b c

Fig. 8 Running time on synthetic networks generated by ER, WS, and BA models respectively. The running times are reported in seconds and
represented in log-scale. a ER model bWSmodel c BA model

characteristics of the network greatly affect the cost of
counting independent motifs. For the same network size,
we observe a dramatic increase in running time as we
move from WS model to ER model and then to BA
model. ER model generates networks with a small average
shortest path length along with a small clustering coeffi-
cient.WSmodel however builds networks with both short
average paths and strong clustering coefficients. Thus,
networks generated by ER model are more likely to have
isolated nodes, which in turn make the remaining con-
nected components much denser than those in networks
generated by WS model. Dense networks however result
in more computation. As a result, ProMotE runs much
faster on networks of WS model. For the BA model, it
constructs the so called scale-free networks character-
ized by a highly heterogeneous degree distribution, which
follows power law. Thus, there exist more hub nodes in
networks of BA model, which result in more overlapping
motif embeddings. As a result, the overlap graphs of net-
works of BA model are much more complicated, which
in turn introduce a large quantity of computation. Recall
that the BA model generates scale free networks. Thus
it is expected to generate networks that resemble real
data better than the other two models. This indicates that
counting independent motifs in real networks is a chal-
lenging problem, and ProMotE is needed to study them in
practical time.

Comparison against the literature
In the literature, current approaches to the probabilis-
tic networks often transform probabilistic networks to
deterministic networks first, and then apply methods for
deterministic networks. These approaches include ignor-
ing probability values [28, 29], considering edges with
probability values above a given threshold [30], and sam-
pling the probabilistic network by doing a Bernoulli trial
with probability pi for each edge ei [31]. For simplicity, we
denote these three approaches with binary, threshold and
sampling method respectively. For each of these method,
after transforming probabilistic networks to deterministic

networks, we apply the method in the literature [19] to
find the motif count, which heuristically selects motifs
with the least number of overlapping embeddings. As
these methods are not specifically devised to solve the
problem in this paper and they finally work on determin-
istic networks, the performance of ProMotE in terms of
running time is significantly worse than thesemethods. As
a result, we compare our method against these methods
only in terms of expected motif count.
Recall that the threshold method maintains the set of

edges with probability value above a given threshold value
and removes the remaining edges. Thus, the outcome of
this method depends on the threshold value. Here, we
first evaluate the performance of the threshold method
for varying values of threshold. We run our experiment
on synthetic networks with WS model of various net-
work sizes, 1000, 5000 and 10000. In particular, for each
network size, we repeat the experiments for 20 random
networks. We vary the threshold value from 0 to 0.7 at
increments of 0.1. For each threshold value setting, we
run experiment on all generated networks and report the
average motif count. Figure 9 plots the results.
We observe that the motif count of the threshold

method first grows with the increasing threshold value.
It then falls sharply. It obtains the peak value when the
threshold is 0.2. This is possibly because too small/large
threshold leads to the retaining/removing most of the
edges of the network. Either case may make the thresh-
old method underutilize the information available in the
interaction probabilities. As a result, a suitable thresh-
old value is necessary for the threshold method. However,
the varying distribution of edge probabilities of different
probabilistic networks makes it is difficult to set a fixed
threshold value for the threshold method. In the rest of
our experiments, we fix the threshold value of the thresh-
old method to 0.2 as it obtains the best value on the
average across a broad spectrum of parameter settings.
Next, we compare our method with binary, threshold

and sampling methods. We test these methods on syn-
thetic networks with different network models of various

Ren et al. BMC Bioinformatics (2018) 19:242 Page 13 of 17

Fig. 9 The expected motif count of our method and threshold method on synthetic networks

network sizes. To ensure the reliability of our results, for
each parameter, we conduct experiments on 20 different
networks and report the average. Specifically, for sampling
method, as each running on the same network may have
the different value, to get a reliable result, we run 10 times
on each network and report the average. Figure 10 reports
the result. Our results demonstrate that our method has
the highest motif count for all network sizes with vari-
ous networkmodels. Moreover, the gap between ProMotE
and other methods increases with the growing number
of nodes. This is very promising since we expect to have
more number of nodes in real networks. For instance, on
the network with WS network model of size 10,000, Pro-
MotE has 13.2 to 95.4% more motif counts than other
methods. The threshold method achieves the second best
motif count. That said, it is worth noting that we give
a positive bias towards the threshold method since we
fix the threshold to the value which maximized its motif
count in our previous experiments. Sampling method has
overall worst performance across different network sizes.
The reason behind is that finding a set of independent
embeddings that yields the maximum expected number
of occurrences in a probabilistic network is a nonlinear

function. Although, the sampling approach can provide
provable confidence intervals for estimating linear func-
tions such as sum and average, it fails to do that for
nonlinear functions such as counting independent motifs
in probabilistic networks. Due to the nonlinear nature of
our problem, a sampling approach is expected to pro-
duce inaccurate results. Furthermore, we observe that
the expected motif count of all methods grows with the
increasing network size. This is because the network with
larger size is expected to have more motifs.
In summary, our method is very efficient and accu-

rate on counting independent motif in probabilistic
networks.

Evaluation on cancer networks
In order to observe the performance of ourmethod on real
networks, we apply our algorithm on six cancer datasets
from the MSigDB database [32] for Homo Sapiens. We
extract genes from the C2:curated gene sets of MSigDB.
We then feed each cancer gene set into the STRING
database [16] to generate its interaction network. We use
the gene co-expression values present in the STRING
dataset for these networks to compute their interaction

a b c

Fig. 10 Expected motif count on synthetic networks generated by ER, WS, and BA models respectively. a ER model bWSmodel c BA model

Ren et al. BMC Bioinformatics (2018) 19:242 Page 14 of 17

Table 2 Real networks from cancer dataset used in our
experiments; number of nodes and edges, average node degree
and clustering coefficient

Cancer Nodes Edges Avg. degree C. coefficient

Thyroid 39 43 2.21 0.773

Bladder 49 51 2.08 0.572

Endometrial 54 61 2.26 0.676

Lung 64 66 2.06 0.732

Colorectal 72 83 2.31 0.798

Pancreatic 80 87 2.17 0.791

probabilities. Specifically, for a pair of nodes, the inter-
action probability between them is computed as the
Pearson’s correlation coefficient. In the literature, there
are also other ways to compute interaction probabilities.
For example, Sharan et al. [33] addressed this problem by
utilizing features like the volume of evidence present for
the interaction, gene expression correlation, and network
topology to learn the edge probabilities. Gabr et al. [34]
used end-to-end signal reachability probabilities between
pairs of genes to guide the computation of the edge proba-
bilities. All these studies use transcriptional values in their
computations in slightly different ways. Table 2 presents
the dataset details for each cancer type. Wemeasure inde-
pendent motif counts for the four basic patterns listed
in Fig. 7.
Figure 11a presents the running time of ProMotE. In

addition, we also plot the average degree of each network
to display the effect of running time on network size. Our
results demonstrate that ProMotE successfully identifies
independent motifs in practical time (1.5 secs to less than
2.2 h) for all networks. It is worth noting that Sarkar et al.’s
method does not scale to these network sizes.
Figure 11b shows the number of non-overlapping

instances of the four basic patterns present in each of the
cancer networks. We observe that the pattern M1 is the

most abundant topology in all networks. This is expected
as M1 is a subgraph of M2, M3, and M4. The other
three motifs have similar counts. We also observe that the
motif count does not necessarily grow with the network
size. For instance Thyroid cancer has the least number
of nodes and edges, yet it contains more non-overlapping
motif instances than almost all the other networks in our
dataset. This implies that the topology of the network gov-
erns the motif distribution. Recall that the running time of
ProMotE tends to grow with network size on the cancer
networks (see Fig. 11a). This implies that the running time
of ProMotE does not strongly depend on the independent
motif count as well.

Evaluation on neurodegenerative disease networks
Next, we evaluate ProMotE on three neurodegenerative
disease networks; Alzheimer’s, Huntington’s and Parkin-
son’s disease, hereafter referred to as AD, HD and PD
respectively. We obtain this dataset from the MSigDB
database similar to the cancer networks (see “Evaluation
on cancer networks section”). Table 3 lists the dataset
details. One major difference between this and the cancer
dataset is that the neurodegenerative networks are both
larger in size and average degree. It is worth noting that
the AD network is a subgraph of that of HD network.
Also, all three networks share substantial amount of edges
(details later in this section). We focus on motif M2 (the
loop pattern) in this experiment.
Table 4 shows the results. We observed that AD and HD

networks yield the same number of embeddings and F2
count. Totally, 37 to 56% of the genes participate in at least
one motif embedding. PD network has the largest motif
count and fraction of genes in motif embeddings. Such
large motif count indicates that these networks are orga-
nized largely as a combination of small loops. Finally, our
method completed counting motifs in slightly over half
an hour per network. This demonstrates that our method
scales up to very large network sizes and densities.

a b

Fig. 11 a Running time on cancer networks. The x-axis shows the cancer type. The y-axis on the left and right show the running time in seconds
and average degree of each network respectively. b The F2 (i.e. number of non-overlapping instances) count of each of the four basic motifs in real
network. The x-axis shows the cancer type. The y-axis shows the motif F2 count

Ren et al. BMC Bioinformatics (2018) 19:242 Page 15 of 17

Table 3 Real networks from neurodegenerative dataset used in
our experiment, the disease name, numbers of nodes and edges,
average node degree and clustering coefficient

Disease Nodes Edges Avg. degree C. coefficient

AD 162 737 9.1 0.876

HD 177 756 8.54 0.845

PD 125 751 12 0.827

AD, HD and PD correspond to Alzheimer’s, Huntington’s and Parkinson’s disease,
respectively

Next, we take a closer look at the distribution of the
shared edges, which appear in a motif embedding, across
different diseases. Figure 12 presents the distribution. We
observe that the edges present in AD and HD are exactly
the same. PD network however deviates from the other
two by about 6%. This implies that all three diseases possi-
bly are governed by very similar processes, with PD having
slight variations.
Next, we focus on the statistical significance of the bio-

logical processes and molecular functions of the genes
that comprise the result set for the three neurodegenera-
tive diseases for M2 pattern. To do this, we perform gene
ontology analysis using PANTHER [35]. For each net-
work, we use all the genes appearing in an embedding of
M2.We filter the Gene Ontology (GO) terms with p-value
above 0.025. We then search each of the remaining GO
term in PubMed with the disease corresponding to that
network (i.e., AD, HD, or PD). Table 5 shows the results
for which at least one reference publication exists.
Our results demonstrate that ProMotE identifies disease

specific functional properties. For instance, mitochondria
often referred to as the power house of the cell is responsi-
ble for many important cellular functions especially neu-
ronal viability. Therefore, aberrations in mitochondrial
processes have potential to lead to neuronal disorder. Four
distinct pathways carry out mental processing for brain
metabolism, two of them being tricarboxylic acid cycle
(TCA) and electron transport chain (the other two are gly-
colysis, pentose shunt). These pathways are affected by
direct modification of the enzymes or alterations at the
gene expression level. TCA is responsible for producing
reducing equivalents in the form of reduced nicotinamide
adenine dinucleotide (NADH) and reduced flavin adenine

Table 4 Results on real networks from neurodegenerative
dataset used in our experiment, the disease name, unique
number of genes in the result set, number of embeddings, F2

measure and the running time

Disease Unique Genes Embeddings F2 Time (s)

AD 67 228 87.2108 1984.74

HD 67 228 87.2108 2006.99

PD 70 234 88.6849 2019.60

Fig. 12 The number of common edges present in the three disease
networks for independent embeddings of the triangle motif pattern

dinucleotide (FADH2). Altered activities of the TCA cycle
enzymes result in imbalance which is associated with
AD-related changes in metabolism.
Another important function is the production of adeno-

sine triphosphate (ATP) through the combined effects
of TCA and the respiratory chain, also known as elec-
tron transport chain. The respiratory chain requires
two electron carriers: ubiquinone/coenzyme Q and
cytochrome c. Also, it consists of five protein complexes:
NADH dehydrogenase-ubiquinone oxidoreductase (com-
plex I), succinate dehydrogenase-ubiquinone oxidoreduc-
tase (complex II), ubiquinone-cytochrome c oxidore-
ductase (complex III), cytochrome c oxidase (complex
IV), and ATP synthase (complex V). Production of ATP
involves two coordinated mechanisms: electrons received
from energy substrates such as NADH are transported
through the mitochondrial complexes towards molecular
oxygen, producing water; at the same time electrochem-
ical gradient is generated by driving protons across the
mitochondrial inner membrane by I, III, and IV protein
complexes. Finally, ATP is produced by the accumulation
of these protons into the matrix with the help of com-
plex V (ATP synthase). Altered mitochondrial respiration,
especially at the level of complex I thus associates with PD.

Conclusions
In this paper, we developed ProMotE, an efficient method
to count non-overlapping motif instances in probabilistic
networks. This method uses a polynomial model to cap-
ture the dependencies between overlapping embeddings.
We proposed three strategies to avoid computation of loss
value, to expedite collapsation of polynomial terms, and
to overcome the memory bottleneck faced when applied
to large networks. Our experiments on both synthetic and

Ren et al. BMC Bioinformatics (2018) 19:242 Page 16 of 17

Table 5 Gene ontology analysis of the genes appearing in the independent embeddings of the triangle pattern in the three disease
networks with publications, and the diseases associated with the ontology terms

Category GO ID Function name p-value Reference Disease

0006120 mitochondrial electron transport, NADH to ubiquinone 2.65E-58 Perier and Vila [36] PD

0042776 mitochondrial ATP synthesis coupled proton transport 1.43E-20 VanDuyn et al. [37] AD,PD

Biological 0006123 mitochondrial electron transport, cytochrome c to oxygen 4.66E-20 Fiskum et al. [38] PD

Process 0006122 mitochondrial electron transport, ubiquinol to cytochrome c 5.13E-19 Kim et al. [39] AD

0006099 tricarboxylic acid cycle 2.43E-02 Shi et al. [40] AD

0003954 NADH dehydrogenase activity 9.19E-53 Zubenko et al. [41] AD

0004129 cytochrome-c oxidase activity 1.4E-18 Cardoso et al. [42] AD

Molecular 0008121 ubiquinol-cytochrome-c reductase activity 9.53E-14 Liang et al. [43] AD

Function 0000104 succinate dehydrogenase activity 6.42E-06 Fattoretti et al. [44] AD,HD

0048038 quinone binding 8.33E-04 Wang et al. [45] AD,PD

0051537 2 iron, 2 sulfur cluster binding 4.56E-03 Isaya [46] PD

real networks demonstrate that our method scales to large
networks and identifies the key functional characteristics
of cancer and disease phenotypes.

Abbreviations
AD: Alzheimer’s disease; ATP: Adenosine triphosphate; BA: Barabási-Albert; ER:
Erdős Rényi; FADH2: Reduced flavin adenine dinucleotide; HD: Huntington’s
disease; NADH: Reduced nicotinamide adenine dinucleotide; ProMotE:
Probabilistic motif embedding; PD: Parkinson’s disease; TCA: Tricarboxylic acid
cycle; WS: Watts Strogatz

Acknowledgements
We would like to thank the reviewers for their insightful comments and
suggestions.

Funding
Publication of this article was funded by NSF under grant DBI-1262451. Neither
funding body played any role in the design of this study and collection,
analysis, and interpretation of data or in writing the manuscript.

Availability of data andmaterials
The datasets generated and/or analysed during this study along with the code
for our models and instructions for their use are available under open licenses
at https://github.com/KahveciLab/probabilisticIndependentMotif.

Authors’ contributions
Developed the method: YR, AS and TK. Conceived and Designed the
experiments: YR, AS and TK. Performed the data analysis: YR, AS and TK.
Performed the experiments and interpreted the results: YR, AS and TK.
Contributed to the writing of the manuscript: YR, AS and TK. All authors read,
provided comment and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 November 2017 Accepted: 6 June 2018

References
1. Bray D, et al. Protein molecules as computational elements in living cells.

Nature. 1995;376(6538):307–12.
2. Flajolet M, Rotondo G, Daviet L, Bergametti F, Inchauspé G, Tiollais P,

Transy C, Legrain P. A genomic approach of the hepatitis c virus
generates a protein interaction map. Gene. 2000;242(1):369–79.

3. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon
D, Narayan V, Srinivasan M, Pochart P. A comprehensive analysis of
protein–protein interactions in saccharomyces cerevisiae. Nature.
2000;403(6770):623–7.

4. Girvan M, Newman ME. Community structure in social and biological
networks. Proc Natl Acad Sci. 2002;99(12):7821–6.

5. Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex
networks. Nature. 2000;406(6794):378–82.

6. GreenML, Karp PD. A bayesianmethod for identifyingmissing enzymes in
predicted metabolic pathway databases. BMC Bioinformatics. 2004;5(1):1.

7. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network
motifs: simple building blocks of complex networks. Science.
2002;298(5594):824–7.

8. Wang P, Lü J, Yu X. Identification of important nodes in directed
biological networks: A network motif approach. PLoS ONE. 2014;9(8):
106132.

9. Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr
SE. An integrative approach to ortholog prediction for disease-focused
and other functional studies. BMC Bioinformatics. 2011;12(1):1.

10. Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the
transcriptional regulation network of escherichia coli. Nat Genet.
2002;31(1):64–68.

11. Garey MR, Johnson DS. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: WH Freeman; 1979.

12. Bader JS, Chaudhuri A, Rothberg JM, Chant J. Gaining confidence in
high-throughput protein interaction networks. Nat Biotechnol.
2004;22(1):78–85.

13. Ryba T, Hiratani I, Sasaki T, Battaglia D, Kulik M, Zhang J, Dalton S,
Gilbert DM. Replication timing: a fingerprint for cell identity and
pluripotency. PLoS Comput Biol. 2011;7(10):1002225.

14. Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J,
Groudine M. Genome-wide dna replication profile for drosophila
melanogaster: a link between transcription and replication timing. Nat
Genet. 2002;32(3):438–42.

15. Ceol A, Aryamontri AC, Licata L, Peluso D, Briganti L, Perfetto L,
Castagnoli L, Cesareni G. MINT, the molecular interaction database.
Nucleic Acids Res. 2009;38(suppl_1):D532–D539.

16. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P. The STRING database in 2011:

https://github.com/KahveciLab/probabilisticIndependentMotif

Ren et al. BMC Bioinformatics (2018) 19:242 Page 17 of 17

functional interaction networks of proteins, globally integrated and
scored. Nucleic Acids Res. 2010;39(suppl_1):D561–D568.

17. Inokuchi A, Washio T, Motoda H. Complete mining of frequent patterns
from graphs: Mining graph data. Mach Learn. 2003;50(3):321–54.

18. Kuramochi M, Karypis G. Frequent subgraph discovery. In: Data Mining,
2001. ICDM 2001, Proceedings IEEE International Conference On. New
Jersey: IEEE; 2001. p. 313–320.

19. Schreiber F, Schwöbbermeyer H. Frequency concepts and pattern
detection for the analysis of motifs in networks. In: Transactions on
Computational Systems Biology. Heidelberg: Springer; 2005. p. 89–104.

20. Tran NH, Choi KP, Zhang L. Counting motifs in the human interactome.
Nat Commun. 2013;4:2241.

21. Todor A, Dobra A, Kahveci T. Counting motifs in probabilistic biological
networks. In: ACM Conference on Bioinformatics, Computational Biology
and Health Informatics. New York: ACM; 2015. p. 116–125.

22. Kuramochi M, Karypis G. Finding frequent patterns in a large sparse
graph. Data Min Knowl Disc. 2005;11(3):243–71.

23. Klukas C, Koschützki D, Schreiber F. Graph pattern analysis with
patterngravisto. J Graph Algorithm Appl. 2005;9(1):19–29.

24. Sarkar A, Ren Y, Elhesha R, Kahveci T. Counting independent motifs in
probabilistic networks. In: ACM Conference on Bioinformatics,
Computational Biology and Health Informatics. New York: ACM; 2016. p.
231–240.

25. Erdős P, Rényi A. On random graphs. Publ Math Debr. 1959;6:290–7.
26. Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks.

Nature. 1998;393(6684):440–2.
27. Barabási A-L, Albert R. Emergence of scaling in random networks.

Science. 1999;286(5439):509–12.
28. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D. A

combined algorithm for genome-wide prediction of protein function.
Nature. 1999;402(6757):83–86.

29. Schwikowski B, Uetz P, Fields S. A network of protein–protein
interactions in yeast. Nat Biotechnol. 2000;18(12):1257–61.

30. Poisot T, Cirtwill AR, Cazelles K, Gravel D, Fortin M-J, Stouffer DB. The
structure of probabilistic networks. Methods Ecol Evol. 2015;7(3):303–12.

31. Huang H, Zhang LV, Roth FP, Bader JS. Probabilistic paths for protein
complex inference. In: Systems Biology and Computational Proteomics.
Heidelberg: Springer; 2007. p. 14–28.

32. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics.
2011;27(12):1739–40.

33. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T,
Karp RM, Ideker T. Conserved patterns of protein interaction in multiple
species. Proc Natl Acad Sci U S A. 2005;102(6):1974–9.

34. Gabr H, Rivera-Mulia JC, Gilbert DM, Kahveci T. Computing interaction
probabilities in signaling networks. EURASIP J Bioinforma Syst Biol.
2015;2015(1):10.

35. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. Panther
version 10: expanded protein families and functions, and analysis tools.
Nucleic Acids Res. 2016;44(D1):336–42.

36. Perier C, Vila M. Mitochondrial biology and parkinson’s disease. Cold
Spring Harb Perspect Med. 2012;2(2):009332.

37. VanDuyn N, Settivari R, LeVora J, Zhou S, Unrine J, Nass R. The metal
transporter smf-3/dmt-1 mediates aluminum-induced dopamine neuron
degeneration. J Neurochem. 2013;124(1):147–57.

38. Fiskum G, Starkov A, Polster BM, Chinopoulos C. Mitochondrial
mechanisms of neural cell death and neuroprotective interventions in
parkinson’s disease. Ann N Y Acad Sci. 2003;991(1):111–119.

39. Kim S, Vlkolinsky R, Cairns N, Lubec G. Decreased levels of complex iii core
protein 1 and complex v β chain in brains from patients with alzheimer’s
disease and down syndrome. Cell Mol Life Sci CMLS. 2000;57(12):1810–6.

40. Shi Q, Gibson GE. Oxidative stress and transcriptional regulation in
alzheimer’s disease. Alzheimer Dis Assoc Disord. 2007;21(4):276.

41. Zubenko GS, Moossy J, Claassen D, Martinez AJ, Rao GR. Brain regional
analysis of nadh-cytochrome c reductase activity in alzheimer’s disease. J
Neuropathol Exp Neurol. 1990;49(3):206–14.

42. Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR. Cytochrome c
oxidase is decreased in alzheimer’s disease platelets. Neurobiol Aging.
2004;25(1):105–10.

43. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A,
Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, et al. Alzheimer’s

disease is associated with reduced expression of energy metabolism
genes in posterior cingulate neurons. Proc Natl Acad Sci. 2008;105(11):
4441–6.

44. Fattoretti P, Balietti M, Casoli T, Giorgetti B, Di Stefano G,
Bertoni-Freddari C, Lattanzio F, Sensi S. Decreased numeric density of
succinic dehydrogenase-positive mitochondria in ca1 pyramidal neurons
of 3xtg-ad mice. Rejuvenation Res. 2010;13(2-3):144–147.

45. Wang C, Wang Z, Xie J, Wang T, Wang X, Xu Y, Cai J.
Dl-3-n-butylphthalide-induced upregulation of antioxidant defense is
involved in the enhancement of cross talk between creb and nrf2 in an
alzheimer’s disease mouse model. Neurobiol Aging. 2016;38:32–46.

46. Isaya G. Mitochondrial iron-sulfur cluster dysfunction in
neurodegenerative disease. Front Pharmacol. 2014;5:29.

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Contributions.

	Methods
	Preliminaries and problem definition
	Overview of the existing solution
	Avoiding loss computation
	Efficient polynomial collapsation
	Optimization on V1
	Optimization on V2

	Overcoming memory bottleneck

	Results and discussion
	Evaluation on synthetic networks
	Running time evaluation
	Comparison against the literature

	Evaluation on cancer networks
	Evaluation on neurodegenerative disease networks

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

