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Abstract

Background: Component-based structural equation modeling methods are now widely used in science, business,
education, and other fields. This method uses unobservable variables, i.e., “latent” variables, and structural equation
model relationships between observable variables. Here, we applied this structural equation modeling method to
biologically structured data. To identify candidate drug-response biomarkers, we first used proteomic peptide-level
data, as measured by multiple reaction monitoring mass spectrometry (MRM-MS), for liver cancer patients. MRM-MS
is a highly sensitive and selective method for proteomic targeted quantitation of peptide abundances in complex
biological samples.

Results: We developed a component-based drug response prediction model, having the advantage that it first
combines collapsed peptide-level data into protein-level information, facilitating subsequent biological interpretation.
Our model also uses an alternating least squares algorithm, to efficiently estimate both coefficients of peptides and
proteins. This approach also considers correlations between variables, without constraint, by a multiple testing problem.
Using estimated peptide and protein coefficients, we selected significant protein biomarkers by permutation testing,
resulting in our model for predicting liver cancer response to the tyrosine kinase inhibitor sorafenib.

Conclusions: Using data from a cohort of liver cancer patients, we then “fine-tuned” our model to successfully predict
drug responses, as demonstrated by a high area under the curve (AUC) score. Such drug response prediction models
may eventually find clinical translation in identifying individual patients likely to respond to specific therapies.

Keywords: Biomarkers, Component-based structural equation modeling, Drug response, Liver cancer, Multiple reaction
monitoring mass spectrometry (MRM-MS), Prediction model, Sorafenib

Background
Liver cancer (hepatic cancer), is predominantly found in
the tissue parenchyma, and is thus known as hepatocel-
lular carcinoma (HCC), the most common form of liver
cancer in adults. HCC can exert different growth pat-
terns from one tumor to the next [1, 2]. In Eastern Asia,
HCC is the third-most common form of cancer, and the
second-leading cause of cancer death, with a worldwide

total of 600,000 deaths each year [3, 4]. However, as
many treatment methods have been developed for treat-
ing HCC, overall, these have shown little benefit in im-
proving patients’ prognosis [5]. More efficient treatment
of HCC may lie in “personalized medicine,” i.e., tailoring
therapies for individual patients [6]. Such ability to clas-
sify HCC patients, with therapies optimized for specific
stage and growth patterns, would reduce time and cost,
and likely prolong survival.
Toward that objective, accurate prediction models are

essential. Historically, methods of building cancer pre-
diction models were based on the classification methods
of linear/logistic regression, support vector machine, or

* Correspondence: tspark@stats.snu.ac.kr
1Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul
08826, South Korea
5Department of Statistics, Seoul National University, Seoul 08826, South Korea
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kim et al. BMC Bioinformatics 2018, 19(Suppl 9):288
https://doi.org/10.1186/s12859-018-2270-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2270-7&domain=pdf
mailto:tspark@stats.snu.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


random forest [7–9]. While these models are effective
for prediction, they do not consider any structural or
hidden biological data, making it difficult to derive more
meaningful biological interpretation.
Here, we built a drug response prediction model, by

identifying candidate protein biomarkers, via multiple
reaction monitoring-mass spectrometry (MRM-MS)
technology. MRM-MS is a targeted proteomics technol-
ogy that is highly selective and sensitive for quantitating
targeted proteins or peptides in biological samples [10,
11]. MRM-MS can also measure several hundred protein
targets per sample, simultaneously, generating consist-
ent, precise, and reproducible datasets [12]. Conse-
quently, MRM-MS holds high potential for biomarker
discovery. Unlike other protein data, MRM-MS data is
hierarchically structured.
Following mass spectrometry, our MRM-MS data con-

sisted of 231 peptides, from 124 proteins, with each pro-
tein containing ≥1 peptide. While classical methods for
prediction model building only select the best peptides
as variables, to optimize prediction performance, these
do not consider any biological relationship between pep-
tides and proteins.
In this study, we built a drug response prediction

model, using a component-based structural equation
modeling method, based on the biological structure of
MRM-MS data (e.g., peptide to protein). Structural
equation modeling (SEM) is used to analyze the struc-
tural relationship between unobserved (latent) variables
and observed variables. SEM can be classified as factor
based SEM and component based SEM. Confirmatory
factor analysis (CFA) and partial least squares path mod-
eling (PLS-PM) analysis are the most popular methods
of factor based SEM and component based SEM, re-
spectively [13]. Our proposed model is based on general-
ized structured component analysis (GSCA) [14],
resembling our earlier derivation of a pathway-based ap-
proach. That analysis, using hierarchical components of
collapsed rare variants (PHARAOH), uses a hierarchical
structure of pathways and genes [15].
Using latent variables, we can collapse multiple pep-

tides into a structured form of proteins that they com-
prise of, providing more feasible biological explanations
of the results. In addition to hierarchical structure, we
further showed that HisCoM effectively cover
protein-level analysis, taking all peptides into account
simultaneously. Moreover, for real biological data ana-
lysis, using MRM-MS, we discovered possible protein
biomarkers associated with patients’ response to the
multiple tyrosine kinase inhibitor sorafenib (Nexavar®)
[16]. Sorafenib is known as effective and safe drug for
recovering liver cancer (hepatocellular carcinoma) pa-
tients not only Asian-Pacific region but also in the North
American region [17, 18]. Using these protein

biomarkers, we then evaluated the performance of our
drug response prediction model. Additionally, we com-
pared the performance of our prediction model, using
area under the curve (AUC) scores, to performances by
generalized linear models of logistic regression, without
ridge parameters, and logistic regression, with ridge pa-
rameters. Furthermore, through extensive simulation
studies, we compared the performance of our proposed
method with other logistic regression methods. For hier-
archical structuring, in this case, for proteins with mul-
tiple peptides, our HisCoM was shown to perform better
than logistic regression, as assessed by AUC scores.

Methods
Preparing samples and materials
Hepatocellular carcinoma (HCC) patient serum samples
(n = 115) were collected at Seoul National University
Hospital, from 2013 to 2015 [19]. Upon diagnosis of
liver cancer, patients were placed on a regimen using the
tyrosine kinase inhibitor Sorafenib (Nexavar®, Bayer, Inc.,
Whippany, NJ, USA). Patients’ tumor sizes were first ex-
amined immediately following HCC diagnosis, at the
start of hospital admission. Six weeks after first diagnosis
(sufficient time to see a response), patients’ tumors were
again measured, by contrast-enhanced computed tomog-
raphy or magnetic resonance imaging, and staged
according to the standardized Modified Response
Evaluation Criteria in Solid Tumors (mRECIST) [20].
After the second examination, patients were divided into
two groups, based on positive and negative drug re-
sponses. The positive drug response group consisted of
patients with complete response (CR), partial response
(PR), or stable disease (SD), according to mRECIST [20].
CR and PR responses were diagnosed when the tumor
size was reduced after 6 weeks. Also, SD was diagnosed
when the size of the tumor remained stable, from the
first to second visit. On the other hand, the negative
drug response group consisted of patients with progres-
sive disease (PD), wherein the size of their tumors in-
creased, from first diagnosis to 6 weeks later. The study
protocol was approved by the Institutional Review Board
of Seoul National University Hospital (IRB No. 0506–
150-005), and written, informed consent was obtained
from each patient or legally authorized representative.
Among all 115 patients (101 men and 14 women), 40 pa-

tients (37 men and 3 women) were grouped into the posi-
tive drug response group, and 75 (64 men and 11 women)
were grouped into the negative drug response group. From
each patient’s serum, data for 231 peptides was generated
by multiple reaction monitoring mass spectrometry
(MRM-MS), a highly sensitive and selective method for tar-
geted quantitation of peptide abundances, in complex bio-
logical samples [21]. Here, the 231 peptides can represent

Kim et al. BMC Bioinformatics 2018, 19(Suppl 9):288 Page 34 of 121



124 proteins. Since the MRM-MS technique measures the
quantity of targeted peptides in patients’ serum, we used
the log2-transformed ratio of light peptide intensity to
heavy peptide intensity. Light peptide intensity represented
the quantity of peptides from specific patient’s blood, as
measured by MRM-MS, while heavy peptide intensity rep-
resented the quantity of artificially built, same sequences as
the light peptides, but using heavier isotope elements, also
as measured by MRM-MS. The software Skyline was used
to measure the intensity of light and heavy peptides by
MRM-MS [22]. Demographic information, such as age and
sex, were also available. The range of age varied from 34 to
84, with 101 male and 14 female samples.

Constructing the drug response model
The overall schematic procedure is shown in Fig. 1. At
the beginning, we selected protein level biomarkers by
HisCoM method with 1000 permutation test, for pos-
sible prediction of sorafenib response, using MRM-MS
data. Second, we constructed prediction models, via a
component-based structural equation-modeling method.
Finally, we evaluated the constructed drug response pre-
diction models’ performances, by AUC scores.
An example of our proposed drug response prediction

model is shown in Fig. 2. This model combines collapsed
peptide-level MRM-MS data into protein-level informa-
tion, and efficiently estimates both peptide and protein
coefficients. In this example, two proteins were involved
(K = 2), and each protein consisted of two or three pep-
tides (Tk = 2 and 3). Weight (w) and path coefficients (β)
were estimated using alternating least squares [23].
Here, suppose that there are K proteins, and the kth

protein contains Tk peptides, for k = 1,…,K. To estimate
parameters, the following penalized log likelihood

function was maximized. The yj represent the drug re-
sponse group, based on mRECIST: yj = 0 for a negative
response, and yj = 1 for a positive response. Let yj is
distributed independently with a mean of μj = E[yj] and
ηj is defined as ηj = g(μj) by a logit link function g. Then,
we can derive a penalized log likelihood function with
dispersion parameter δ and canonical parameter γi as
following:

φ1 ¼
XN
j¼1

logP yj; γ i; δ
� �

−
1
2
λpep

XK
k¼1

XTk

t¼1

w2
kt−

1
2
λprot

XK
k¼0

β2k

ð1Þ

Here, λprot and λpep are the ridge parameters for pro-
teins and peptides represent as “tuning” parameters, re-
spectively: one for the peptides within a protein and the
other for the proteins themselves.
Let wk = [wk1,⋯, wkTk ], β = [β0, β1,⋯, βK], F = [f1,⋯, fN],

and fj = [1, fj1,⋯, fjK] where f jk ¼
PTk

t¼1 xjkiwki . We

define xjkias the quantity of ith peptide of the kth protein
in sample j. The wki as a weight coefficient of i

th peptide of
the kth protein. Also, the βk as a path coefficient of kth pro-
tein. Maximizing the eq. (1), via iteratively reweighted
least squares, is identical to minimizing the follow-
ing penalized least squares eq. (2):
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Fig. 1 Schematic procedure of overall analysis
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with respect to wk and β [15, 24]. Here, V is an N by

N diagonal matrix with elements v j ¼ ð∂μ j=∂η j Þ2
τ j

. τj is

the variance function evaluated at μj. The z is the ad-
justed response variable and an N × 1 vector with ele-

ments z j ¼ η j þ
ðy j−μ jÞ

v j
[25].

After estimating the wki and βk coefficients, we con-
structed a drug response prediction model for πj =
P[yj = 1] = μj, as follows, after standardization of xjki
The coefficients of age and sex are also estimated by
maximizing the log-likelihood function simultaneously
while penalizing the coefficients of peptides. In our

final prediction model, the beta coefficients of age
and sex are fixed across the individuals.

log
π j

1−π j

� �
¼ β0 þ

X
k

X
i

xjkiwki

 !
βk þ AGE jβage þ SEX jβsex

ð3Þ
¼ β0 þ

X
k

f jkβk þ AGE jβage þ SEX jβsex ð4Þ

j: individual samples (j = 1, ⋯,115)
k: proteins (k = 1, ⋯,124)
i: peptides (i = 1, ⋯,231)

Fig. 3 Sample separation for training, validation, and test sets

Fig. 2 Example of proposed component-based structured equation model

Kim et al. BMC Bioinformatics 2018, 19(Suppl 9):288 Page 36 of 121



When our final drug response prediction model was
constructed, we evaluated its performance by area under
the receiver operating characteristic curve (AUC) score,
based on the training, validation, and test sets. The ap-
proach for separating the training set from the validation
and test sets, is depicted in Fig. 3. First, we then randomly
selected 39 out of 115 samples (35 men and 4 women) as
a test set, excluded from the modelling process, while
assessing the remaining 76 samples. This test set will be
used to measure the performance of our final drug re-
sponse prediction model. The ratio of positive responses
to negative responses was sustained (14 positive responses
and 25 negative responses). The range of age in test set
was distributed from 41 to 84. The remaining 76 samples
were randomly (without replacement) divided into train-
ing and validation set. For a fair comparison, the ratio of
positive responses to negative responses was retained (13
positive responses and 25 negative responses). The con-
cept of a sample separation process was based on a previ-
ously developed intraductal papillary mucinous neoplasm
(IPMN) patient prediction model [26].
Lastly, our drug response prediction model was com-

pared to the generalized linear model with a binary re-
sponse (GLM), and the generalized linear regression
with a binary response via ridge parameter (GLMwR)
methods. All the analyzes were calculated and computed
via software R (Version R 3.2.3) [27].

Simulation design
For the simulation study, we designed two models: the
first model composed of two significant proteins and the
second model with both significant and nonsignificant
protein in the presence of a hierarchical structure of
MRM-MS data (e.g., peptide to protein). Let the first
simulation model contain JCHAIN and RBP4 with param-
eters estimated by HisCoM. Note that JCHAIN was a sig-
nificant protein (p-value: 0.0142), with 3 peptides, and

RBP4 was also a significant protein (p-value: 0.0031), with
2 peptides. The simulation model is given by

log
π j

1−π j

� �
¼ β0 þ

X3
i¼1

xjiωi

 !
βIGJ þ

X5
i¼4

xjiωi

 !
βRET4

þAGE jβage þ SEX jβsex

ð5Þ
For the Simulation model 2, we assume the true model

contains RBP4 and APOA1, with parameters estimated
by HisCoM. Note that RBP4 was a significant protein
(p-value: 0.0031), with 2 peptides, and APOA1 was a
nonsignificant protein (p-value: 0.4794), with 7 peptides.
The second simulation model is given by

log
π j

1−π j

� �
¼ β0 þ

X2
i¼1

xjiωi

 !
βRET4 þ

X9
i¼3

xjiωi

 !
βAPOA1

þAGE jβage þ SEX jβsex

ð6Þ
In this case, xj, 1 represents the jth individual’s peptide

data (xj,1, xj,2, ⋯, xj,9). From the estimated βs and ωs,

Fig. 4 Estimation of beta coefficients (path coefficients) for each protein example. a non-significant proteins; b significant proteins. Red dot indicates
the estimated path coefficient of the protein

Table 1 P-values for our 6 candidate biomarkers: APOC4,
CD163, CD5L, JCHAIN, SERPING1, and RBP4, based on MRM-MS
data

Protein P-value

APOC4 0.0061

CD163 0.0112

CD5L 0.0031

SERPING1 0.0102

JCHAIN 0.0142

RBP4 0.0031
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derived from the data, we estimated π1, π2,⋯, π115.
Then, the responses were generated from the Bernoulli
distribution B(1, πj), for j = 1, 2, ⋯, 115. We then con-
structed HisCoM, GLM, and GLMwR drug response
prediction models, using MRM-MS peptide data
(xj,1, xj,2,⋯, xj, 9), to generate response variables. For each
simulation model, we measured the AUC score. Using the
same estimated values of π1, π2,⋯, π115, we repeated the
whole process 1000 times, and obtained 1000 AUC
scores for each of the HisCoM, GLM, and GLMwR
models. We then calculated the mean of the 1000
AUC scores, based on those models.

Results
Biomarker discovery for the drug response prediction
model
To evaluate our model, at the beginning, we randomly se-
lected 39 out of 115 samples, as a separate, test set, to
evaluate the overall performance of the final drug re-
sponse prediction model. We performed cross-validation
analysis using remaining 76 samples. The dataset was ran-
domly divided into training/validation sets (38 samples for

each set). From the training data set, the significant pro-
teins were selected based on p-values. Then the prediction
model was build, and its AUC score was computed from
the validation set. We repeated this cross-validation 100
times. Through 100 cross-validation, we evaluated
whether the significant proteins were selected repeatedly
by HisCoM. Also, using the estimated path coefficients by
training set, we evaluated the performance of the predic-
tion model from the validation set.
The significances of the protein path coefficients were

then determined, using a 1000 permutation test, for each

Table 2 AUC score comparison between HisCoM, GLM, and
GLMwR drug response models using single candidate protein

Protein HisCoM GLM GLMwR

APOC4 0.617 0.611 0.611

CD163 0.697 0.703 0.697

CD5L 0.860 0.883 0.897

SERPING1 0.837 0.857 0.846

JCHAIN 0.717 0.709 0.700

RBP4 0.803 0.829 0.826

Fig. 5 AUC score comparison between HisCoM, GLM, and GLMwR drug response prediction models using single candidate protein

Table 3 AUC score comparison between HisCoM, GLM, and
GLMwR drug response models using double candidate proteins

Protein HisCoM GLM GLMwR

APOC4_CD163 0.851 0.837 0.837

APOC4_CD5L 0.886 0.851 0.880

APOC4_SERPING1 0.834 0.871 0.846

APOC4_JCHAIN 0.886 0.814 0.897

APOC4_RBP4 0.786 0.794 0.789

CD163_CD5L 0.866 0.883 0.897

CD163_SERPING1 0.894 0.917 0.914

CD163_JCHAIN 0.731 0.731 0.729

CD163R_RBP4 0.900 0.880 0.889

CD5L_SERPING1 0.923 0.923 0.934

CD5L_JCHAIN 0.854 0.931 0.886

CD5L_RBP4 0.917 0.937 0.926

SERPING1_JCHAIN 0.940 0.943 0.946

SERPING1_RBP4 0.871 0.891 0.897

JCHAIN_RBP4 0.929 0.911 0.931
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replicate. The permutation test was performed by shuf-
fling drug response variables randomly across subjects
while retaining the ratio of positive response to negative
response and then estimating the path coefficients.
Using path coefficients estimated by 1000 permutation
test, we construct distribution of each protein’s path
coefficient. Through comparing the path coefficient value
of the original data with those from the permuted data,
p-values were computed for each protein, with the signifi-
cant (P < 0.05) ones being selected for further analysis.
Figure 4 shows the null distribution of path

coefficients (βk), derived from 1000 permutation tests.
Figure 4a show the case of non-significant protein,
while the Fig. 4b does the case of significant protein.
The red dots indicate the estimated path coefficients
from the data. In our analysis, the path coefficients
(βk) of six proteins were significant.
During the processing of the training/validation sets,

with 76 samples, we repeated this process 100 times, to
check the consistency of possibly significant proteins.
Since our method uses two ridge parameters, we defined
the same tuning parameter values as 10 for peptides and
proteins, for computational efficiency. As a result, we se-
lected the top 6 significant proteins (APOC4, CD163,
CD5L, JCHAIN, SERPING1, and RBP4), which were re-
peatedly selected as significant by the process of 100
replications. We noted that these six proteins were pre-
viously identified as possible proteomic biomarkers, for
hepatocellular carcinoma [28–30].
We then repeated the process once more, with only

those 6 proteins, as MRM-MS data, for more accurate
estimation of p-values and path coefficients, for the drug
response prediction model. We next calculated p-values
and path coefficients. In Table 1, p-values are shown for
the six selected proteins.
Using the selected 6 proteins, we constructed a drug

response prediction model, with estimated w and β

values. We also constructed different prediction models,
limiting the number of proteins. In this case, we con-
structed models using 1 of the 6 proteins, 2 of the 6, 3
of the 6, and all six. For all these models, age and sex
were considered as covariates (see eqs. 3 and 4, below).
All the analyzes were calculated and computed via soft-
ware R (Version R 3.2.3) [27].

Fig. 6 AUC score comparison between HisCoM, GLM, and GLMwR drug response prediction models using double candidate proteins

Table 4 AUC score comparison between HisCoM, GLM, and
GLMwR drug response models using triple candidate proteins

Protein HisCoM GLM GLMwR

APOC4_CD163_CD5L 0.920 0.883 0.920

APOC4_CD163_SERPING1 0.880 0.886 0.877

APOC4_CD163_JCHAIN 0.917 0.894 0.914

APOC4_CD163_RBP4 0.886 0.866 0.874

APOC4_CD5L_SERPING1 0.920 0.937 0.931

APOC4_CD5L_JCHAIN 0.920 0.891 0.926

APOC4_CD5L_RBP4 0.897 0.886 0.906

APOC4_SERPING1_JCHAIN 0.946 0.960 0.943

APOC4_SERPING1_RBP4 0.877 0.863 0.869

APOC4_JCHAIN_RBP4 0.920 0.866 0.929

CD163_CD5L_SERPING1 0.940 0.923 0.949

CD163_CD5L_JCHAIN 0.869 0.929 0.914

CD163_CD5L_RBP4 0.951 0.943 0.949

CD163_SERPING1_JCHAIN 0.957 0.957 0.954

CD163_SERPING1_RBP4 0.923 0.929 0.911

CD163_JCHAIN_RBP4 0.954 0.909 0.954

CD5L_SERPING1_JCHAIN 0.923 0.937 0.940

CD5L_SERPING1_RBP4 0.946 0.957 0.949

CD5L_JCHAIN_RBP4 0.943 0.937 0.940

SERPING1_JCHAIN_RBP4 0.946 0.943 0.943
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Model evaluation by AUC results
With the selected proteins, we first constructed a sorafe-
nib drug response prediction model given in eq. (4),
using HisCoM. The performance of the drug response
prediction models was measured by AUC scores. In this
case, the numbers k and i varied, depending on the
number of proteins in the model.
Table 2 shows the AUC score of our single protein

prediction model, compared to a corresponding the
generalized linear model with a binary response
(GLM), and the generalized linear model with a bin-
ary response via ridge parameters (GLMwR). The per-
formance of the single protein prediction models
showed similar AUC scores, across all three different
statistical methods, while the AUC scores, for each
individual protein, varied from 0.60 to 0.90. Figure 5
provides a visual comparison of AUC scores, by dif-
ferent single protein statistical models.

The prediction model, using 2 of the 6 proteins, had
higher AUC scores, compared to the single protein
models, across all three different statistical methods.
Table 3 shows the AUC scores for the models with 2 of
the 6 proteins. The AUC scores across each statistical
model varied from 0.73 to 0.95, higher than those for
the single protein prediction models. Figure 6 shows a
visual comparison, of AUC scores, by different
two-protein statistical models. The HisCoM’s AUC score
was similar to those of GLM and GLMwR, but had
higher performance or lower performance, depending on
the combination of proteins. The best performing pro-
tein combination, across each HisCoM, GLM, and
GLMwR statistical model, was the combination of SERP-
ING1 and JCHAIN.
Similarly, most of the prediction models, with 3 of the 6

proteins, scored higher than 0.9 AUC, using all three mod-
eling methods. Table 4 shows the AUC scores for each

Fig. 7 AUC score comparison between HisCoM, GLM, and GLMwR drug response prediction models using triple candidate proteins

Fig. 8 AUC score, using all 6 proteins, for each model. a HisCoM. b Generalized linear model with ridge parameter
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model using exhaustive combinations of the three proteins,
varying from 0.86 to 0.95. Figure 7 shows a visual compari-
son of AUC scores, by different 3-protein statistical models.
Using all 6 proteins, we also constructed HisCoM drug

response prediction models, with estimated ω and β as
the covariates age and sex, respectively. In Fig. 8, the
AUC score for our HisCoM model was 0.96, using the
validation set. At first, we tried to compare our predic-
tion model to the generalized linear model with a binary
response. However, the latter had a convergence prob-
lem, due to high correlation among peptides, as shown
in Fig. 9. To resolve this problem, we fit the logistic re-
gression model with a ridge penalty, using the
“GLMNET” R Package. The result is shown in Fig. 8,
and the AUC score for the generalized linear model with
a binary response via ridge parameter (GLMwR), was
0.949, using the same validation set. As a result, our His-
CoM had a slightly better AUC score (0.96), compared
to that of GLMwR (0.949).

Simulation results
The performance of Simulation model 1 (JCHAIN + RBP4)
results, the mean AUC scores of HisCoM, GLM and
GLMwR are shown in Table 5. The mean AUC score of
HisCoM was 0.8362. Figure 10 shows the range of 1000
AUC scores, as depicted by box plots, with respect to
each statistical method. It shows that the HisCoM
performed better than others. The performance of
Simulation model 2 (RBP4 + APOA1) results, the mean
AUC scores of HisCoM, GLM and GLMwR, are shown

in Table 6. These results show that HisCoM had the
highest mean AUC score, compared to the two other
statistical methods. The mean AUC score of model 2 by
HisCoM was 0.7270, while the means of the other stat-
istical methods were less than 0.7. Also, Fig. 11 shows
the range of 1000 AUC scores, as depicted by box plots,
with respect to each statistical method model.
In summary, both simulation model results show that

HisCoM was the best performing model, compared to
the other statistical methods, when there exists a hier-
archical structure of MRM-MS data (e.g., peptide to
protein).

Discussion
In this study, we developed a prediction model for
tumor response to the multiple tyrosine kinase inhibitor
sorafenib (Nexavar®), for liver cancer patients [16], using
a component-based structural equation modeling
method. We used HisCoM to construct the model, for
Korean hepatocellular carcinoma (HCC) patients, using
MRM-MS proteomic data, including some demographic
variables. HisCoM fit the whole data set at once. In this
case, we measured 231 peptides’ weights, and 124

Fig. 9 Correlations between peptides. Each red square box represents the peptides within the same protein

Table 5 Mean AUC scores of HisCoM-based Simulation model 1

Methods Mean AUC

HisCoM 0.8362

GLM 0.8142

GLMwR 0.8018

Kim et al. BMC Bioinformatics 2018, 19(Suppl 9):288 Page 41 of 121



protein’s path coefficients, to the drug response variable,
all at once. The positive or negative drug response vari-
ables were defined by tumor responses according to
mRECIST [20]. Thus, this model can be used for
large-scale, structured data, with marker selection (as
well as model building), simultaneously. The second,
and most important advantage of HisCoM, is that it gen-
erates latent variables, which are not directly observed,
while collapsing other (observed) variables. For example,
our HisCoM combines several collapsed peptides’
MRM-MS data, into several proteins, as latent variables.
Unlike other classical methods, such as linear/logistic re-
gression, support vector machine, and random forest,
our HisCoM approach considers peptide-to-protein com-
putational structure, and peptide-to-protein biological
structure. In the analysis, we found 6 possible protein bio-
markers that significantly associate with sorafenib drug re-
sponse. On the other hand, other classical prediction
modeling methods do not consider structure of biological
information. Using peptide-level data, we found significant
proteins, as possible biomarkers, for building a sorafenib
response prediction model for liver cancer patients. The
overall work flow, with our statistical analysis, using a His-
CoM schema, can be accurately applied not only to other
cancers, but also to most any large-scale structured data.

Conclusions
From possible biomarker selection, to AUC performance
test scores, through a model-building process, we

compared the performance of our model, constructed
using a HisCoM method, to other classical statistical
methods such as generalized linear models, using logistic
regression (alone) or logistic regression with ridge pa-
rameters. For possible drug response biomarkers, 6 sig-
nificant proteins were statistically selected, using
p-values, as computed by permutation tests: APOC4
(p-value: 0.0061), CD163 (p-value: 0.0112), CD5L
(p-value: 0.0031), JCHAIN (p-value: 0.0102), SERPING1
(p-value: 0.0142), and RBP4 (p-value: 0.0031). All six of
these proteins were previously reported as possible bio-
markers for hepatocellular cancer (HCC) [31–33]. Of
these, CD5L is the best-known HCC biomarker [28].
For the single protein model, using HisCoM, the AUC
scores varied from 0.60 to 0.90, depending on the spe-
cific protein. For modeling combinations of 2 of the 6
proteins, by HisCoM, the AUC scores varied from 0.73
to 0.95, showing increased performance, compared to
single-protein prediction models. On the other hand,
AUC scores varied from 0.86 to 0.95, for the 3-protein
model, by HisCoM. Finally, using all six of the
above-mentioned proteins in the model, we successfully
constructed a drug response prediction model using 1-,
2-, 3-, or all six-protein models. By comparing our
model’s performance with the generalized linear model
with a binary response via ridge penalization, the per-
formance of our six-protein HisCoM prediction model
was an AUC score of 0.96, slightly better than the gen-
eralized linear model with a binary response via ridge
parameter, for the 6-protein panel, with an AUC score
of 0.949 (Fig. 8). Thus, both the HisCoM and GLMwR
methods had high AUC scores. Overall, we conclude
that our model was marginally superior to the classical
model types.
For future research, we can apply this overall predic-

tion model-building approach, using HisCoM, to other

Fig. 10 Box plots of ranges of 1000 AUC scores of HisCoM-based simulation data, compared to other models: Simulation model 1

Table 6 Mean AUC scores of HisCoM-based Simulation model 2

Methods Mean AUC

HisCoM 0.7270

GLM 0.6515

GLMwR 0.6812
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cancer data especially derived from MRM-MS platform.
Since these potential biomarkers were identified in pa-
tients’ serum, these could be obtained by a minimally in-
vasive procedure (e.g., as compared to biopsies, lumbar
puncture, etc.). Such models could ultimately assist phy-
sicians in discerning which therapies might be effective,
for individual patients.
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