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Abstract

Background: Biomedical knowledge grows in complexity, and becomes encoded in network-based repositories,
which include focused, expert-drawn diagrams, networks of evidence-based associations and established ontologies.
Combining these structured information sources is an important computational challenge, as large graphs are difficult
to analyze visually.

Results: We investigate knowledge discovery in manually curated and annotated molecular interaction diagrams. To
evaluate similarity of content we use: i) Euclidean distance in expert-drawn diagrames, ii) shortest path distance using
the underlying network and iii) ontology-based distance. We employ clustering with these metrics used separately
and in pairwise combinations. We propose a novel bi-level optimization approach together with an evolutionary
algorithm for informative combination of distance metrics. We compare the enrichment of the obtained clusters
between the solutions and with expert knowledge. We calculate the number of Gene and Disease Ontology terms
discovered by different solutions as a measure of cluster quality.

Our results show that combining distance metrics can improve clustering accuracy, based on the comparison with
expert-provided clusters. Also, the performance of specific combinations of distance functions depends on the
clustering depth (number of clusters). By employing bi-level optimization approach we evaluated relative importance
of distance functions and we found that indeed the order by which they are combined affects clustering performance.
Next, with the enrichment analysis of clustering results we found that both hierarchical and bi-level clustering
schemes discovered more Gene and Disease Ontology terms than expert-provided clusters for the same knowledge
repository. Moreover, bi-level clustering found more enriched terms than the best hierarchical clustering solution for
three distinct distance metric combinations in three different instances of disease maps.

Conclusions: In this work we examined the impact of different distance functions on clustering of a visual
biomedical knowledge repository. We found that combining distance functions may be beneficial for clustering, and
improve exploration of such repositories. We proposed bi-level optimization to evaluate the importance of order by
which the distance functions are combined. Both combination and order of these functions affected clustering quality
and knowledge recognition in the considered benchmarks. We propose that multiple dimensions can be utilized
simultaneously for visual knowledge exploration.
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Background

Visual exploration of biomedical knowledge repositories
is important for the users to handle their increasingly
complex content. A significant amount of this content
is encoded as graphs, representing known or inferred
associations between bioentities of various types. Canon-
ical pathway databases like KEGG [1], Reactome [2] or
Wikipathways [3] provide small-scale, manually drawn
diagrams of molecular mechanisms. Another type of
repositories, like STRING [4], NDex [5] or SIGNOR [6],
rely on large databases of associations, which are queried
and visualized as graphs. These graphs are generated
procedurally and rely on automated layout algorithms.

An important kind of knowledge repository combines
the properties of pathway databases and association
repositories. These are middle to large size molecular
interaction diagrams, established in the context of systems
biomedicine projects. Such diagrams are in fact knowl-
edge maps, covering different areas from basic molecu-
lar biology [7—11] to various diseases [12—15]. Especially
in the area of human diseases they offer contextualized
insight into interactions between numerous convoluted
factors like genetic profile, environmental influences or
effects of medications.

In order to efficiently support health research, these
knowledge maps have to be useful and interpretable for
domain experts, like life scientists or medical doctors.
This is a challenge, as the knowledge mapped into such
diagrams is difficult to explore because of their size and
complexity. This is well reflected by the fact that they need
dedicated software to be used efficiently [16—18]. Recently
proposed solutions suggest coloring of entire modules
in such diagrams using experimental datasets [17, 19].
However, they rely on existing definitions of modules,
introduced when the maps were drawn. New solutions for
aggregating information are needed to enable the discov-
ery of new knowledge from these established repositories.

In this paper we investigate the application of clus-
tering to visual knowledge exploration in large molecu-
lar interaction maps. We propose to combine different
distance functions to use prior information about cura-
tor’s expertise (Euclidean distance), network structure
(graph distance) and higher-order associations between
the elements (ontology distance). We demonstrate that
clustering based on the combination of these functions
yields more informative results, especially when the func-
tions are combined using a novel bi-level optimization
approach.

Clustering in data exploration

With the emergence of online visual repositories like dis-
ease maps [14, 15] or metabolic maps [20], it becomes
important to provide their users with high-order interpre-
tation of the content. As these repositories are large and
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densely networked diagrams, their visual examination,
especially for discovery and data interpretation purposes,
is a challenging task. Clustering approaches are a plausible
methodology to address the challenge of visual explo-
ration and understanding of large, complex networks.

Clustering Analysis (CA) enables to discover relations
between data points by grouping them following a defined
similarity metric. It is a very important tool in biomed-
ical data interpretation, as it allows to explore and mine
high-dimensional datasets. As a number of CA methods
are summarized and compared in a recent review [21],
here we would like to focus on an important aspect of the
problem, which is the application of similarity measures,
in particular for graphs.

The literature is rich with clustering algorithms [22].
Since even for planar clustering the problem is NP-hard
[23], i.e. it cannot be solved in polynomial time by a deter-
ministic algorithm, the use of exact optimization solvers is
clearly not suitable for large datasets. Thus, most cluster-
ing approaches are based on heuristics, including broadly
recognized methods like k-means [24], k-medoids [25]
and hierarchical clustering [26]. These and more sophis-
ticated approaches rely on the notion of similarity, or a
distance, between clustered objects, obtained using var-
ious distance metrics [27]. It is worth mentioning that
although different similarity metrics in clustering were
evaluated on the same datasets [28, 29], their combina-
tion for improved clustering accuracy was proposed only
recently [30].

Distance functions can be used to define a grid in the
data space, a paradigm used by grid clustering algorithms
[31], detecting cluster shapes with a significant reduction
of the computational complexity when considering large
data sets. In turn, distribution models [32] estimate den-
sity for each cluster based on the distance between data
points, allowing statistical inference of the clustering. An
interesting approach is the Formal Concept Analysis [33],
where a concept is an encoding extending the definition
of distance or similarity. Generally, concepts allow to rep-
resent clusters with a set of satisfied properties, extending
the criterion beyond distance. For instance, its application
to disease similarity analysis [34] introduced a bipartite
graph of disease-gene associations to define clusters of
similar diseases.

As these heuristics may be trapped in local optima,
alternatives based on evolutionary computing emerged
recently. Genetic algorithms have shown their abilities to
overcome the drawbacks encountered in basic clustering
algorithms [35].

Graph clustering in biomedicine

In biomedical research, disease mechanisms are often rep-
resented as networks of interactions on different scales -
from molecular to physiological. These networks are in
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fact graphs, which can reach substantial size and complex-
ity, as our knowledge on disease mechanisms expands.
In order to make accurate interpretations using this
interconnected body of knowledge, new approaches are
needed to visualize meaningful areas and interactions in
large biomedical networks.

Visual exploration of complex graphs requires certain
aggregation of information about their content and struc-
ture, providing the user with an overview of dense areas
of the graph, and their relationships. This task can be
facilitated by means of graph clustering. Graph clustering
groups vertices or edges into clusters that are homoge-
neous in agreement with a certain predefined distance
function. An example is the application of local neigh-
borhood measures to identify densely connected clusters
in protein-protein interaction networks [36, 37]. Another
approach is to construct clusters based directly on the
global connectivity of the graph to identify strongly con-
nected subgraphs [38, 39]. In these methods however,
the visualization component of graph exploration is out-
side of the scope of analysis. Moreover, focusing on
graph structure alone does not benefit from additional
information on edges and vertices, available via various
bioinformatics annotations. For instance, eXamine [40]
uses annotations to improve the grouping of network
elements for their better visualization, while MONGKIE
[41] bases on clustering graph-associated 'omics’ data to
improve the visual layout. Another interesting method,
Network2Canvas, proposes a novel lattice-based approach
to visualize network clusters enriched with gene-set or
drug-set information. Importantly, the approaches dis-
cussed above focus either on large networks without a
visual layout (protein-protein interaction networks) or on
small-scale molecular diagrams. However, to the best of
our knowledge, the challenge of clustering of large, manu-
ally curated molecular interaction diagrams [14] remains
to be addressed.

In this work, we focus on graph clustering of large
repositories of molecular interaction networks. As these
not only carry the information about their graph struc-
ture, but also information about manual layout and
annotation of the elements, we decided to explore the
simultaneous use of multiple distance functions to create
the clusters.

Method

In this work we propose to combine different distance
functions to improve the clustering results of large molec-
ular interaction maps. We approach the problem by apply-
ing three distinct distance functions to the Parkinson’s
and Alzheimer’s disease maps as our use cases. We then
introduce and implement a bi-level clustering approach
to obtain clustering from pairwise combinations of these
metrics. We compare our algorithm against hierarchical
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clustering applied for the same set of distance func-
tions. We evaluate the solutions by comparing against
expert-provided groupings of the maps’ contents, and by
enrichment analysis of the obtained clusters.

Distance functions

Different distance functions can be applied to manually
curate molecular interaction networks, reflecting distinct
aspects of their contents. When clustering the contents
of selected disease maps (see “Benchmark repositories”
section), we considered the three following distances:
Euclidean, network distance and ontology-based.

Euclidean distance

We calculated the Euclidean distance between elements
of the maps by obtaining absolute values of (x,y) coordi-
nates of elements of type gene, mRNA and protein. The
rationale behind this distance function is that the dis-
tance between manually drawn elements reflects expert’s
knowledge about their similarity.

Network distance

We calculated the network distance between elements
of the maps by constructing a graph from the interac-
tions of the elements of type gene, mRNA and protein. PD
map and AlzPathway are encoded in SBGN [42], which is
essentially a hypergraph - interactions with elements are
allowed. We transformed such a hypergraph into a graph
by replacing each multi-element interaction by a clique of
pairwise interactions between all elements in this interac-
tion. The network distance over the resulting graph is the
set of pairwise shortest paths between all elements in the
graph. For unconnected elements we set the distance to
2 x max(shortest path).

Ontology-based distance

We used the GOSemSim [43] method to calculate pair-
wise similarity between the elements of the maps within
the Gene Ontology (GO). The distance (d) was calculated
as d = 1/(1 + similarity). Three versions of the distance
matrix were calculated, for Biological Process (GO BP),
Cellular Compartment (GO CC) and Molecular Function
(GO MF) were calculated.

Bi-level clustering model

In this work, we consider medoid-based clustering, where
medoids act as cluster representatives and clusters are
built around them. Clustering based on k medoids has two
types of decision variables:

{ 1 if element j becomes a cluster representative, i.e. a medoid
Xii =
Jj

0 else.

{ 1 if element i is assigned to cluster represented by medoid j
xXjj =
0 else.
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The objective function F represents the total dis-
tance from data to their respective medoids: ) > djjx;;.
i j

The k-median problem was proven to be an NP-hard
problem [44].

Clustering is sensitive to different distance metrics and
combining them may be beneficial. Thus, we propose a
bi-level clustering model to leverage the use of different
distance metrics. The proposed model enables the choice
of medoids with a specific distance metric that can be dif-
ferent from the one used to assign data to clusters. Such
an approach permits to prioritize these metrics.

Bi-level optimization problems have two decision steps,
decided one after another. The leader problem is referred
to as the “upper-level problem” while the follower problem
is the “lower-level problem” The order between the levels
is important and its change provides a different optimal
solution. This nested structure implies that a bi-level fea-
sible solution necessitates a lower-level optimal solution
and the lower-level problem is a part of the constraints of
the upper-level problem.

We use bi-level optimization for the clustering prob-
lem by applying Bender’s decomposition to obtain two
nested sub-problems that embed the same objective func-
tion. Then, we can define a Stackelberg game [45] between
pairs of distance functions to explore their combined
impact on the clustering performance. Model 1 describes
the bi-level optimization model used for clustering.

Model 1 Multi-objective bi-level clustering model

) min F=[>Y dlx;,> X; 1)
j j

s.t. minf = Z Z dizjxij 2)
i

sty xj=1 Vie{l,.,N) 3)
j

xj—x; <0 Vie{l,.,N} Vje({l,.,N}
(4)
x; € {0,1} (5)

The term ZZd}jxij represents the intra-class iner-
i

tia due to the first distance function and the constraint
Y xj = k sets the number of clusters. The objec-
j

tive 3> dizjxij is the intra-class inertia according to the
i j

second distance function. From constraint 3, only one
data point should be only assigned to a single cluster
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while constraint 4 ensures that j becomes a clus-
ter representative or medoid if any data point is
assigned to it.

Regarding bi-level optimization, the variables xj; are
considered as upper-level decision variables while all
variables x;; such that i # j are lower-level decision
variables. Model 1 is in fact a decomposition of the orig-
inal clustering problem. This allows us to set the clus-
ter representatives with a first distance metric. Then,
since these representatives are known, the lower-level
problem is turned into an asymmetric assignment prob-
lem. In addition, lower-level decision variables x;; will be
automatically set to O in the case that j has not been
selected as cluster representative. Even though the prob-
lem complexity did not change, i.e. it is still NP-hard, the
decomposition allows to discover the polynomial part that
can be solved exactly and efficiently, i.e. the assignment
step.

The two objectives aim to minimize both the intra-class
inertia and the number of clusters respectively. These are
negatively correlated since the minimal intra-class inertia
corresponds to as many clusters as data points, while a sin-
gle cluster generates a maximal intra-class inertia. Thus,
optimizing Model 1 results in a set of clusterings, which
are alternatives or non-dominating solutions.

Evolutionary optimization

Having defined the bi-level optimization model, we
use the evolutionary algorithm approach to tackle the
NP-hard clustering problem. A multi-objective evolu-
tionary algorithm (MOEA) determines the best medoids
at the upper-level with regards to the bi-objective vector

minF = Z Z diljxi,', Z x;; | while an exact optimization
L ]
algorithm is selected to optimize the lower-level problem

min if:Z Zdizjxl'i : Zx,'j:l Vi e {1,...,N},xl7—xj}» <0
i j j

Vie{l,..,N} Vje({l,..,N} wherex; x; € {0,1}.

In Model 1, the medoids are represented by x;j;, and once
they are set, the lower-level problem becomes a classical
assignment problem that can be solved optimally with a
linear optimization algorithm (e.g., simplex, interior-point
methods). This is due to the total unimodularity property
of the constraint coefficient matrix when all xj;, i.e. upper-
level decision variables are set.

This approach allows to create a bijection between a
clustering and its total intra-class inertia. Indeed, we pro-
ceed in two phases as depicted by Algorithms 1 and 2. The
MOEA initializes a population of clusterings. A clustering
is a solution that is encoded using a binary vector indi-
cating whether or not a data is considered as a medoid.
Classical evolutionary operators are applied (see Table 1).
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Table 1 Experimental parameters

Parameters

Iterations 30000
Independent runs 30

Selection Binary tournament
Crossover operator Single-point
Crossover probability 0.8

Mutation operator Bit-flip

1
Number of data

Population size 100

Mutation probability

However, in the proposed hybrid approach, the evaluation
procedure differs from classical MOEAs. In order to eval-
uate a clustering, we create a linear assignment problem
from the binary vector representing the selected medoids.
All that remains is to solve exactly this problem in order
to find out the best assignment of data to clusters.

Algorithm 1 Pseudo-code of the proposed multi-
objective evolutionary algorithm

1: #Data: NPOP; NGEN; CXPB; MUTPB

2. #Return: population of non-dominated solutions

3: population <« initialize_Population(NPOP)

4: for medoids in population do

5:  Evaluate(medoids)

6: end for

7. while gen < NGEN do

8  offspring < selection_operator(population)

9:  offspring < evolutionary_operator(population)

10:  for clustering in offspring do

11: Evaluate(medoids)

122 end for

13:  population <« replacement_operator(population,
offspring)

14: end while

15: return population

To solve the multi-objective problem we use the Non-
dominated Sorting Genetic Algorithm (NSGA-II) [46].
As a linear exact solver we used the IBM ILOG CPLEX
Optimizer’s mathematical programming technology [47],
which is currently one of the most efficient solvers [48].
The general workflow of the hybrid algorithm is depicted
in Fig. 1. Each generation of the algorithm involves stan-
dard evolutionary operators (see Algorithm 1), i.e. selec-
tion, crossover and mutation. The evolutionary algorithm
iterated for 30000 generations in 30 independent runs in
order to obtain good statistical confidence. Binary tour-
nament was chosen as a selection method. We set the
probability of a single-point crossover to 0.8, and the
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Algorithm 2 Evaluate(medoids)

1: #Input: list of medoids, d1: the upper-level distance,
d2: the lower-level distance
#Return: assignment and number of cluster
LP_problem < generate_assignment_problem(medoids)
assignment <« call_linear_solver(LP_problem,d2)
intra_distance < compute_total_distance(medoids,
assignment,d1)
6: number_of_clusters <— count_clusters(assignment)
7: return (intra_distance,number_of_clusters )

probability of a bit-flip mutation to W(W. Con-
cerning the CPLEX solver, no specific parameters have
been selected. The stopping condition is the optimality
of the solution. This is not an issue since the resulting
assignment problem can be solved in polynomial time.

Each of the 30 independent runs returns a set of non-
dominated solutions called Pareto front. Once the 30 runs
have been performed, all fronts are merged together and
the F-measure is computed for each solution. Since we
are only interested in solutions with different clustering
sizes and the merge operation can introduce duplicates,
we filtered the solutions according the best F-measure.

Experiments have been conducted on the High Perfor-
mance Computing platform of the University of Luxem-
bourg [49]. The genetic algorithm has been implemented
in Python with the DEAP library [50].

Evaluation of clustering results

Benchmark repositories

We used two separate disease map repositories as eval-
uation datasets: the Parkinson’s disease map (PD map,
pdmap.uni.lu) and the AlzPathway map (AlzPathway,
alzpathway.org).

The PD map is a manually-curated repository about
Parkinson’s disease, where all interactions are supported
by evidence, either from literature or bioinformatic
databases [14]. Similarly, the AlzPathway [12] is a map
drawn manually on the basis of an extensive literature
review about Alzheimer’s disease. Both diagrams are
molecular interaction networks created in CellDesigner
[51]. CellDesigner is an editor for diagrams describing
molecular and cellular mechanisms for systems biology.
It allows standardization and annotation of the content,
which facilitates its analysis and reuse. Both PD map
and AlzPathway were drawn by experienced researchers,
based on extensive literature review on the known mecha-
nisms of Parkinson’s and Alzheimer’s disease, respectively.
The format of the diagrams, based on SBGN [42], allows
to obtain the exact coordinates of the elements, their
network structure and the annotations.
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Bi-level clustering problem
Upper-level problem:
Search for medoids

Lower-level problem:
Assignement

A NP

%

o‘/./

Fig. 1 Bi-level optimization with GA. A scheme of our bi-level optimization approach. Clustering solutions are explored by GA based on the first
optimization criterion, and evaluated with an exact solver for the second criterion

Bi-level Solver

Linear Solver
(Cplex)

As both diagrams are human-drawn, the use of
Euclidean distance is reasonable, as the clusters will reflect
the curators’ knowledge. In turn, network and ontology-
based distances will represent relationships difficult to
comprehend by eye.

The PD map version from December’15 contains 2006
reactions connecting 4866 elements. Of these we selected
3056 elements of type gene, mRNA and protein. The Alz-
Pathway (published version) contains 1015 reactions con-
necting 2203 elements, 1404 of which of type gene, mRNA
and protein (see also “Method” section ).

For these elements we extracted graphic coordinates
for Euclidean distance and graph structure for network
distance. For ontology-based distance, Entrez identifiers
(www.ncbi.nlm.nih.gov/gene) are needed. For the PD
map, HGNC symbols (www.genenames.org) were used to
obtain Entrez ids. For the AlzPathway, Entrez ids were
obtained from the Uniprot identifiers uniprot.org.

Benchmark for stability against content rearrangement

To test the robustness of our approaches in the situa-
tion when the content of a molecular interaction network
changes, we prepared a reorganized version of AlzPath-
way (AlzPathway Reorg). The CellDesigner file for this
new version is provided in the Additional file 1. The Alz-
Pathway Reorg is rearranged in such a way that a number
of nodes is duplicated, edge lengths are shortened and
the content is grouped together locally. Overall, 225 new
elements were added, 140 of which of type gene, mRNA
and protein, and 16 reactions were removed as redun-
dant. The resulting map in comparison to AlzPathway has

an overall smaller Euclidean distance (0.372 £ 0.183 vs
0.378 £ 0.182) and bigger network distance (0.890 + 0.278
vs 0.601 % 0.420).

Expert-based evaluation

In order to evaluate the performance of the consid-
ered clustering approaches we applied expert-based,
or external, evaluation. F-measure allows to assess
how well the clustering is reflecting previously defined
classes of data points [52]. We calculated the F-measure
with 8 = 5, also called F5 measure, using as tar-
get classes the annotation areas, e.g. “Mitophagy” or
“Glycolysis’, available in the PD map and both versions of
AlzPathway.

Discovery-based evaluation

The F-measure evaluates the performance of clustering
in recreating previously defined groups, but is not capa-
ble of indicating how well a given set of clusters captures
new knowledge. To evaluate the discovery potential of
a given clustering solution we performed an enrichment
analysis for GO [53] and Disease Ontology (DO) terms
[54]. Similar evaluation was performed for annotation
areas available in the PD map and both versions of Alz-
Pathway, thus giving us a baseline for comparing expert-
based organization of knowledge with different clustering
approaches.

The enrichment analysis for both Gene and Disease
Ontology was performed for each cluster separately, with
all elements of the analyzed maps as background and
adjusted p-value cutoff = 0.05, 0.01 and 0.001.
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Benchmark clustering algorithm

All clustering results were compared against hierarchical
clustering with grouping by Ward method [55], a popu-
lar clustering approach. To evaluate the combination of
different distance functions, for each pair of distance func-
tions we calculated the distance matrix dp.; as a product
of the distance matrices normalized to the [ —1, 1] range.
We used dp,r as the distance matrix for the hierarchical
clustering algorithm.

Results

Combination of distance functions improves clustering quality
Hierarchical clustering

We compared the quality of hierarchical clustering with
Ward grouping (HCW) for three distance functions -
Euclidean, network and Gene Ontology-based (Biologi-
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cal Process) - and their pairwise combinations on the
contents of the PD map and two versions of AlzPathway
(the original and the reorganized). For this purpose we
applied expert-based evaluation to assess how well the
clusters reflect the areas drawn in the maps to annotate
groups of elements and interactions with a similar role.
The results of our comparison are illustrated in Figs. 2
and 3, with Fig. 2 showing the particular F-measure scores
for each map and distance metric. Figure 3 illustrates the
ranking of particular distance metrics, constructed using
F-measure summed for all three maps. Of three HCW
with single distance functions, the Euclidean offers supe-
rior results over the other two for small cluster sets, while
the network distance function is superior for larger sets.
Pairwise combinations of distance metrics improve over-
all quality of clustering. Interestingly, Gene Ontology-
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Fig. 2 Hierarchical clustering (Ward) quality for different distance functions. The values of F-measure (8 = 5) for hierarchical clustering based on
different distance functions and their pairwise combinations. Eu: Euclidean distance, Net: Network distance, GO BP: Gene Ontology-based (Biological
Process) distance (for details see “Method” section)
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F measure rank (all three maps)

2 10 20 30 40 50

60

Number of clusters
Fig. 3 Ranking of different distance functions by summed F-measure for hierarchical clustering (Ward). Ranking of different distance functions and
their pairwise combinations used with hierarchical clustering (Ward), by F-measure summed across three maps. Eu: Euclidean distance, Net:
Network distance, GO BP: Gene Ontology-based (Biological Process) distance (for details see “Method” section)
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based distance alone has the worst quality of cluster-
ing, but in combination with the Euclidean distance it
improves the quality of smaller sets of clusters. Reorgani-
zation of the content, seen in comparison of two versions
of AlzPatway, has a moderate effect on the quality of the
clustering with a small improvement for cases with small
number of clusters.

Bi-level clustering

Similarly, we calculated the F-measure for the results of
bi-level clustering. The results are presented in Figs. 4
and 5. A comparison of the quality of different cluster-
ings across the three maps shows grouping according to
the “follower” distance function, with Gene Ontology-
based metric being the worst-performing, and Euclidean
being the best performing. As different combinations of
distance functions yield varying number of clusterings,
these pairings are the best observable in the PD map.
For both instances of the AlzPathway there is either a
small number, or no clusterings produced with GO BP
metric as a follower. Reorganization of the content, seen
in comparison of two versions of AlzPathway, has a big-
ger impact on the quality of the clustering than in the
case of hierarchical clustering, where both combinations
of GO BP and network distance no longer yield a viable
clustering.

A direct comparison of the best performing clustering
schemes, as seen in Fig. 6, shows that HCW with the com-
bined metrics offers the best F-measure values for the
solutions with small and large number of clusters. The
middle part of the clustering range (solutions between 20
and 30 clusters) is covered by the bi-level clustering (see
Additional file 2).

Bi-level clustering improves knowledge discovery
Next, we evaluated the impact of the bi-level cluster-
ing on discovery of new knowledge in comparison to

HCW with combined distance functions. We performed
an enrichment analysis for each set of clusters gener-
ated by each solution in the three maps. Each cluster
was considered as a separate group of genes. We looked
for enriched terms in Gene Ontology and Disease Ontol-
ogy, with the cutoff threshold for adjusted p-value=0.001
(see “Method” section for more details). Figures 7 and 8
illustrate the results of our comparison for five best-
performing approaches per map. With the same cutoff
we calculated the enrichment of expert-provided annota-
tion areas (“expert”) in the considered maps as a reference
point to the performance of our clustering approaches.

The majority of proposed clustering approaches dis-
cover more unique terms than the expert-provided anno-
tation for larger number of clusters. Notably, for the PD
map both HCW and bi-level clustering approaches dis-
covered more terms in the Disease Ontology than expert
annotation for any number of clusters (Fig. 8). This also
holds true for AlzPathway and AlzPathway Reorg, but
given that only one DO term was discovered for expert
annotation.

When comparing the performance of hierarchical and
bi-level approaches, for larger number of clusters the
bi-level clustering provides clusters enriched for more
terms, both for Disease and Gene Ontology. Table 2 sum-
marizes the highest scores for the selected clustering
approaches. The table of complete results can be found
in Additional file 3. For the PD map and AlzPathway
maps, four out of five best distance metrics are bi-level
solutions.

Interestingly, the bi-level clustering provides smaller
number of clustering. This is due to the criterion in the
evolutionary algorithm that stops further exploration of
the search space if subsequent iterations offer no gain in
the objective function. These results may suggest which
distance functions offer better exploration of the search
space and clustering properties.
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When comparing AlzPathway and AlzPathway Reorg,
one can notice that the restructuring of the map
changed significantly the numbers of unique terms dis-
covered, as well as ordering of the best performing
combinations of metrics. However, bi-level clustering

amount of Disease Ontology terms, while significantly
increasing the amount of Gene Ontology discovered
terms.

We performed the enrichment analysis for higher adjusted
p-value cutoffs : p—adj < 0.05 and p —adj < 0.1 (data not

“GO BP > Eu” and “GO BP > Net” remained rela-
tively stable with their amounts of discovered terms.
Interestingly, the reorganization moderately reduced the

shown). We observed that the numbers of enriched terms
for all clustering solutions as well as the expert-based one
converge to the same levels.
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Fig. 7 The comparison of hierarchical and bi-level clustering by discovered Disease Ontology. The number of Disease Ontology terms discovered by
best performing bi-level and hierarchical clustering approaches. The curves represent the cumulative amount of unique terms enriched in all
clusters in a given clustering. The adjusted p-value= 0.001 was used as a cutoff threshold for the significance of an enriched term. For bi-level
clustering, the distance functions are arranged “leader” > “follower”, with Euclidean: Euclidean distance, Net: Network distance, GO: Gene
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Examples of the discovered clusters

Here we discuss two examples of clustering results, also
available in Additional file 4. Both examples come from
bi-level clustering of the contents of the Parkinson’s dis-
ease map. Even though these distance pairs did not score
high F-measures, their results reflect properly the con-
tent of the map and reveal new knowledge. To additionally
validate the content of the clusters, we compared their

content with the transcriptome of the brain area specific
to Parkinson’s disease - the substantia nigra [56].

Example 1 is based on Euclidean-Network distances,
scoring the highest for enrichment of the Disease Ontol-
ogy terms. The cluster contains elements classified by
experts as “Apoptosis” (Additional file 4: Box A), but also
elements that by the original classification of the PD map
belong to the “Glycolysis” area (Additional file 4: Box B).

Table 2 Number of unique terms enriched in clusterings for different disease maps and ontologies (DO: Disease Ontology, GO: Gene

Ontology)

PD map AlzPathway AlzPathway Reorg
Distance DO GO DO GO DO GO
Expert-based 36/275 36/ 1449 20/1 20/43 20/1 20/70
GO BP >Eu 61/353 61/2203 51/76 51/196 32/76 32/720
GO BP >Net 59/368 59/2211 48/72 48/196 35/13 35/409
Eu >GO BP 52/363 52/1860 3/5 3/19 3/1 3/1
Eu >Net 88/372 88/1929 68/101 68 /238 98/17 98/18
Net >Eu 67/158 67/ 1463 71/85 71/343 65/1 65/23
Eu+Net 93/339 98/ 1641 58/75 90/ 201 41/8 2/1
Eu+GO BP 89/ 334 97 /1669 61/86 97 /179 13/6 90/ 14
Net+GO BP 817289 86/ 1563 49/ 47 55/182 2/1 97 /136

Each column contains a clusters/terms pair. Best values for each map are marked in bold
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Interestingly, elements of Box B are known regulators of
apoptosis in various contexts, including the neuronal envi-
ronment with ENO1 [57] and SLC16A4 [58], and different
types of cancer [59—-61]. This can be considered as a novel
regrouping of the content in the PD map, which would
be difficult to discover optically, as the network distance
between the elements of Box A and B cannot be immedi-
ately discerned by eye. When compared to the Parkinson’s
disease transcriptome dataset, 19 out of 38 cluster ele-
ments were down-regulated, suggesting the importance
of the contained mechanisms for the pathology of the
disease.

Example 2 is based on Gene Ontology-Network dis-
tances, scoring the highest for enrichment of the Gene
Ontology terms. When this cluster is displayed in
the Parkinson’s disease map, it becomes evident that
Euclidean distance was not used for its construction, as its
elements are dispersed across the map. Nevertheless, the
majority of the cluster contents are connected to the pro-
cesses of response to oxidative stress and maintenance of
mitochondrial homeostasis. There are, however, a num-
ber of elements that extend this picture. One of them is
KCNN3, member of potassium calcium-activated chan-
nel family. Though originally curated in the map in the
context of pathology of alpha-synuclein, its appearance
in this cluster is supported by literature evidence [62].
Similarly, evidence supports inclusion of ATP13A2 in the
mechanisms regulating oxidative stress [63]. On the other
hand, the presence of GSK3A, another novel element,
may be questionable. Even though its role in nerve regen-
eration was recently demonstrated [64], its association,
together with PRKCD, may be due to the GO Biolog-
ical Process annotation with cardiac myocyte function
[65]. Still, when compared to the Parkinson’s disease tran-
scriptome dataset, 94 out of 117 cluster elements were
down-regulated, which gives confidence in its contents
and corresponds well to the fact that reactive oxygen
species play a major role in Parkinson’s disease [14].

Gene ontology biological process is the most robust
distance function in the evaluated scenarios

Three classification concepts are available in Gene
Ontology: Biological Process, Cellular Compartment and
Molecular Function. Thus, the ontology-based distance
calculated according to these criteria may yield differ-
ent results and, potentially, has different impact on the
clustering results. Our metric of choice was Biological
Process, as conceptually the closest to the nature of dis-
ease maps, describing processes of health and disease. To
clarify the potential impact of the remaining concepts on
the clustering quality, we compared clustering quality and
enrichment of both hierarchical and bi-level approaches
for all three. Figures Additional file 5 contain the results of
this comparison.
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F-measure values for hierarchical clustering are similar
to each other, with GO BP having the highest impact on
the clustering of the PD map, and GO CC on the AlzPath-
way Reorg. Nevertheless, this effect is rather moderate.
Interestingly, the bi-level clustering results indicate that
PD map and AlzPathway (original) could benefit from GO
MF as the leader distance. Still, inclusion of these results
would not alter the ranking of the distance metrics.

The number of enriched terms for Disease and Gene
Ontology is also the highest for the BP-based ontology
distance for PD map and AlzPahway Reorg. In case of
the original AlzPathway, GO CC and MF as leader dis-
tances offer improvement in the discovered GO terms, but
only for “GO MF > Eu” combination this improvement
is noticeable. Overall, GO BP remains the most robust
metric considered in our clustering analysis.

Discussion

Large diagrams representing biomedical knowledge
become an important part of workflows for interpretation
of experimental data and generation of new hypotheses.
Clustering approaches may provide a high-level overview
of this complex content by grouping together similar
elements. Different distance functions may be applied
for this purpose. Here we investigated their impact on
the clustering of the Parkinson’s disease (PD map) and
Alzheimer’s disease (AlzPathway) maps.

First, we evaluated the impact of different distance func-
tions on the clustering quality of the maps. We calculated
the F-measure for HCW using expert-provided annota-
tion areas in the PD map (see Fig. 2). Our results show an
improvement when using combined distance functions,
in particular Euclidean distance with Gene Ontology-
based or network distances. Interesting is the contri-
bution of the Gene Ontology-based distance. By itself
this distance function has the lowest F-measure scores.
When combined with the Euclidean distance it improves
the F-measure beyond the performance of the Euclidean
distance alone. This suggests that clustering based on
combined distance functions may improve the quality of
clustering results.

Next, in order to investigate the relationships between
different distance functions we performed a bi-level clus-
tering for the pairwise combinations of the considered dis-
tance metrics (see Fig. 3). The results are clearly grouped
by the “follower” metric, with the Euclidean distance scor-
ing the highest, and improving the performance of the
HCW. Additionally, because of the stopping criterion in
the evolutionary algorithm, the “leader” Gene Ontology-
distance provides smaller sets of clusters. This is under-
standable, as the Gene Ontology-based distance describes
the conceptual similarity between the contents of the map
and has no reflection of the actual structure of the dia-
gram. In turn, the expert-based annotations reflect visual
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areas of disease maps. Therefore, Gene Ontology-based
distance will not perform well to define meaningful cluster
medoids in the maps.

Finally, we evaluated the impact of combined distance
functions on knowledge discovery in the maps. For each
set of clusters from both HCW and bi-level clustering,
we performed an enrichment analysis for Disease Ontol-
ogy and Gene Ontology terms. Our results showed that
the number of unique terms for both ontologies grows
with growing size of cluster sets and surpasses the expert-
provided annotation areas. Notably, if the number of
expert-provided areas are taken as the cluster set size
(36 in the PD map, 20 in AlzPathway and AlzPathawy
Reorg), all but one selected clustering solutions provide
more unique terms for the Disease Ontology. For enrich-
ment in Gene Ontology terms in the reorganized AlzPath-
way, the methods are not as robust, but the “GO BP > Eu”
bi-level clustering still offers a significant improvement
over the expert-based annotation. These results, in com-
bination with F-measure results, suggest that the results
of these clustering approaches may offer an improvement
to the existing annotation of the maps.

Bi-level clustering in direct comparison with HCW
produces cluster sets with the overall lower score in
F-measure, but higher number of enriched terms. In
effect, both approaches may be a viable support to explo-
ration of complex molecular interaction diagrams: bi-level
in discovery of novel connections, hierarchical for better
visual representation of clusters.

A comparison of different disease maps, including reor-
ganizing content of AlzPathway, shows that local rear-
rangement of elements may have an impact on the number
of enriched terms in the clusters. Interestingly, while the
maximum number of Disease Ontology terms dropped
moderately, the maximum number of Gene Ontology
terms increased significantly. From this analysis, “GO BP
> Eu” bi-level approach seems to be the most robust
across both ontologies, however these results will have to
be validated on more maps.

The study has certain caveats, which may affect the
conclusions of the article. First, the F-measure evaluation
depends on the expert annotation and a thorough analy-
sis against a set of such annotations is needed to provide
a better insight into the combination of distance met-
rics and their recall capabilities. Second, the results of the
evolutionary algorithm are combined over a number of
independent iterations and depend on a predefined set of
parameters. Exploration of this parameter space is neces-
sary to better evaluate the performance of the approach.
Especially a detailed analysis of the impact of different
parameters on ontology distance, e.g. required evidence
or method for combining the similarity score, may bring
further insight into improvement of the results of the algo-
rithm. Finally, other disease maps may be analyzed in a
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similar way for a better understanding on how cluster-
ing may improve the usefulness of such repositories. Our
focus was on Parkinson’s and Alzheimer’s disease, which
may introduce bias to the analyzed results.

Conclusions

In this paper we demonstrated the utility of combining
different distance functions to meaningfully cluster the
contents of a complex visual repository on human disease.
We proposed a bi-level clustering approach as a solution
for combining two distance functions and exploring their
relationship. The cluster sets discovered by our approach
reflect well the existing annotations of the PD map and are
enriched for a higher number of unique terms in Disease
and Gene Ontologies. Our solution offers an improve-
ment to the process of exploration of complex biomedical
repositories, e.g. disease maps. The experts can be aided
by clustering results in annotation of high-level areas of
such maps, increasing their clarity and helping in using
their contents.

Additional files

Additional file 1: Reorganized AlzPathway. This file contains a
CellDesigner format of the reorganized AlzPathway, with a number of
elements duplicated and rearranged to reduce their Euclidean distance
while increasing their network distance. Original AlzPathway was
published in [12], under the CC BY 3.0 license. See also alzpathway.org for
details. (ZIP 261 KB)

Additional file 2: Complete F-measure results. This file contains a table
with F-measure values for all tested clustering solutions. Additional file 5
contains a figure with comparison of maximum F-measure per clustering,
per approach - hierarchical clustering with single distance function,
hierarchical clustering with combined distance functions and bi-level
clustering. (XLSX 197 KB)

Additional file 3: Complete enrichment results. This file contains a table
with numbers of enriched terms for all tested clustering solutions.
Additional file 5 contains a figure with comparison of all clustering
solutions, per approach - hierarchical clustering with combined distance
functions and bi-level clustering. (XLSX 215 KB)

Additional file 4: Bi-level clustering examples. This file contains a figure
with selected examples of bi-level clustering. (PDF 551 KB)

Additional file 5: Comparison of GO distance functions. This file contains
figures comparing F-measure and the number of enriched terms for
different Gene Ontology distance functions. (PDF 125 KB)
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compartment; GO MF: Molecular function; HCW: Hierarchical clustering with
ward grouping; MOEA: Multi-objective evolutionary algorithm; NSGA-II:
Non-dominated sorting genetic algorithm; PD map: Parkinson’s disease map
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