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Abstract

Background: Reproducibility of a research is a key element in the modern science and it is mandatory for any
industrial application. It represents the ability of replicating an experiment independently by the location and the
operator. Therefore, a study can be considered reproducible only if all used data are available and the exploited
computational analysis workflow is clearly described. However, today for reproducing a complex bioinformatics
analysis, the raw data and the list of tools used in the workflow could be not enough to guarantee the
reproducibility of the results obtained. Indeed, different releases of the same tools and/or of the system libraries
(exploited by such tools) might lead to sneaky reproducibility issues.

Results: To address this challenge, we established the Reproducible Bioinformatics Project (RBP), which is a non-profit
and open-source project, whose aim is to provide a schema and an infrastructure, based on docker images and R
package, to provide reproducible results in Bioinformatics. One or more Docker images are then defined for a
workflow (typically one for each task), while the workflow implementation is handled via R-functions embedded in
a package available at github repository. Thus, a bioinformatician participating to the project has firstly to integrate
her/his workflow modules into Docker image(s) exploiting an Ubuntu docker image developed ad hoc by RPB to
make easier this task. Secondly, the workflow implementation must be realized in R according to an R-skeleton
function made available by RPB to guarantee homogeneity and reusability among different RPB functions.
Moreover she/he has to provide the R vignette explaining the package functionality together with an example
dataset which can be used to improve the user confidence in the workflow utilization.

Conclusions: Reproducible Bioinformatics Project provides a general schema and an infrastructure to distribute
robust and reproducible workflows. Thus, it guarantees to final users the ability to repeat consistently any analysis
independently by the used UNIX-like architecture.
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Background
Recently Baker and Lithgow [1, 2] highlighted the problem
of the reproducibility in research. Reproducibility critical-
ity affects to different extent a large portion of the science
fields [1]. Since nowadays bioinformatics plays an import-
ant role in many biological and medical studies [3], a great
effort must be put to make such computational analyses
reproducible [4, 5]. Reproducibility issues in bioinformat-
ics might be due to the short half-life of the bioinformatics
software, the complexity of the pipelines, the uncontrolled
effects induced by changes in the system libraries, the in-
completeness or imprecision in workflow description, etc.
To deal with reproducibility issues in Bioinformatics
Sandve [5] suggested ten good practice rules for the devel-
opment and the utilization of a computational workflow
(Table 1). A community that fulfills some of the rules sug-
gested by Sandve is Bioconductor [6] project, which pro-
vides version control for a large amount of genomics/
bioinformatics packages. In this way, old releases of any
Bioconductor package are kept available for the users.
However, Bioconductor does not cover all the steps of any
possible bioinformatics workflow, e.g. in RNAseq wolk-
flow fastq trimming and alignment steps are generally
done using tools not implemented in Bioconductor. Base-
Space [7, 8] and Galaxy [9] represent an example of both
commercial and open-source cloud solutions, which par-
tially fulfill Sandve’s roles. Furthermore, the workflows im-
plemented in such environments cannot be heavily
customized, e.g. BaseSpace has strict rules for applications
submission. Moreover, clouds applications have to cope
with legal and ethical issues [10].
Galaxy instead implements the functional reproducibility

level, i.e. the information about data and the utilized tools
are saved in terms of meta-data, while RBP exploiting
Docker framework provides also the computation reprodu-
cibility, i.e. the real image of the computation environment
used to generate the date is stored.

Recently container technology, a lightweight Operation
System (OS)-level virtualization, was explored in the
area of Bioinformatics to make easier the distribution,
the utilization and the maintenance of bioinformatics
software [11–13]. Indeed, since applications and their
dependencies are packaged together in the container
image, the users have not to download and install all the
dependencies required by an application, thus avoiding
all the cases where the dependencies are not well docu-
mented or not available at all. Moreover, problems re-
lated to versions conflicts or updates of the system
libraries do not occur, because the containers are iso-
lated and frozen from the rest of the operating system.
Among the available container platforms, Docker

(http://www.docker.com) is becoming de facto the
standard environment to quickly compose, create, de-
ploy, scale and oversee containerized applications under
Linux. Its strengths are the high degree of portability,
which allows users to register and share containers over
various hosts in private and public repositories, and to
achieve a more effective resource use and a faster de-
ployment compared with other similar software.
In Menegidio [13], da Veiga [11] and Kim [12] the au-

thors provide a large collection of bioinformatics tools
containerized in a Docker image called BioContainers.
However, a controlled and flexible framework to create
and distribute bioinformatics reproducible workflow is
not defined. Instead, projects like (https://snakemake.bit-
bucket.io) or Nextflow (https://www.nextflow.io) allow
users to create reproducible and scalable data analyses
specifying their own pipeline through a powerful meta-
language for workflow specification. However, the strong
flexibility of these metalanguages can make difficult their
utilization for users without advanced programming skills.
To cope with these aspects, we propose the implemen-

tation of the Reproducible Bioinformatics Project (RBP,
http://reproducible-bioinformatics.org/), whose aims are
(i) to distribute to the bioinformatics community
docker-based applications under the reproducibility
framework proposed by Sandve [5], and (ii) to provide to
R bionformatics community an easier framework for the
developing their own reproducible workflows.
The concept of BioContainers, described above, is differ-

ent from RBP project. BioContainers provides pieces of
software to be integrated in a workflow, as instead in RBP
complete workflows are provided, e.g. gene/transcripts
RNAseq, microRNA-sequencing (miRNA-seq), Chroma-
tin Immuno Precipitation sequencing (ChIP-seq), DNA/
RNAseq variant calling. RBP docker images not only in-
clude the specific software that give the name to the
image, e.g. in bwa RBP docker image, bwa.2017.01, sam-
tools, picard-tools, java and R, are also present.
RBP accepts simple docker implementations of bio-

informatics software (e.g. a docker embedding bwa

Table 1 Good practice bioinformatics rules, derived from
Sandve et al. [5]

1 For Every Result, Keep Track of How It Was Produced

2 Avoid Manual Data Manipulation Steps

3 Archive the Exact Versions of All External Programs Used

4 Version Control All Custom Scripts

5 Record All Intermediate Results, When Possible in Standardized
Formats

6 For Analyses That Include Randomness, Note Underlying Random
Seeds

7 Always Store Raw Data behind Plots

8 Generate Hierarchical Analysis Output, Allowing Layers of Increasing
Detail to Be Inspected

9 Connect Textual Statements to Underlying Results

10 Provide Public Access to Scripts, Runs, and Results

Kulkarni et al. BMC Bioinformatics 2018, 19(Suppl 10):349 Page 6 of 100

http://www.docker.com
https://snakemake.bitbucket.io
https://snakemake.bitbucket.io
https://www.nextflow.io
http://reproducible-bioinformatics.org


aligner tool), implementation of complex pipelines in-
volving the use of multiple dockers images (e.g. a RNA-
seq workflow providing all the steps for an analysis
starting from the quality control of the fastq to differen-
tial expression), as well as demonstrative workflows (i.e.
docker images embedding the full bioinformatics work-
flow used in a publication) intended to provide the abil-
ity to reproduce published data.

Methods
The Reproducible Bioinformatics Project (RBP) reference
web page is http://reproducible-bioinformatics.org. The
project is based on three modules (Fig. 1): (i) docker4seq R
package (https://github.com/kendomaniac/docker4seq), (ii)
dockers images (https://hub.docker.com/u/repbioinfo/), and
(iii) 4SeqGUI (https://github.com/mbeccuti/4SeqGUI).
Docker4seq package provides the interface between

users and docker containers. Docker4seq is organized in
two branches: stable and development. The transition
between development and stable branch is done when a
module (R function(s)/docker container(s)) fulfills the 10
rules suggested by Sandve [5] for the good bioinformat-
ics practice (Table 1).
The function skeleton.R in docker4seq provides a prototype

to build a docker controlling function. A tutorial on how to
use the skeleton.R function is available in the section “How
to be part of the Reproducible Bioinformatics project” at
http://www.reproducible-bioinformatics.org/ and the skele-
ton.R is part of the devel branch of docker4seq (https://
github.com/kendomaniac/docker4seq/tree/devel). The tutor-
ial also embeds a description of the Ubuntu docker image
called via skeleton.R. In the docker images repository dock-
er.io/repbioinfo is available an Ubuntu image, which is the
starting image used for the creation of all docker images de-
veloped by the RBP core team. Since, there are no specific
software requirements for the docker images present in RBP,
developers can use any linux image to build their own
docker image.
Acknowledgments of the developer work is provided

within the structure of the skeleton.R. In skeleton.R there is a
field indicating developer affiliation and email for contacts.

Developer is free to decide to use this prototype or
to adapt a different Linux docker distribution for his/
her application. Docker images designed by the core
developers of RBP are located in docker.io/repbioinfo
(docker.com), the images developed by third parties
can be instead placed in any public-access docker
repository.
RBP requires that any operation, implying the use

of any R/Bioconductor packages or the use of an ex-
ternal software, has to be implemented in a docker
container. Only reformatting actions, e.g. table as-
sembly, data reordering, etc., can be handled outside
a docker image.
Any new RBP module (R function(s)/docker image(s))

must be associated with an explanatory vignette, access-
ible online as html document, and with a set of test data
accessible online. Thus, all instruments needed to ac-
quire confidence on module functionalities are provided
to the final user.
Docker images are labelled with the extension YYYY.NN,

where YYYY is the year of insertion in the stable version
and NN a progressive number. YYYY changes only if any
update on the program(s), implemented in the docker
image, is done. This because any of such updates will affect
the reproducibility of the workflow. Previous version(s) will
be also available in the repository. NN refers to changes in
the docker image, which do not affect the reproducibility of
the workflow.
A new module can be submitted to the info@reprodu-

cible-bioinformatics.org and RBP core team will verify
the compliance with Sandve [5] rules. Specifically, to
guarantee the compliance with Sandve rules, RBP core
team will check that:

� Each new workflow produces for each analysis step
a log file, thus tracking how the results are produced
(Sandve rule 1).

� All workflow/module steps are executed through
scripts, thus avoiding manual data manipulation
steps (Sandve rule 2).

� All computation events are executed within a docker
container and the versions of the software

Fig. 1 Reproducible Bioinformatics Project structure
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embedded in the docker image is shown as tag of
the docker image (Sandve rule 3, 4).

� All intermediate results are available as part of the
final results (Sandve rule 5).

� In case random seeds are used, they are recorded in
a file and provided as part of final output of the
module (Sandve rule 6).

� Raw data used to generate plots should be made
available with plots (Sandve rule 7).

� Sandve rules 8 and 9 are not considered mandatory,
because are mostly dependent from the workflow/
module. The RBP core team will check if compliance
to these rules will improve the overall quality of
workflow/module output.

� License associated with the modules/workflows
embedded in docker4seq must guarantee public
access to the scripts and docker images (Sandve
rule 10).

Rules 8 and 9, reported in Table 1, are not considered
mandatory.
Ones validated, the R functions controlling the new

module are inserted into docker4seq stable release. Par-
tially validated modules will be placed in development
branch and moved to stable one when compliance with
Sandve’s rules is fulfilled.

4SeqGUI is a Java based graphical interface to dock-
er4seq functions. It is designed to provide a GUI to users
having limited knowledge of R scripting. Currently the
GUI embeds only general-purpose workflows, such as
RNAseq, miRNA-seq and Chip-seq workflow.

Results
The stable branch of docker4seq R package contains all
the R functions required to handle all the steps of RNA-
seq workflow (Fig. 2a), ChIP-seq workflow (Fig. 2b), and
miRNA-seq workflow (Fig. 2c). Docker4seq also provides
a wrapper function for the bcl2fastq Illumina tool to
convert the Illumina sequencer output in demultiplexed
fastq files (Fig. 2). Then, the fastq files can be handled
with any of the three different workflows. The counts
table produced by RNAseq or miRNAseq workflows can
be used to data visualization (pca, principal component
analysis function), to evaluate the statistical power of the
experiment (experimentPower function), to define the
optimal sample size of the experiment for the detection
of differentially expressed genes (sampleSize function)
and to detect differentially expressed genes/transcripts
(wrapperDeseq2 function). Sample size/statistical power
estimation of the experiment and differential expression
are calculated respectively via RnaSeqSampleSize [14]
and DESeq2 Bioconductor packages [15].

Fig. 2 Workflows available in the stable branch of docker4seq. a Whole transcriptome sequencing workflow, b ChIP sequencing workflow, and c
miRNA sequencing workflow. The names followed by parenthesis are the docker4seq functions used to execute the analysis steps. Black indicate
elements in common among more than one workflow
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In the development branch, we work on three work-
flows (i) Patient Derived Xenograft (PDX) workflow, (ii)
human small non-conding (snc) RNAs workflow, and (iii)
B-cell clonality and Minimal Residual Disease detection.
In the first workflow we provide a pipeline for DNA

(from EXOMEseq data) and RNA (from RNAseq data)
somatic variant calling. The DNA variant calling workflow
embeds the pre-processing procedure suggested by the
GATK best practice (Fig. 3a). RNAseq data preparation
for variant calling (Fig. 3c) requires the use of STAR 2 step
procedure [16], which provides significantly increased sen-
sitivity to novel splice junctions. Then, after sorting and
duplicates marking, OPOSSUM [17] is used to remove in-
tronic regions and to merge overlapping reads. We have
also implemented a specific procedure (Fig. 3b), based on
xenome software [18], to discriminate between human
reads and mouse host reads in the sequences produced by
the analysis of patients derived xenografts (PDX, [19]). As
part of the somatic variant calling workflow we are
implementing MUTECT 1 and 2 [20] (Fig. 4a) to call
somatic variants as well as PLATYPUS [21] for extracting

information of joined-samples Single Nucleotide Variants
(SNVs)(Fig. 4b).
We are also expanding the RNAseq module adding

the reference-free Salmon aligner [22], which employs
less memory for the alignment task than STAR, but pro-
viding similar results [23].
The second workflow, used in the analysis described in

the paper by Ferrero et al. [24], is focus on the analysis
of sncRNAs as reported in Fig. 5. The quality of the
FASTQ files are checked using FastQC software. The
reads associated with good quality values are clipped
from the adapter sequences using Cutadapt. The
trimmed reads are then mapped against an in-house ref-
erence of human small RNA sequences composed of: (i)
1881 precursor miRNA sequences downloaded from
miRBase (Release 21) (ii) 32,826 piRNA sequences from
piRBase v1.0, and (iii) 5171 small RNA sequences from
Database of Small Human non-coding RNAs (DASHR)
database v 1.0 shorter than 80 bp.
The alignment is performed using the BWA algorithm.

Small RNAs quantification is performed differently between

Fig. 3 Variant calling workflows under refinement in the development branch of docker4seq. a SNVs calling in DNA workflow. The function
snvPreprocessing requires that users provides its own copy of the GATK software, because of Broad Institute license restrictions. This function
returns a bam file sorted, with duplicates marked after GATK indel realignment and quality recalibration. b Data preprocessing for samples
derived by Patient Derived Xenografths (PDX). The xenome function discriminates between the mouse host reads and the human tumor reads,
then DNA or RNA SNV calling workflows can be applied. c SNVs calling in RNA workflow. The function star2steps generates a sorted bam, where
duplicates are marked and processed by opossum for removal of intronic regions and merging of overlapping reads. The names followed by
parenthesis are the docker4seq functions used to execute the analysis steps. Black indicate elements in common between more than
one workflow
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miRNAs and non miRNAs sncRNAs. The miRNA expres-
sion is quantify using two methods, called annotation-based
or the position-based method respectively. In the annotat
ion-based method, mature miRNAs expression quantifica-
tion is performed by counting the read mapped on miRBase
mature miRNA sequences using an GenomicRanges R pack-
age. Since not all miRNA mature sequences are annotated in
miRBase, the position-based read count method is per-
formed by considering the read mapping position within the
precursor miRNA sequences. The result of the two quantifi-
cation methods are merged into a final miRNA count
matrix. In this matrix each mature miRNA not annotated in
miRBase but quantified using the position-based method is
reported with suffix Novel. Quantification of non miRNA an-
notations is performed counting the read alignment reported
by BWA output sam files. The identification of Differentially
Expressed sncRNAs is performed using Deseq2 package as
reported in the RNAseq workflow.
The third workflow is based on the HashClone frame-

work [25, 26] a new suite of bioinformatics tools provid-
ing B-cells clonality assessment and minimal residual
disease (MRD) monitoring over time from deep sequen-
cing data, was integrated in the Docker4seq package. In
particular, a parallel version of the standard HashClone
workflow (Fig. 6) was developed exploiting the docker
architecture.
All the modules described above are implemented in

22 docker images deposited in the docker hub (https://
hub.docker.com/u/repbioinfo/).
As part of the RBP we have also developed a GUI, 4Seq-

GUI (https://github.com/mbeccuti/4SeqGUI). The GUI is
implemented in JAVA and can be exploited to perform
whole transcriptome sequencing workflow (Fig. 2a), ChIP

Fig. 4 Variant calling workflows under development in the development branch of docker4seq. a Somatic SNVs detection using GATK MUTECT 1
or 2. b Platypus based join mutations caller. Dashed blocks are not implemented, yet

Fig. 5 sncRNA workflow. The sncRNA pipeline starts from a
reference composed by the set of sncRNAs that contains all sncRNA
characterized by a length minor than 80 bp. Then, two types of
scripts are used one dedicated to the detection of known and novel
microRNAs while the other is focused on sncRNAs
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sequencing workflow (Fig. 2b), and miRNA sequencing
workflow (Fig. 2c).

Discussion
RBP core developers created frameworks for RNA/
miRNA quantification and analysis. ChIPseq workflow
was also developed and variant calling workflows for
DNA and RNA are under active development. A pecu-
liar feature of RBP is the acceptance of demonstrative
workflows, i.e. bioinformatics procedures described in a
biological/medical paper. A demonstrative workflow is
wrapped in a docker image and it is supported by a tu-
torial, which describes step by step how the analysis is
done to guarantee the reproducibility of published data.

Conclusions
Bioinformatics workflows are becoming an essential part
of many research papers. However, absence of clear and
well-defined rules on the code distribution make the re-
sults of most published researches unreproducible [27].
Recently, Almugbel and coworkers [28] described an in-
teresting infrastructure to embed Bioconductor based
packages. However, Bioconductor does not cover all
steps of any possible bioinformatics workflow, thus
providing a limited framework for developing complex

pipelines. Differently, RBP represents a new instrument,
which expands the idea of Almugbel [28], providing a
more flexible infrastructure allowing the bioinformatics
community to spread their work under the guidance of
rules, which guarantee inter-laboratory reproducibility
and do not limit docker implementations to Bioconduc-
tor packages. Moreover the RBP project, differently by
others projects i.e. snakemake and nextflow, is specific-
ally designed for the R community.
The RBP workflows are designed to work on a single

machine with multi-cores, which do not need to be ne-
cessary a high-end server [29]. In [29] we describe that
RNAseq, miRNA-seq and ChIP-Seq workflows (Fig. 2)
can be executed efficiently on a consumer computer
equipped with Intel i7 CPU (8 threads), 250 Gb SSD disk
and 32 Gb of RAM. Recently, with the implementation
of the reference free aligner Salmon [22] the minimal
RAM requirements dropped to 8 Gb. This make pos-
sible the execution of the workflows available in RBP
nearly any modern laptop with Linux operating system.
Of course, a high-end server allow an higher level of
parallelization in the analysis of multiple samples. The
advantage of a high-end server become also evident in
case of the analysis of large datasets, e.g. whole genome
variant calling or thousands of RNAseq experiments.

Fig. 6 HashClone pipeline. The HashClone strategy is organized in three steps: The first step (red box) is used to detect k-mer in all patients’
samples. The second step (green box) focus on the generation of sequence signatures leading to the identification of the set of putative clones
present in each of the patients’ sample; the third step (blue box) is used to the characterization and evaluation of the cancer clones
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A future work will be to extend our project to deal
with cluster and cloud architectures. Two possible direc-
tions will be investigated (i) to exploit the swarm mode
provided by docker considering each service as a “sin-
gle-shoot” service, and (ii) to provide an automatic
translation of our workflow specified in R into an
equivalent workflow specified in snakemake format or in
nextflow format.

Availability and requirements
Project name: Reproducible Bioinformatics Project.
Project home page: http://reproducible-bioinformatics.org
Operating system: UNIX-like.
Programming language: R.
Other requirements: docker version 17.05.0-ce or

higher.
License: GPL.
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variants
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