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Abstract

Background: The advent of next-generation sequencing (NGS) has made whole-genome sequencing of cohorts of
individuals a reality. Primary datasets of raw or aligned reads of this sort can get very large. For scientific questions
where curated called variants are not sufficient, the sheer size of the datasets makes analysis prohibitively expensive.
In order to make re-analysis of such data feasible without the need to have access to a large-scale computing facility,
we have developed a highly scalable, storage-agnostic framework, an associated APl and an easy-to-use web user
interface to execute custom filters on large genomic datasets.

Results: We present BAMSI, a Software as-a Service (SaaS) solution for filtering of the 1000 Genomes phase 3 set of
aligned reads, with the possibility of extension and customization to other sets of files. Unique to our solution is the
capability of simultaneously utilizing many different mirrors of the data to increase the speed of the analysis. In
particular, if the data is available in private or public clouds — an increasingly common scenario for both academic and
commercial cloud providers — our framework allows for seamless deployment of filtering workers close to data. We
show results indicating that such a setup improves the horizontal scalability of the system, and present a possible use
case of the framework by performing an analysis of structural variation in the 1000 Genomes data set.

Conclusions: BAMSI constitutes a framework for efficient filtering of large genomic data sets that is flexible in the use
of compute as well as storage resources. The data resulting from the filter is assumed to be greatly reduced in size,
and can easily be downloaded or routed into e.g. a Hadoop cluster for subsequent interactive analysis using Hive,
Spark or similar tools. In this respect, our framework also suggests a general model for making very large datasets of
high scientific value more accessible by offering the possibility for organizations to share the cost of hosting data on
hot storage, without compromising the scalability of downstream analysis.
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Background

The 1000 Genomes project has produced one of the
world’s largest public collections of sequenced human
genome data with the goal of providing a public resource
giving a wide representation of human genetic variation
[1]. This data is useful for many applications, including
the investigation of genomic causes of diseases. For many
applications, curated released variant files may be suffi-
cient. However, for more specialized questions such as
validation of specific candidate mutations or screening
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for variants with incomplete calling performance, it can
be necessary to use the aligned sequencing reads. The
alignment data released by the 1000 Genomes project is
made available in the BAM (Binary Alignment/Map) for-
mat. BAM is the binary version of the SAM (Sequence
Alignment/Map) format used by the SAMtools software
[2], and it is the expected primary format of aligned
data received from mature sequencing platform pipelines.
For each BAM file, there are two auxiliary files contain-
ing indexing and statistics. For all 2535 individuals taken
together, the resulting size of the data is in total roughly 60
TB, with one BAM file containing all aligned data per indi-
vidual. The data is available in its entirety from a number
of mirrors, in addition to the authoritative original source.

Mature open source software to analyse and work with
individual BAM files, most prominently SAMtools itself,

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2241-z&domain=pdf
http://orcid.org/0000-0003-0458-6902
mailto: carl.nettelblad@it.uu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ausmees et al. BMC Bioinformatics (2018) 19:240

are readily available, but the sheer size of the com-
plete dataset makes analysis expensive, and calls for scal-
able distributed computing solutions. In that category,
HadoopBAM (3] based on Hadoop/MapReduce [4] or
ADAM [5] based on Apache Spark [6] have been demon-
strated to accelerate the processing of large volumes of
genome data, but the adoption of these tools comes with
a steep learning curve for end-users without distributed
computing experience. Furthermore, such frameworks
work best in the scenario when the entire dataset is
available in a resilient, compatible datastore such as the
Hadoop Distributed File System (HDFS) [7], meaning that
data has to be staged into the system prior to the com-
putations. However, for many organizations, the cost and
complexity in maintaining a dedicated system for Big Data
processing, and the cost of storing a local copy of the
entire dataset, is substantial. Still, such an approach can
make sense for applications requiring frequent access to
the original data, such as iterative processing. It can also
make sense for complex ad-hoc analysis requiring the full
flexibility of e.g. Apache Spark. For simpler filtering tasks,
however, it introduces an unnecessary level of complexity.

The availability of private and community cloud com-
puting infrastructure is a rapidly rising trend in the
academic e-infrastructure landscape. Infrastructure as-a
Service (IaaS) clouds complement traditional HPC batch
resources by offering the flexibility to rapidly deploy anal-
ysis environments on demand. One such example is the
Swedish National Infrastructure for Computing (SNIC)
Science Cloud (SSC) [8], a national cloud resource built
on OpenStack [9]. SSC offers virtual compute and stor-
age resources closely co-located with traditional HPC
clusters and shared storage pools. SSC participates in
Glenna2, comprising similar initiatives in the Scandina-
vian countries. On a European level, the European Open
Science Cloud initiative can be expected to accelerate the
adoption of private and hybrid cloud infrastructure. Sig-
nificant efforts are already made in that direction with
the EGI Federated Cloud (FedCloud) initiative [10], and
HelixNebula — The Science cloud [11], a EUR 5.3M
pre-commercial tender to establish a hybrid cloud plat-
form. The Open Science Data Cloud (OSDC) [12] is a
large initiative to provide large datasets of high scientific
value closely located with OpenStack cloud computing
resources for flexible and efficient analysis. For the Bioin-
formatics community, the ELIXIR Embassy Cloud [13]
provides OpenStack resources co-located with EMBL-
EBI’s data resources.

The main goal of the work in this paper is to develop a
modern, scalable solution for massive filtering of genome
data, capable of leveraging this emerging cloud infras-
tructure landscape. To that end, we propose a solu-
tion and associated cloud service framework, the BAM
Search Infrastructure (BAMSI), for filtering of massive
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genome data that avoids the issues of duplicity and storage
limitations. BAMSI is capable of leveraging data from sev-
eral distinct locations to provide an efficient distributed
tool for filtering and analysing the raw dataset. We allow
multi-cloud configurations by being able to spawn and
use computational resources close to data in OpenStack-
based [9] clouds as well as other IaaS providers such as
Amazon EC2. In Sweden, a mirror of the 1000 Genomes
dataset is available on shared storage at the Uppsala Multi-
disciplinary Center for Advanced Computational Science
(UPPMAX). Similarly, the dataset is publicly available in
the Amazon S3 public cloud storage free of charge [14].
With data available close to cloud compute infrastructure
(in our example SSC and Amazon EC2) BAMSI moves
computations close to data provisioning of local, tran-
sient virtual compute nodes close to the data source.
This model minimizes network bottlenecks and increases
filtering throughput.

In this paper we introduce a publicly available deploy-
ment of BAMSI, and present an analysis of the perfor-
mance and scalability of the framework, illustrating the
benefits of such a multi-cloud configuration. We envi-
sion our service to be useful together with a diverse set
of downstream analytics platforms such as Hadoop (Pig,
Hive) [15, 16], Spark and ADAM, since we offer a method
to pre-filter the dataset, greatly reducing the amount of
data that needs to be staged into those environments. For
highly compressive filters, the resulting subsets can also be
downloaded locally and further analysed with a range of
conventional bioinformatics tools or statistical computing
platforms such as R and Python.

To illustrate the potential of BAMSI, we also present
a rudimentary structural variant analysis on the entire
1000 Genomes phase 3 set of aligned reads. First, we
use BAMSI to execute a whole-genome filter for align-
ments where the paired-end reads map to locations in
the reference genome that would indicate a total template
length exceeding 600 base pairs. Since this is inconsis-
tent with the fragment generation protocols, such reads
are indicative of deletion/inversion events moving the
paired sequences closer, or alignment errors. We then
perform additional filtering on this reduced data set in
order to isolate inversion events, and produce a genome-
wide overview of potential regions with high inversion
frequency.

Implementation

System overview

Three main objectives have been driving the development
of the framework. First, use of the service should be intu-
itive and accessible for a scientist with no experience of
distributed computing. Second, the entire dataset should
not have to be stored on the analysis platform. Finally, the
framework should be capable of making simultaneous use
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of multiple mirrors of the data, and it should be capable
of moving filtering workers close to data to increase the
throughput of the analysis.

Figure 1 illustrates the design of the framework. Four
components are central to the system: the User Inter-
face (UI), the Routing Engine (RE), the Worker Ecosystem
(WE) and the Storage Repository (SR). The user inter-
acts with BAMSI via the UI, which allows filter jobs to be
defined, launched, and monitored. A job consists of a fil-
ter condition and the set of files to apply it to. When a job
is launched, separate tasks are defined and created, with
each task corresponding to one BAM file to filter. The
tasks are dispatched to available worker resources by the
RE. The WE comprises all compute resources, or work-
ers, configured to execute filter tasks. Finally, the output
from all workers is consolidated to the SR, from which
the user can access the reduced dataset for further analy-
sis. Below, we briefly touch on the main layers to describe
their design and interaction.

User interface (Ul)

The BAMSI Ul allows the user to specify and deploy filter
queries, view the status of the system, monitor progress
of tasks and to download the resulting filtered-out data.
Users familiar with SAMtools will recognize the stan-
dard filter options such as minimum mapping quality and
flag bits to include or exclude. In addition to these, it is
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also possible to specify a range for the template length,
a pattern of nucleotides that the sequence must contain,
constraints on the format of the cigar string, and cri-
teria on the tags in the optional alignment field of the
BAM records. The latter two are specified using regu-
lar expressions that the value found in the BAM record
is matched against. Subsets of the original set of files
can be selected by specifying the populations, individ-
uals and genomic regions that are of interest. Figure 2
shows a screenshot of a typical filtering configuration;
alignments from the first Mb of chromosome 1 contain-
ing a given sequence of nucleotides, and having flag bits
set that indicate a paired read, mapped in a proper pair
to the reverse strand, and being the first segment in the
template.

Submitted jobs are given a tracking id by which the user
can monitor progress via the dashboard page. Statistics
of the job’s progress are displayed, as well as a search-
able table containing details of each task, allowing finished
ones to be downloaded via the browser. The output for-
mat of the filtered dataset is selected at query deployment.
Supported formats are BAM and individual alignment for-
mat; a modification of the SAM format that excludes the
header and includes the individual and region information
in every alignment. The alignments thus become self-
contained units, rendering the data suitable for imposing
structure and performing interactive analysis using a

ul
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Fig. 1 Overview of the architecture. The user defines a data filtering job in a graphical user interface or using a REST API. The routing engine
distributes tasks to workers residing in one or several cloud platforms, each with a configured source of the data. The filtered results can be routed to
a permanent or transient storage location (such as an HDFS cluster) for further downstream analysis with other tools, or for download via the interface
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Fig. 2 Example of specifying a filter query to select all alignments from the first Mb of chromosome 1, with the sequence containing a given pattern
of nucleotides. The flag 83 is also required, meaning that the alignments should have flag bits 0x1, 0x2, 0x10 and 0x40 set, corresponding to a paired
read, mapped in a proper pair to the reverse strand, and being the first segment in the template
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query language, or for processing within a distributed
computing framework such as Hadoop.

Routing engine (RE)

The RE handles the dispatch of tasks and maintains han-
dles to monitor their progress. BAMSI exploits the Celery
[17] messaging and queuing fabric to disseminate tasks
across workers. A simple configuration with one queue
and distribution of tasks to workers as they become avail-
able is currently implemented.

Worker ecosystem (WE)

The WE is automatically managed by the Celery frame-
work. As resources hosting the service are spawned, they
join the global pool of workers via a queue and become
available to receive filter tasks. Environment-specific
settings such as IP addresses and ports for communication

are defined using a configuration file, where the mirror
of the data is also specified by means of a file path (e.g.
a mounted directory on the system where the worker is
running, or a HTTP or FTP URL). The worker logic is
implemented as a wrapper and extension of SAMtools;
when a task is received, the specified BAM file is streamed
from the configured data source and filtered according to
the given condition. The resulting data is finally pushed to
the SR and the worker is ready to receive another task.

Storage repository (SR)

The storage backend of BAMSI is designed to be plug-
gable and adaptable. Users setting up their own instance of
BAMSI can configure a storage repository of choice, ide-
ally on the provider where subsequent analysis of the data
will be performed. The design is adapted to any system
that supports REST interface, so providers such as Swift,
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$3 and Microsoft Document Cloud would be compatible.
The publicly available deployment of BAMSI implements
HDES as storage repository.

Python API

A Python API is also provided as an alternative to the
UL It supports the same functionality for interaction with
BAMSI as the graphical interface, including the deploy-
ment and monitoring of tasks and viewing the state of the
worker pool. Figure 3 shows an example of using the API
to launch a task, monitor its progress, and get a list of
URLSs from which the results can be downloaded. The API
is available at https://github.com/NGDSG/BAMSI- APIL

Results

To demonstrate the utility of BAMSI, we evaluate the per-
formance benefits of the multi-cloud setup, and present
a possible use case of the framework. The performance
was evaluated in terms of aggregated filtering through-
put. For a particular BAMSI setup and deployment, the
throughput will depend on a number of factors, includ-
ing computational efficiency, network speeds and write
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performance of the SR. The user can increase through-
put by adding workers to the WE, but since the horizontal
scaling is limited by the eventual saturation of the link to
the data backend, we focused on investigating how the use
of multiple data sources affects scaling. As a case study,
we chose to perform a structural variation analysis on the
entire 1000 Genomes phase 3 low-coverage data data set.
We used BAMSI to scan the data for alignments indicative
of possible inversion events, and present a genome-wide
overview of the results.

Horizontally scalable filtering using a multi-cloud BAMSI
deployment

To illustrate the capability of BAMSI to increase through-
put by aggregating multiple mirrors of the data, a deploy-
ment with workers in two different cloud backends was
configured. One set of resources was deployed on SSC,
using the mirror of the 1000 Genomes data available on
UPPMAX. Each such virtual machine had 2 VCPUs, 40GB
disk, 4GB RAM. The second set was deployed on Ama-
zon EC2, accessing the data from the publicly available
Amazon S3 bucket. The EC2 resources had 2 VCPUs,

from BAMSIApi.api import BAMSIApiClient
import json
import time
KEY = ‘'test’

IP = 'bamsi.research.it.uu.se/’
bamsi_client = BAMSIApiClient(KEY, IP)

print("Active workers: "

num_active workers = len(active_workers)
if num_active_workers > 0:

# Define a job
query = "{"regions" :
query_args = json.loads(query)

# Launch the job
# Check the status of the job

limit = 10
n=290

time.sleep(60)

n+=1

urls = results_stats["URLs"]

# Get information on the state of the worker pool
active_workers = json.loads(bamsi_client.active_workers())
+ str(active_workers.keys()))

"1:1-30000", 'subpops" :

job_tracking_id = bamsi_client.spawn{**query_args)

job_status = bamsi_client.job_status(tracking=job_tracking_id)

# Wait until all tasks of the job are done, or the time limit is reached
while job_status != "COMPLETED" and n < limit:

job_status = bamsi_client.job_status(tracking=job_tracking_id)
print("The status of job " + job_tracking_id + " is " + job_status)
# Get iInformation on the tasks that have finished
results_stats = json.loads(bamsi_client.results_stats(tracking=job_tracking_id))
# Get list of URLs from where the results of the finished tasks can be downloaded
Fig. 3 Example of interaction with BAMSI via the Python API. First, the state of the worker pool is probed. If there are any active workers, a job to filter

out alignments from the first 30000 bp of chromosome 1, in individuals from three subpopulations, is defined and launched. The status of the tasks is
probed until all are finished, or a time limit is reached. Finally, a list of URLs from which the results of the finished tasks can be downloaded is fetched

"CHB,JPT,CHS", "format" : "b"}'
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8GB disk, 8GB RAM (m4.large). One celery worker was
deployed per machine, with concurrencies 6 and 4 in the
SSC and EC2 instances, respectively. Concurrency deter-
mines the number of threads running in the worker. As the
optimum depends on several factors, a pre-analysis was
performed to find suitable values.

For a given query, the throughput is defined as the total
disk size of streamed and filtered data per unit of run-
time, measured as the wall time from query deployment
to the completion of the last task. As an indicator of the
efficiency of the system when given additional workers,
we also report the scaled speedup, defined as %
where # is the number of workers and the speedup is
defined as the ratio of runtime using 1 worker to the run-
time on n workers: Speedup, = % The query used for
performance analysis was to select all alignments with a
minimum observed template length (as reported by the
field TLEN in the BAM file) of 600 bp from a set of 520
files with a total disk size of 11717 GB. The output format
was set to BAM, and due to varying latency of access to
the SR for different compute providers, filtered-out data
was written to local disk only.

Three suites of tests were performed, the first of
which only used the compute resources deployed on SSC.
Throughput was measured when running the query using
varying numbers of celery workers. In the second suite,
the additional EC2 compute resources were included. For
this set of runs the number of SSC machines was fixed at
12, and throughput was measured for varying numbers of
additional workers on EC2. The third suite was performed
using EC2 resources only, in order to put the results for
the multi-cloud setup into context, and illustrate the base-
line performance of EC2. Since all configurations utilized
shared resources with varying performance, the query
was run three times per setup. We report the maximum
throughput over these runs.

The resulting throughputs are displayed in Fig. 4a. The
solid line indicates the runs in which only SSC resources
were used, with a leveling-out of throughput occurring
around 170 MB/s at 12 workers. Saturation of the link
to UPPMAX was reached at this point; adding workers
no longer increased throughput. With additional workers
instead being added on EC2 from the point of saturation,
throughput continued increasing further, as indicated by
the dotted line. The dashed line shows the performance
of using EC2 only. As expected, saturation of the S3 data
source was not reached. Figure 4b shows the performance
in terms of scaled speedup. The theoretical upper bound
for this metric is 1.0, which corresponds to linear speedup;
the system performing twice as fast when the number
of workers is doubled. The fact that superlinear speedup
is reached for the SSC only runs can be explained by
varying performance due to running on shared resources.
Comparing the scaled speedup for the two scenarios in
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which EC2 workers were used (dotted and dashed lines)
shows similar behavior, indicating that there was no sig-
nificant overhead of adding EC2 resources on top of the
BAMSI deployment on SSC, as opposed to running on
EC2 only.

Using BAMSI for structural variation analysis

For the structural variation analysis, BAMSI was used
to perform an initial filtering of the entire data set on
the condition of a minimum observed template length of
600 bp. The results were stored in HDEFS in the indepen-
dent alignment format, where the distributed processing
framework Hive was used for subsequent filtering. The
Hive queries used can be found in Additional file 1.

To isolate potential inversion events, only alignments in
which both reads mapped to the same strand were kept.
This was done by enforcing that both reads in each pair
had the same orientation as indicated by the SAM flag
0 x 10. Figure 5 shows a schematic representation of how
this type of structural variation is expressed in paired-
end sequencing. Sample 1 shows the typical case with no
structural variation w.r.t. the reference; read 1 aligns to
the forward strand and read 2 to the reverse. The DNA
sequence of sample 2, however, has an inversion with
respect to the reference, causing read 2 to be mapped in
the opposite direction, resulting in both reads having the
same direction in the alignment. This type of alignment
also gives rise to an observed template length that is larger
than the fragment size of the sequencing protocol, moti-
vating the filter of minimum template length 600 bp as
an initial data-reduction step. The case with two reverse-
aligned reads is analogous. In order to reduce noise, cases
with alternative alignments or at least one read that did
not completely match the reference were discarded. This
included discarding alignments with reads that did not
have a cigar string on the form nnM or contained any
XA-tags. We further required that every alignment should
have at least 20 supporting alignments from distinct indi-
viduals. This was done by projecting the start positions
and template lengths of each alignment down to kb scale,
counting the number of distinct individuals in each such
bin, and only selecting alignments that were in bins with
an individual count of at least 20.

The results are presented as a low-resolution heat
map of each chromosome in order to give an overview
of areas of potential interest. Starting position in each
chromosome, projected to Mb scale, is given on the
y-axis and observed template length projected to 10 kb
scale on the x-axis, with intensity representing the fre-
quency of unique individuals having an alignment in each
such bin.

Figure 6a shows a heat map of the potential inversion
alignments in chromosome 15 that were identified using
the described filtering procedure. Intensity denotes the
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Fig. 4 Performance evaluation results. a Total throughput as a function of number of celery workers. The solid line indicates runs in which all
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deployed on Amazon EC2. The dashed line indicates runs in which workers were deployed on Amazon EC2 only. The maximum throughput over
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frequency of individuals within the entire 1000 Genomes
phase 3 data set, shown on a logarithmic color scale. One
area that stands out is a region starting around 30 Mb,
with a span of template lengths between roughly 880 to
1040 kb, that shows consistently high individual frequen-
cies reaching up to 14%. This coincides with a region on
15q13 known for genomic instability that is associated
with a number of genetic disorders [18—-20]. The region

is characterized by complex polymorphisms including
deletions and inversions, many of which are associated
with highly identical blocks of flanking segmental dupli-
cations [21, 22]. The detected signal is consistent with
these previously observed chromosomal rearrangements,
and indicates that regions of known instability like 15q13
are possible to reproduce using the proposed filtering
approach.
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In addition to filtering based on alignment data, BAMSI
is also designed to facilitate the handling of subsets of the
1000 Genomes data set. This allows for easy partitioning
of data to perform analysis of genomic events on popula-
tion or even individual level. As an example of such a use
case, we consider an inversion of 17q21.31 that has been
identified to have a frequency of 20% in Europeans and to
be rare in other populations [23]. We extract the poten-
tial inversion alignments in chromosome 17 that come
from European individuals and compare these frequen-
cies to those of the non-European group. Figure 6b shows
the difference between within-population frequencies of
the European and non-European population groups, with
positive values indicating higher values in the European
group. Observed frequencies are overall higher in the non-
European group, which could possibly be an artifact of
the disproportionate sample sizes of 505 European and
2030 non-European individuals. However, an area around
43 Mb with template lengths around 600 kb stands out
as having higher frequencies in Europeans. This is in line
with the results of Stefansson et al. in [23] and supports
the existence of an inversion in this area with higher
prevalence in Europeans.

Finally, another comparison of subpopulations is shown
in Fig. 6¢, where the difference in frequencies between
the African and South Asian population groups on chro-
mosome 5 is shown. In this case, the majority of signals

that appear with high strength have similar frequencies
in both populations. A few exceptions stand out as more
prevalent in either population and could be signals of
e.g. ongoing selection. The filter performed was a rudi-
mentary one, with effects of noise and alignment error
likely prevalent, but the results serve to demonstrate the
utility of BAMSI to gain an overview of large amounts
of genomic data, detect previously known events, and
to indicate areas of potential interest for further study.
Genome-wide total population frequencies for the entire
1000 Genomes phase 3 data set can be found in Additional
file 2.

Discussion

A freely available deployment of BAMSI is hosted by SSC
and can be accessed via http://bamsi.research.it.uu.se. As
of writing, this service comprises 30 instances with 2
VCPUs, 40GB disk, 4GB RAM, and leverages the UPP-
MAX source of the 1000 Genomes data, along with the
Amazon S3 and original FTP public mirrors, and sup-
ports download of results via HTTP. An average through-
put of 452 MB/s was measured in December 2017 for
15 runs of the same query as was used for the perfor-
mance testing, but with the inclusion of write to HDFS,
thus giving an indication of the performance that can be
achieved for a practical use scenario. As shown by the
performance analysis, improvements could be gained by
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instability, including duplications and inversions associated with highly identical blocks of flanking segmental duplications [18, 19, 21]. b Difference
in population frequencies found in European (EUR) and non-European individuals on chromosome 17. Color intensity indicates the difference
between within-population frequencies, with positive values indicating higher prevalence in the European group. Encircled is a signal that is
consistent with an inversion on 17g21.31 found to be under selection in Europeans by Stefansson et al. [23]. ¢ Difference in population frequencies
found in the African (AFR) and South Asian (SAS) superpopulation groups on chromosome 5. Color intensity indicates the difference between
within-population frequencies, with positive values indicating higher prevalence in the South Asian group
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deploying additional workers in e.g. Amazon EC2 access-
ing data from S3, but this would come at an additional
cost. In the current scenario, the access to a commu-
nity cloud and the public mirrors allows for providing a
free service with reasonable performance, illustrating the
flexibility of BAMSI in adapting deployments to avail-
able infrastructure and budget. In addition to the public
deployment of BAMSI, the system also contributes a more
general framework for distributed processing. Compared
to using complete analysis workflow systems that allow
stream-based analysis on cloud platforms, e.g. Galaxy [24]
and Chipster [25], the BAMSI framework is more focused
on flexibility. The multi-cloud infrastructure gives flexibil-
ity in terms of resource usage, allowing for optimization
of costs as well as performance. Further, BAMSI is not
restricted to a predefined set of analysis tools, but possi-
ble to integrate into custom bioinformatics pipelines. We
thus envision BAMSI to be a means for users with limited
experience of cloud infrastructures to incorporate dis-
tributed computing into their workflows. Finally, although
BAMSI is designed to work more or less out of the box, the
source is open for users wishing to modify and customize
it, e.g. for implementation of additional filter conditions
or extension to different data sets. Currently, obtaining
optimal performance from a BAMSI deployment requires
evaluation of the underlying resources to configure the
framework. Subsequent versions could improve on this
by incorporating information on Quality-of-Service (QoS)
and current infrastructure capabilities to manage the run-
ning application, e.g. by adapting worker concurrencies,
task deployment and data sources dynamically. Another
feature that could improve performance is adjustment of
task granularity. Currently, one task comprises one BAM
file, but varying task sizes could be achieved by assigning
multiple files to each worker or splitting files by region to
make the granularity finer. Larger tasks have the advan-
tage of reducing communication overhead, whereas a
smaller task size can increase the potential concurrency of
the system and reduce the risk of unbalanced computation
loads. Other scenarios where a finer granularity may be
beneficial are if read failures causing tasks to be restarted
are significantly affecting performance, or if pushing large
files to the SR is problematic.

Conclusions

BAMSI is intended for employment in various configura-
tions and use-cases. The publicly available platform pro-
vides an efficient means for filtering the 1000 Genomes
data, intended in particular for those without access to
a private source wishing to extract small subsets of the
data. More generally, BAMSI constitutes a data han-
dling paradigm utilizing cloud services to manage large
genomic data sets. As the link to any source of the data will
eventually become saturated due to network limitations,
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the performance analysis results indicate the benefits of
combining multiple resources. Further, working in cloud
environments allows for post-processing in distributed
computing frameworks located close to the data. An
example of such a use-case is the structural variation anal-
ysis presented, in which BAMSI was used for an initial
reduction of the data set, and the Hadoop framework for
subsequent filtering according to a custom condition. In
other scenarios, we would propose using BAMSI as a com-
plement to existing bioinformatics workflows and tools
as a pre-filtering step. With the current increase in avail-
ability of IaaS resources, our results illustrate how BAMSI
provides a flexible framework with the potential to max-
imize the access and scientific return of large genomic
data sets.

Availability and requirements

Project Name: BAMSI

Project Home Page: http://bamsi.research.it.uu.se/
BAMSI source: https://github.com/NGDSG/BAMSI
Archived version: http://doi.org/10.5281/zenodo.1264662
API source: https://github.com/NGDSG/BAMSI- API
Archived version: http://doi.org/10.5281/zenodo.1264670
Operating system(s): Platform independent
Programming language: Python

Other Requirements: Deploying the framework requires
Python 2.7/3.4 or later, and SAMtools 1.6 or later.
License: GNU General Public License v3.0

Additional files

Additional file 1: Hive queries. The Hive queries used to filter out
potential inversion alignments. (PDF 47 kb)

Additional file 2: Full-genome results. Potential inversion alignments
found in all chromosomes. (PDF 7617 kb)
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