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Abstract

Background: Lysine succinylation is a new kind of post-translational modification which plays a key role in protein
conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is
necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches,
are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and
they are popular because of their convenience and high speed. In this study, we developed a new method to predict
succinylation sites in protein combining multiple features, including amino acid composition, binary encoding,
physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain).
And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm.

Results: The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation
Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on
independent dataset.

Conclusions: The conclusions made from this study can help to understand more of the succinylation mechanism. These
results suggest that our method was very promising for predicting succinylation sites. The source code and data of this
paper are freely available athttps://github.com/ningq669/PSuccE.

Keywords: Predict succinylation sites, Multiple features, Grey pseudo amino acid composition, Information gain, SVM,
Ensemble learning algorithm

Background
As a type of widespread reversible post-translational modi-
fication, lysine succinylation plays a significant role in both
eukaryotic and prokaryotic cells [1–3]. In succinylation pro-
cedure, the succinyl group (-CO-CH2-CH2-CO-) is cova-
lent bonding to specific lysine residues in proteins which
might lead to substantial chemistry changes to proteins [4].
Besides, lysine succinylation can induce mutations of
charge in the environment with PH value (hydrogen ion
concentration) range from − 1 to + 1 and promote struc-
tural and functional adjustment to substrate proteins [5]. It
is extremely important to understand the molecular mech-
anism of succinylation in biological systems by identifying

succinylated substrate proteins along with succinylation
sites, so more and more focus is put on this field [6–23].
Many biological experimental methods have been de-

veloped to identify succinylated protein or succinylation
sites, such as high performance liquid chromatography
assays, spectrophotometric assays and liquid
chromatography-mass spectrometry [24, 25]. However,
these experimental approaches are inconvenient,
time-consuming and costly, especially for large-scale
data sets. Therefore, efficient computational prediction
methods for the succinylated sites are urgently needed.
Currently, numerous computational classifiers have been
developed to identify PTM (Post Translation Modifica-
tion) sites using various types of two-class machine
learning algorithms [26–29]. We proposed a computa-
tional predictor, SucPred (2015), based on the combin-
ation of a kind of semi-supervised learning algorithm
(Psol) and SVM classifier. This predictor took advantage
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of four types of sequence features, including autocorrel-
ation function, encoding based on grouped weight, nor-
malized van der Waals volume and position weight
amino acids composition. Xu et al. (2015) built a pre-
dictor called iSuc-PseAAC based on SVM using Pseudo
amino acid composition. And then, Xu et al. (2015) de-
veloped another predictor named SucFind. It was con-
structed based on SVM with k-spaced amino acid pairs
and AAindex features. More recently, Hasan et al.
(2016) proposed an approach SuccinSite based on Ran-
dom Forest classifier. SucStruct predictor was built by
Lopez et al. (2017) using structural properties of amino
acids [30]. Thereafter, using profile bigram [31],
PSSM-Suc [32] was introduced for identifying succinyla-
tion lysine sites by Lopez et al. (2017). Besides, they pro-
posed Success predictor (2018) using evolutionary
information of amino acids [33]. Thereafter, they (2018)
used secondary structure information to further enhance
the succinylation prediction [34]. Although these
methods have already been developed to predict succi-
nylation sites, there are some problems existing. First of
all, the data set used in SucPred and iSuc-PseAAC was
obtained from CPLM database [35] and the data set of
SucFind was derived from several lysine modification da-
tabases and some relevant articles [36, 37], which are
small and they didn’t cover novel succinylation data re-
cently found. Besides, though the SuccinSite contains

enough succinylation data, the performances of Succin-
Site still have room for improvement.
To solve problems mentioned above, we developed a

new predictor, which was proposed to predict succinyla-
tion sites in protein using the same data set with Succin-
Site. We used multiple efficient feature descriptors to
derive informative features, including amino acid com-
position (AAC), binary encoding (BE), physicochemical
property (PCP) and grey pseudo amino acid composition
(GPAAC) and we showed the flow chart in Fig. 1. Fi-
nally, we obtained promising results with an accuracy of
89.14% and a MCC of 0.79 using 10-fold cross validation
on training data set and an accuracy of 84.5%, a MCC of
0.2 on independent test set. These results demonstrated
that this predictor is promising to predict lysine succiny-
lation sites and could serve as a helpful tool to the
community.

Methods
As demonstrated in compliance with Chou’s 5-step rule
[38] in a series of recent publications [6–12], we should
follow the following five guidelines to establish a useful
sequence-based predictor for a biological system: (a) se-
lect or construct a valid benchmark data set to train and
test the predictor; (b) formulate these protein sequence
samples with an effective mathematical expression that
can truly reflect their intrinsic correlation with the target

Fig. 1 The flow chart of PSuccE
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to be predicted; (c) introduce or develop a powerful al-
gorithm to operate the prediction; (d) properly perform
cross-validation tests to objectively evaluate the antici-
pated accuracy of the predictor; (e) establish a
user-friendly web-server for the predictor that is access-
ible to the public. Below, we are going to describe how
to deal with these steps one-by- one.

Datasets
In this study, succinylation data was derived from Uni-
ProtKB/Swiss-Prot database and NCBI protein sequence
database as Hasan et al. [29] did. After removing pro-
teins that have more than 30% sequence identity to any
other proteins in this dataset using CH-HIT, 2322 succi-
nylation proteins including 5009 experimentally verified
lysine succinylation sites were obtained. Then, 124 pro-
teins were randomly separated from the 2322 proteins as
an independent test set for testing, and the remaining
proteins were training data set. We referred the experi-
mentally verified lysine succinylation sites as positive
sites, and all the lysine sites that lie on the same proteins
as succinylation sites but don’t have any succinylation
annotation were regarded as negative sites. Finally, 124
proteins with 254 succinylation sites and 2977
non-succinylation sites were obtained as independent
test set, and 2198 proteins with 4755 succinylation sites
and 50,565 non-succinylation sites as training set.

Information entropy
Initially, we extract positive fragment and negative frag-
ment utilizing the sliding window strategy, just like some
other PTM site predictors [39, 40] The window size was
set to L = 2 l + 1, where l is the number of upstream resi-
dues or downstream residues of the central amino acid
(lysine). And ‘X’ was used when the number of flanking
residues was less than l.
Nevertheless, not all the position within the window

are contributing to the prediction of succinylation sites
and even play a negative role. So it’s necessary to take
measure to filter useful positions around the center ly-
sine. The information gain is a measure of the amount
of information [41]. The more orderly a system is, the
lower the information entropy values, on the contrary,
the more chaotic a system is, the higher the information
entropy values. Therefore, information entropy is also a
measure of the degree of ordering. Consequently, we uti-
lized information entropy to select efficient position
within the sliding window. Information entropy can be
calculated as follows:

Hc xð Þ ¼ −
Xn

i¼1
pc xið Þ log2 pc xið Þð Þ ð1Þ

where c represents the window size. xi represents a kind
of amino acid, and n = 20 denotes 20 kinds of different

amino acid. pc(xi) means the probability that amino acid
xi appears at position c.

General Pseudo amino acid composition
With the rapid growth of the amount of biological se-
quences in the post-genome era, one of the most signifi-
cant but also most difficult problems in computational
biology is how to convert a biological sequence into a nu-
merical vector, yet still retain significant sequence-order
information or key pattern characteristic, which is because
almost all the existing machine-learning algorithms can
only handle vector instead of sequence samples [22].
However, a vector that is defined in a discrete model may
completely lose all the sequence-order information. To
avoid this, the pseudo amino acid composition or PseAAC
[42] was proposed. Ever since the concept of Chou’s
PseAAC [43, 44] was put forward, it has penetrated into
nearly all the areas of computational proteomics [45–50],
many biomedicine and drug development areas [51]. Be-
cause of its widely and increasingly usage, two powerful
open access soft-wares, named ‘propy’ [43] and ‘PseAAC--
General’ [50], were released recently. In addition, a very
powerful web-server called Pse-in-One [52] has been
established and it can generate any desired feature vectors
for protein/peptide and DNA/RNA sequences according
to the need of users’ studies.

Amino acid composition
Amino acid composition feature is common and widely
used in prediction of protein sequences (such as phos-
phorylation and acetylation and so on) [53, 54] as one
kind of the most popular coding methods. AAC de-
scribes the frequencies of amino acids in protein se-
quences. In this work, AAC is the fraction of each type
of amino acid in a sequence fragment. We calculated
amino acid occurrence frequencies in the sequence sur-
rounding the query site (the center site itself is not
counted). There are 21 types of amino acids (including
‘X’) in total, thus 21 frequencies are calculated as fea-
tures, the sum of which equal 1.

Binary encoding
The information of the type and position of the amino
acid residues are basic but important to a protein se-
quence. Binary encoding scheme is the most intuitive
method to acquire the positional characteristics of
amino acids for protein sequences. It has been used in
many kinds of PTM site prediction. If 20 amino acids
are ranked as ACDEFGHIKLMNPQRSTVWY, it enci-
phered each kind of amino acid into a 20-dimension
binary vector according to its position in this array. For
example, A is replaced by 10,000,000,000,000,000,000,
and Y is converted into 00000000000000000001. Espe-
cially, X is represent as 00000000000000000000.
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Physicochemical property
AAindex is a database that includes numerical indices
representing various physicochemical and biochemical
properties of amino acids and pairs of amino acids [55].
Now it contains 544 PCPs in the version 9.0. An amino
acid index is a set of 20 numerical values on behalf of
various PCPs of amino acids. PCP has ever been suc-
cessfully used in prediction of many protein modifica-
tions, such as S-glutathionylation and acetylation [56,
57]. In this work, we ranked these PCPs according to
their abilities to distinguish between succinylation and
non succinylation sites and used following top ten physi-
cochemical properties: (1) consensus normalized hydro-
phobicity scale; (2) positive charge; (3) partition energy;
(4) net charge; (5) conformational preference for all
beta-strands; (6) conformational preference for antipar-
allel beta-strands; (7) mean polarity; (8) principal prop-
erty value z3; (9) apparent partition energies calculated
from Wertz-Scheraga index; (10) weights from the IFH
scale.

Grey Pseudo amino acid composition
We combined Chou’s PseAAC [58, 59] and the grey
model (GM (1,1)) [60] to convey protein fragments. It
has already been successfully used in previous study
[61–65]. GM (1,1) is an important and generally used
approach in GM which can generate a series of regular
data sequence by identifying difference between the
trend of system factors, which also called correlation
analysis. Assume that we have a known array

X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ;…; x 0ð Þ nð Þ
� �

ð2Þ

which is irregular. Then, calculate the first-order accu-
mulative generation operation (1-AGO) series for X(0):

X 1ð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ;…; x 1ð Þ nð Þ
� �

ð3Þ

in which x(1)(k) is computed by following equation:

x 1ð Þ kð Þ ¼
Xk
i¼1

x 0ð Þ ið Þ; k ¼ 1; 2;…; n ð4Þ

Next, an albinism differential equation can be gained
according to X(1):

dX 1ð Þ

d tð Þ þ αX 1ð Þ ¼ β ð5Þ

-α is the developing coefficient and -β is the influ-
ence coefficient. α and β are two elements of param-
eter vector θ.

θ ¼ α; β½ �T ð6Þ
θ can be calculated using a least square estimator.

θ ¼ α; β½ �T ¼ BTB
� �−1

BTY ð7Þ
Where.

B ¼
−0:5 x 1ð Þ 1ð Þ þ x 1ð Þ 2ð Þ

� �
1

−0:5 x1 2ð Þ þ x 1ð Þ 3ð Þ
� �

1
… …

−0:5 x 1ð Þ n−1ð Þ þ x 1ð Þ nð Þ
� �

1

2
66664

3
77775

ð8Þ

Y ¼
x 0ð Þ 2ð Þ
x 0ð Þ 3ð Þ
…

x 0ð Þ nð Þ

2
664

3
775 ð9Þ

In view of this, some important information are cov-
ered in coefficients. In this work, we incorporated
PseAAC into these coefficients to reflect the difference
between the positive data and negative data. The first ar-
rays X(0) were obtained from the physicochemical prop-
erty which is described above. Each kind of AAindex
corresponds to a series of X(0) and works out a pair of
coefficients.
Totally, we obtained 791 dimensions of features, in-

cluding 21 dimensions for AAC (Amino Acid Compos-
ition), 500 dimensions for BE (Binary Encoding), 250
dimensions for PCP (Physicochemical Property) and 20
dimensions for GPAAC (Grey Pseudo Amino Acid
Composition).

Feature selection scheme
Not all features are equally important. Some features
may not be relevant to the prediction of succinylation
sites or they could be redundant with each other. There-
fore, we performed a feature selection method IG (Infor-
mation Gain) to remove the irrelevant and redundant
features [66]. IG indicates the quantity of information a
feature can bring to the classification system. The more
information a feature brings, the more important it is.
Thus the information gain can be utilized to evaluate
the contribution of each feature to the classification.
The formula of IG is as follows.

IG xð Þ ¼ E xð Þ−
XV

v¼1

xvj j
x

E xvð Þ ð10Þ

where x means a dimension of feature, and E(x) is
the information entropy value of x. V means the
amount of different values in each dimension feature
x, and xv (v = 1,2,...,V) indicates the probable value in
feature x, and E(xv) is the corresponding information
entropy value to xv.
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Ensemble learning
Ensemble Learning is one of the four main research di-
rections in the field of machine learning. It uses multiple
classifiers to solve the same problem, significantly im-
proving the generalization ability of learning system. In
our training data set, the amount of negative data
(50565) is much larger than the amount of positive data
(4755), so we adopted ensemble learning to resolve the
unbalance between them.
We used Bootstrap Sampling to extract different sub-

set data [67, 68]. It gets the difference of the base classi-
fier through the difference of the training set. First, ten
subsets with 4750 data were randomly selected from
negative training data, and there is no coincidence be-
tween any two subsets. Then, combine every subset with
the whole positive training data, respectively. Now, we
have ten training data subsets with 9510 data, and we
make a feature selection for each data subset using inde-
pendent test set. After selecting the optimal feature
group for every train data set, 10 SVM classifiers were
obtained as the first layer classifiers. Next, we collected
the results from the first layer classifiers and combined
them as the feature of the second layer classifier. Finally,
we predicted with the second layer classifier.

Performance assessment
Independent test, subsampling test, and jackknife test
are three commonly used cross validation methods to
examine a predictor [69]. The jackknife test is deemed
as the most reliable one among them [70]. However,
n-fold cross validation test is commonly used instead of
jackknife test because it can save much time. This
method divides dataset into n equal subsets randomly,
every n-1 of which are used for training and the rest one
for testing. The procedure repeats several times and final
result is calculated by averaging the accuracy of the n
testing subsets. In this study, independent test and

10-fold cross validation were both used for evaluating
the predictor.
Four measurements are generally used to evaluate the

predictor: sensitivity (Sn), specificity (Sp), accuracy (Acc)
and Mattew’s correlation coefficient (MCC). They are
defined as follows:

Sp ¼ TN
TN þ FP

ð11Þ

Sn ¼ TP
TP þ FN

ð12Þ

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

ð13Þ
MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FN � TP þ FPð Þ � TN þ FNð Þ � TN þ FBð Þð Þp

ð14Þ
where TP, TN, FP and FN means the number of true
positive, true negative, false positive and false negative,
respectively.
This set of metrics is valid for the single-label systems

instead multi-label systems. As for the multi-label
systems, which exists frequently in system biology and
system medicine [11, 71, 72], match with another com-
pletely diverse set of metrics as showed in [73].

Result and discussion
Optimal choice of positions
In this study, we used information entropy (IE) to evalu-
ate the importance of positions. Firstly, we chose 51 as
the initial window size, with 25 amino acid residues up-
stream and 25 amino acid residues downstream. And
then the entropy of each position was calculated by the
formula (1). Entropy values are shown in Fig. 2.
As we can see in Fig. 2, nearly all the information en-

tropy values for positive data are lower than the values for
negative data, which indicates that information entropy

Fig. 2 The information entropy value of positions around the central residue
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can be beneficial to distinguish succinylation sites and
non-succinylation sites. The closer to the central residues,
the lower the entropy values are, especially for the position
1 and − 1 which corresponds to the difference between
succinylaiton and non-succinylation according to the two
sample logo [74]. We can speculate from this appearance
that succinylation may enhance the conservation of the
target lysine and its surroundings which is consistent with
Fig. 3. Eventually, we chose 25 positions which have
greater difference between positive information entropy
values and negative information entropy values, including
− 20, − 17, − 10, − 8, − 7, − 6, − 5, − 4, − 2, − 1, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 16, 21, 22, 24, 25.

Analysis of optimal features
Not all positions and features are equally important in a
protein. In this study, information gain was employed to
acquire an optimal feature subset. For each subset, fea-
ture selection was processed respectively. Table 1 shows
the final number of features in every training dataset,
and the MCC curves of the succinylation prediction on

ten training datasets for different dimensions of features
are shown in Additional file 1: Figure S1.
As we can see, after feature selection, the numbers of

features for ten training datasets are different. It strongly
proves that there is otherness between these ten training
datasets even though they are separated from one nega-
tive dataset, and otherness is the requirement for using
the ensemble learning. In spite of the difference, there
are also many common features in ten feature vectors,
including 4 AAC features, 5 BE features, 19 PCP features
and 6 GPAAC features. We also evaluate the perform-
ance change between before feature selection and after
feature selection for ten subsets (Additional file 1: Figure
S2 and Table S1). As we can see in Additional file 1: Fig-
ure S2 and Table S1, the value of Sn, Sp, Acc and MCC
are larger after feature selection, and the value of AUC
(area below ROC curve) obviously increase.

Comparison between ensemble learning and single SVMs
Ensemble learning train combinations of base models,
which may be decision trees, neural networks, SVM, or
others traditionally used in supervised learning. In this
study, Bootstrap Sampling was used to extract different
subset data. There are 50,565 negative sites and 4755
positive sites in our training dataset, nearly 10:1 for ratio
of negative and positive data, so we randomly select
4755 data from negative data for ten times and there is
no coincidence between any two subsets. Therefore, we
have 10 separate training data subsets, which contains
4755 positive samples and 4755 negative samples, re-
spectively (1:1 ratio of positive and negative data).
To verify if ensemble models perform consistently bet-

ter than the single SVMs, we evaluate the performance
of 10-fold cross validation on training dataset, and the
results are shown in Table 2 and Fig. 4. As listed in
Table 2, single SVMs always predict a lower Sp value
and the Acc value are also not outstanding. After

Fig. 3 Two sample logos of the compositional biases around succinylation sites compared to non-succinylation sites. Statistically significant
symbols are plotted using the size of the symbol that is proportional to the difference between the two samples. Residues are separated in
two groups: (1) enriched in the positive samples; and (2) depleted in the positive samples. Color of the symbols was classified according to
the polarity of the residue side chain

Table 1 The number of features in every training dataset

Training Datasets Number of features ACC BE PCP GPAAC

Subset1 186 14 38 123 11

Subset2 191 14 34 133 10

Subset3 158 13 27 107 11

Subset4 112 12 14 77 9

Subset5 194 14 38 131 11

Subset6 177 14 30 122 11

Subset7 194 14 37 134 9

Subset8 88 9 6 64 9

Subset9 66 7 5 45 9

Subset10 45 4 5 30 6

Common features 34 4 5 19 6
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ensemble the training result from ten single SVMs, all
the performances are obviously increased, especially for
Sp, MCC and AUC.

Comparison between our method and existing methods
To further evaluate the performance of our method, we
compared our method with four other existing predic-
tors, SucPred, iSuc-PseAAC, SuccFind, SuccinSite and
Success, using independent test dataset, including 254
succinylation sites and 2977 non-succinylation sites. Sn,
Sp, Acc and MCC are used to measure the performance
(Table 3). Because of the limitation of amount of inde-
pendent test set, the result of independent test is not as
good as 10-fold cross validation. However, when we con-
trol the threshold as 0.9 for these predictor, SucPred
only obtain 67.3, 27.1% and 0.643 for Sp, Sn, and Acc,

and the MCC value was only − 0.03. iSuc-PseAAC and
Success have satisfying values of Sp, but the Sn and
MCC values are lower. SuccFind and SuccinSite are fa-
vorable, while our method achieve a Sp of 88.6%, a Sn of
37.5%, an Acc of 84.5% and a MCC of 0.204, which were
much better than SuccFind’s and SuccinSite’s perform-
ance. Because of the high value of threshold to guarantee
the prediction of positive samples, the sensitivity values
are less than the specificity value. The promising per-
formance demonstrated that the this predictor was par-
ticularly useful for protein succinylation prediction.

Conclusion
Here, we implement an application of Ensemble learning
to protein succinylation prediction problem. Results
show that our method is helpful to identification of suc-
cinylation sites. This work also indicated that Ensemble
learning was a useful technique for combining weak
classifiers and improving performance. We are looking
forward that our method will give a powerful help for
further studies of succinylation process.

Additional file

Additional file 1: Figure S1. The MCC score of the optimal feature
subsets. Figure S2. AUC (area below ROC curve) change between before
feature selection and after feature selection for ten subsets. Table S1.
The performance change between before feature selection and after
feature selection for ten subsets. (DOCX 2693 kb)
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Table 2 10-fold cross validation performance of 10 subsets and
ensemble classifier on training dataset

Training dataset Sn (%) Sp (%) Acc MCC

Subset1 72.29 66.91 0.6961 0.3926

Subset2 72.15 66.39 0.6927 0.3861

Subset3 72.21 66.33 0.6927 0.3861

Subset4 72.83 65.73 0.6929 0.3867

Subset5 71.69 67.24 0.6948 0.3898

Subset6 72.12 66.46 0.6930 0.3865

Subset7 71.94 65.64 0.6881 0.3767

Subset8 72.07 65.53 0.6880 0.3768

Subset9 72.97 63.52 0.6824 0.3665

Subset10 72.36 62.48 0.6742 0.3502

Ensemble 84.31 93.97 0.89136 0.7864

Fig. 4 ROC curves (AUC) of predictions based on 10-fold
cross validation

Table 3 A comparison of PSuccE with existing predictors using
an independent test set

Measurement* SucPred iSuc-
PseAAC

SuccFind SuccinSite Success PSuccE

Sp(%) 67.3 88.7 79.2 88.2 86.8 88.6

Sn(%) 27.2 12.2 25.2 37.1 14.2 37.5

Acc 0.643 0.827 0.750 0.842 0.811 0.845

MCC −0.030 0.013 0.029 0.199 0.007 0.204
* The threshold value was controlled as 0.9 for these predictors
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