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Abstract

Background: An important issue in microarray data is to select, from thousands of genes, a small number of
informative differentially expressed (DE) genes which may be key elements for a disease. If each gene is analyzed
individually, there is a big number of hypotheses to test and a multiple comparison correction method must be used.
Consequently, the resulting cut-off value may be too small. Moreover, an important issue is the selection’s replicability
of the DE genes. We present a new method, called ORdensity, to obtain a reproducible selection of DE genes. It takes
into account the relation between all genes and it is not a gene-by-gene approach, unlike the usually applied
techniques to DE gene selection.

Results: The proposed method returns three measures, related to the concepts of outlier and density of false
positives in a neighbourhood, which allow us to identify the DE genes with high classification accuracy. To assess the
performance of ORdensity, we used simulated microarray data and four real microarray cancer data sets. The results
indicated that the method correctly detects the DE genes; it is competitive with other well accepted methods; the list
of DE genes that it obtains is useful for the correct classification or diagnosis of new future samples and, in general, it is
more stable than other procedures.

Conclusions: ORdensity is a new method for identifying DE genes that avoids some of the shortcomings of the
individual gene identification and it is stable when the original sample is changed by subsamples.

Keywords: Differentially expressed gene, Multivariate statistics, Outlier, Quantile

Background
Analysis of gene expression data arising from microar-
ray or RNA-Seq technologies is a very important task and
a major advance in biomedical research. In this kind of
experiments, the main goal is to identify a small number
of informative genes whose patterns of expression differ
according to the experimental conditions. These genes,
selected from thousands, are differentially expressed,
between two possible conditions, as control and treat-
ment groups or between two groups of patients. This gene
discovery is challenging, because there is a large number
of genes, a relatively small number of samples and it is
important to identify which genes, independently of the
sample studied of the same disease, are selected as differ-
entially expressed genes. The selection of relevant genes to
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differentiate these two conditions has two main objectives
for researchers. On the one hand, to select a small num-
ber of genes so that the information given by these genes
is not redundant, and the classification or diagnostic of
new samples which lead to lower prediction error. On the
other hand, a large number of selected genes are related to
others that have the same function and that are highly cor-
related. It is clear that, in order to obtain a list of genes that
allows a good diagnosis for future samples, a combination
of these two objectives is desirable. It is also necessary to
know the relation and function of the selected genes.
As, in general, the expression levels of genes are depen-

dent on each other because genes are involved in complex
regulatory pathways and networks [1], it seems conve-
nient to consider the joint distribution of genes. However,
methods to identify DE (differentially expressed) genes
that are based on a gene-by-gene approach, ignoring the
dependences between genes, are widely used. Maybe, the
most popular is the t-test, but it has some restrictions
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[2, 3]. To solve the problem of unstable variances, the
Significance Analysis of Microarrays (SAM) [2] was intro-
duced. It works with a modified t-test introducing a fac-
tor to minimize the effect that small per-gene variances
could make genes, with small differences between the
expression conditions, statistically significant. An inte-
grated solution for analyzing data from gene expression
experiments is provided by limma [4, 5] an R pack-
age for Bioconductor [6]. limma fits a linear model for
each gene and uses an empirical Bayes (eBayes) method
for assessing differential expression. The empirical Bayes
method (eBayes) [7] also uses moderated t-statistics,
where instead of the global or single gene estimated vari-
ances, a weighted average of the global and single-gene
variances is used. In the gene-by-gene approaches, as a
large number of hypothesis tests are carried out, mul-
tiple testing procedures must be applied to assess the
overall significance, controlling the family-wise error rate
(FWER) or the false positive rate (FDR). The FWER is
a very stringent criterion which measures the probabil-
ity of at least one false positive in the set of significant
genes, and most investigators accept a FWER of 5% [8]. A
more liberal criterion is the FDR [9], which is the expected
proportion of false positives among the significant genes.
However, all the p-value adjustment methods lose sen-
sitivity as they have a reduced chance of detecting true
positives.
As different statistical selection methods may capture

different statistical aspects of expression changes, they
may give different lists of selected genes. Nevertheless,
these inconsistent gene lists could be rather functionally
consistent [10–12]. However, it is clear that one desirable
property for a proper statistical method is that it detects
true differentially expressed genes and has the ability to
maintain a consistent list of differentially expressed genes
within a single data set, that is, with samples based on
subsets of the same data. In this direction, in [3] an empir-
ical evaluation of consistency and accuracy for different
methodologies was presented, concluding that for smaller
sample sizes, moderated versions of the t-test can gen-
erally be recommended, while for large data sets, the
method may involve a compromise between consistency
and power.
A different approach was introduced in [13, 14]. In these

works, the authors presented a statistic, called OR, which
is useful to identify extreme observations or outliers in
high-dimensional data sets. They presented the possibil-
ity to use the OR statistic as a tool to detect differentially
expressed genes. The idea is that in expression studies,
there are a large number of genes, and very few are
expected to be important for the disease development.
Thus, the important genes (which are DE) should show
a different behaviour to those that are non-important.
For this reason, the important genes could be considered

as outliers in a background population of non-important
genes.
One more fruitful endeavour than searching for lists of

differentially expressed genes might be to search for the
best way in which the two groups under study can be
distinguished. Suppose that a new sample is considered,
and we wish to decide which of the two groups it belongs
to. The best set of differentially expressed genes will be
the one that leads to the smallest probability of misclas-
sifying this new sample, that is, the set of differentially
expressed genes that leads to the smallest error rate of all
future allocations of new samples. Thus, it is very interest-
ing to analyze if a procedure obtains lists of differentially
expressed genes useful for classification of future samples.
It is therefore important to recognize the two objectives:
to maximize separation between the groups of available
samples, and to minimize the misclassification rate over
all possible future allocations.
In this article, we present a new method which uses

the OR statistics and two new measures which, together,
are useful to obtain consistent lists of true differentially
expressed genes, and which allows the correct classi-
fication of future samples. This novel approach, called
ORdensity, takes into account the relation between all
genes and it is not a gene-by-gene approach.
In the “Methods” section, we detail the basic ideas,

the new concepts, the description of the new method,
a small example to aid the comprehension of the new
methodology, as well as the simulation studies and gene
expression data from four public cancer studies, that were
used to evaluate the behaviour of the procedure. In the
“Results” and “Discussion” sections we show the useful-
ness of our approach. We close this paper with some
conclusions.

Methods
The new ORdensity procedure has two main steps: find-
ing potential differentially expressed genes and identifying
differentially expressed genes. Next, we detail these two
steps of the method and Fig. 1 resumes the general out-
line of the approach. In order to better understand the
procedure development, a small artificial example is also
included.

Let E = {e1, . . . , eG} be a set of expression level val-
ues for G genes such that each eg is a vector eg =
(egX , egY )′ giving the expression of the g-gene in two con-
ditions X and Y (e.g., treatment/control or two patient
groups). Then, egX = (

egX1 , . . . , egXnX
)′ and egY =

(
egY1 , . . . , egYnY

)′, nX +nY = n, are vectors of values giving
the expression of the g-gene in the j-sample under condi-
tion X and Y, respectively. Each eg can then be considered
a point in a continuous n-dimensional gene expression
space S ⊂ Rn. Let Xg and Yg be the random variables
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Fig. 1 General outline of the proposed ORdensity approach. In green the first step of the method and in red the second step of the method

representing the expression level of gene g in conditions X
and Y, respectively (g = 1, . . . ,G).
The proposed approach focuses on the differences of

quantiles between samples: Vgp = F−1
Xg

(p) − F−1
Yg (p), p ∈

Cp where Cp is a set of probabilities. For instance, Cp =
{0.25, 0.5, 0.75} is an adequate set for small sample sizes. A
gene, g, whose expressions in conditions X and Y are con-
sidered not differentially expressed (see Fig. 2 left) would
verify that F−1

Xg
(p) = F−1

Yg (p), where F is the cumulative
distribution function and p ∈[ 0, 1]. Otherwise, gene g is
differentially expressed (DE) or it is important (see Fig. 2
right). Broadly speaking, matrix V = (vgp) with vgp =
F̂−1
Xg

(p) − F̂−1
Yg (p), for g = 1, . . . ,G and p ∈ Cp must con-

tain small values corresponding to the major number of
no DE genes. However, the most differentially expressed
genes should show a different behaviour, and for this rea-
son they can be considered as outliers in V. Thus, our
approach attempts, in two main steps, to find outliers
in V which can be identified as differentially expressed
genes.

First step: finding potential differentially expressed genes
Let V = (vgp) the G × P matrix with vgp = F̂−1

Xg
(p) −

F̂−1
Yg (p), p ∈ Cp where Cp is a set of probabilities (P =

#Cp). As DE genes are expected to be outliers based on the
vg = (

vgp
)′
p∈Cp

values, the procedure computes the robust
index OR of outlyingness [13, 14] as follows. Define dgh

the Euclidean distance between vg and vh. For a fixed gene
g, the OR statistic is given by:

OR(g) =
Medianh=1,...,G

{
d2gh

}

1/2Medianh, j=1,...,G
{
d2hj

}

In this ratio, the numerator gives the median value of all
(squared) distances of the gene of interest with respect
to all the other genes; the denominator gives (half ) the
median of all (squared) distances among all genes. As a
consequence, given a set of G genes, OR gives a ranking
of genes, so that genes with a large value of OR will be
genes that are further away from the set of all genes and
therefore they are possible outliers (i.e., important genes).
In this way, the original G × n data matrix is firstly trans-
formed in aG×Pmatrix with the vgp differences between
Cp-quantiles and, secondly, in a G dimensional vector
with the OR values OR = (OR(g1), . . . ,OR(gG))′. As the
distribution of OR is unknown, the procedure considers
permuted samples in order to generate values associated
with genes which are not differentially expressed. Thus,
the expression values of each gene are permuted B times,
that is, each sample has its corresponding label and actu-
ally the permutation is carried out on the labels. Once
the labels of the samples are reassigned by permutation (B
times), the expressions of the genes are classified accord-
ing to those two classes. Then, the procedure computes
matrix V∗

b and vector ORb = (ORb(g1), . . . ,ORb(gG))′ for
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Fig. 2 Visualization of F̂−1
Xg

(p)− F̂−1
Yg

(p) differences for p ∈ Cp = {0.25, 0.5, 0.75} for two genes. In the left side, a gene whose expressions in conditions
X and Y are not differentially expressed (No DE gene); in the right side, a gene that is differentially expressed in conditions X and Y (DE gene)

each permutation b, (b = 1, . . . ,B). Given a fixed α ∈
(0, 1), it calculates the percentile (1 − α) 100% of all the
elements of the matrix with the permuted samples ORb.
Let us denote this value by cα . In this way, the method
excludes those genes, g, with OR(g) ≤ cα . Then, DE genes
must be in the subset of genes Sα = {g |OR(g) > cα}. We
call them potential genes.

Second step: identifying differentially expressed genes
By construction, there are α×G×B cases whereORb(h) >

cα among the permuted samples and we call Rα =
{h |ORb(h) > cα , b = 1, . . .B} the set of those cases. That
is, in Rα there are all permuted cases h with ORb(h) > cα
for some b. These cases are related to genes that are not
DE but have large OR values. The corresponding values
of v∗

b,h, reflect the behaviour of these genes in relation
to the differences between quantiles. Hence, we have, on
the one hand,

(
v′
g

)

g∈Sα

differences for potential differen-
tially expressed genes and on the other hand, we know

that the differences
(
v∗
b, h

)

h∈Rα

represent the behaviour
of cases that are false positives with a misleadingly large
value of OR. Therefore, the analysis of the differences and
similarities between vg and v∗

b, h will provide a way to
discriminate the truly DE genes among the set Sα of
potential DE genes.
To this aim, consider matrix

(
v∗
b, h

)

h∈Rα

randomly
divided into k-folds. Then, consider the union of set Sα

with the ith fold Rα,i = {h ∈ Rα| ith fold}, that is,
Ui = Sα ∪ Rα,i. In order to understand what happens in
Ui, consider the following small artificial example.
Small artificial example: We simulated [15] 1000 genes

under two conditions X and Y with 30 samples for each
condition and 60 of these genes were generated as differ-
entially expressed. We considered Cp = {0.25, 0.5, 0.75}
to build the (1000 × 3)-matrix V of differences between
the quartiles and these differences were weighted with
{0.25, 0.5, 0.25}, respectively. The procedure obtained the
matrix V of differences between the weighted quartiles
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and it calculates the OR statistic for the 1000 original
genes, OR = (OR(g1), . . . ,OR(g1000))′. Next, for B = 100
permuted samples of X and Y, we computed matrix V∗

b of
differences between the weighted quartiles and we com-
puted their OR values ORb = (ORb(g1), . . . ,ORb(g1000)),
b = 1, . . . ,B. For a fixed α = 0.05, the percentile (1 −
α) 100% of ORb on the B = 100 permuted samples was
c0.05 = 6.27 and the set S0.05 = {g |OR(g) > c0.05} =
{g |OR(g) > 6.27} contained 100 genes, which were
potential DE genes. Furthermore, between the 1000×100
permuted observations, 5000 of them had an OR value
above the threshold c0.05 = 6.27. Next, we considered a
10-fold partition. For fold 1, the Fig. 3a shows the results
of the two first principal components analysis on the

matrix
[
(
vg

)
g∈Sα

|
(
v∗
b, h

)

h∈Rα,i

]′
, with 99.3% of explained

variability. As can be observed, a potential gene g that is
not really differentially expressed was closely surrounded
by cases from Rα,i, that is, by false positive permuted
cases. On the contrary, a gene g that is really differentially
expressed was not surrounded by cases from Rα,i. That
holds for every fold and clearly shows the intuitive idea
behind the proposed methodology.
Following with the method, let us call

(
fi, fi0

)
the pro-

portion of potential genes and permuted cases in set Ui
(i = 1, . . . , k). As we have observed in the small artificial
example, if a potential gene is genuinely DE, its behav-
ior should be different from those cases in Rα,i and the
other way round; if a potential gene presents a similar
behavior to those cases in Rα,i, then it should be con-
sidered as not truly DE. So, for each gene g in Sα , its
10-Nearest-Neighbourhood (NNi(g)) in Ui is considered.
Wecalculate two indicators in this neighbourhood: the num-
ber of cases from Rα,i, FPi(g) = #

{
j ∈ NNi(g)|j ∈ Rα,i

}

(number of false positive permuted cases) and the density
dFPi(g) = FPi(g)/maxj∈NNi(g)

{
d2gj

}
. The denominator

maxj∈NNi(g)
{
d2gj

}
will rarely be 0 since it would involve

10 tied nearest distances for g in NNi(g), but if it is equal
to 0 then dFPi(g) = 0 if FPi(g) = 0 and dFPi(g) =
NaN if FPi(g) > 0.
Gathering the k folds, we obtain for each g ∈ Sα the

average number of false positive permuted cases (FP) and
the average density (dFP) of FP in the neighbourhood:
FP(g) = 1/k

∑
i FPi(g) and dFP(g) = 1/k

∑
i dFPi(g).

Thus, to discriminate DE genes among those in set Sα ,
we have to look for those g with low value of FP(g) and
dFP(g) along with high values of OR(g).
Under this criterion, two types of differentially

expressed gene selection can be made:

• ORdensity strong selection: take as differentially
expressed genes those with a large OR value and with
FP and dFP equal to 0.

• ORdensity relaxed selection: take as differentially
expressed genes those with a large OR value and with
small FP and dFP values. The average proportion of
potential genes and the permuted cases among the k
folds (f = 1/k

∑
fi and f0 = 1/k

∑
fi0 respectively)

are a good reference to look for small values of FP.

Furthermore, beyond the inspection of individual genes,
we tackled the selection of DE genes by clustering the
genes in Sα based on the input variables OR, FP and dFP.

b

a

Fig. 3 Illustrative example. a First two principal components of data[
(vg)g∈Sα |(v∗

b,h)h∈Rα ,1

]′
corresponding to fold 1 (99.3% of explained

variability), and there are represented: the potential genes (genes in
S0.05) by circles; the false positives genes (genes in Rα,i) by “p"s, and
the differentially expressed genes (genes generated as truly DE genes)
by crosses. b Representation of the potential genes based on OR
(vertical axis), FP (horizontal axis) and dFP (size of the circle is inversely
proportional to its value). Truly DE genes are marked with a cross; in
red and blue, genes belonging to cluster 1 and cluster 2, respectively
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This can be useful as it offers different patterns of genes
based on their importance.
Small artificial example (cont.): Using the Partition

Around Medoids (PAM) clustering method [16] on
variables OR, FP and dFP, and selecting two clusters as
indicated in the silhouette analysis [17], the variables
presented the following basic characteristics (Table 1)
and the two clusters are represented in Fig. 3b. It
is worth mentioning that the average distribution of
potential genes and permuted cases in sets Ui was(∑

i fi/10,
∑

i fi0/10) = (0.17, 0.83
)
. It means that if the

distribution were random, an average of 8.3 permuted
cases would be expected in the 10-NN. Clearly, in cluster 1
the FP values are below this value. Finally, we checked the
distribution of real DE genes across the two clusters, and
the 60 genes in Cluster 1 are exactly the 60 real DE genes.
Note 1: When the variability of genes among dif-

ferent types of samples is different, it is advisable to
scale the differences between quantiles, for instance,
vgp =

(
F̂−1
Xg

(p) − F̂−1
Yg (p)

)
/max{RI(Xg),RI(Yg)}, with

RI(Xg) and RI(Yg) the interquartile ranges in samples X
and Y, respectively.
Note 2: As the method considers the differences

between quantiles, it may be interesting to give greater
importance to some of them, such as the median. Simulta-
neously, robustness can be obtained avoiding the possible
fluctuation of the estimations of the percentiles. There-
fore, different weights to the quantiles can be introduced
in the procedure.
Note 3: We have considered for each gene g in Sα its

10-Nearest-Neighbourhood. This is a parameter of the
method that could be set in different ways, and it is con-
sidered to obtain better estimations of the proportion of
potential genes and permuted cases in setUi. In this sense,
a small number of neighbors as 5 does not seem adequate
since the percentage of false positive permuted cases that
could be detected would be very unstable. On the other
hand, note that as themethod takes into account themean
value of the false positive density, the possible effect of the
number of chosen neighbors is minimized.

Table 1 Illustrative example

Cluster 1 (n1 = 60) Cluster 2 (n2 = 40)

OR FP dFP OR FP dFP

Min 23.5 0.0 0.00 6.3 7.1 8.13

Q1 53.8 0.0 0.00 6.7 9.0 24.78

Q2 79.3 0.0 0.00 7.3 9.1 29.13

Mean 104.5 0.4 0.25 8.5 9.2 28.51

Q3 122.1 0.0 0.00 9.6 9.7 32.78

Max 412.0 6.7 5.22 19.8 10.0 43.21

Basic description for the OR, FP and dFP values in the two clusters obtained using
PAM and silhouette procedures

Experimental setup
To evaluate the usefulness of the ORdensity procedure,
we simulated multiple gene expression data sets using
different parameter settings. Furthermore, we applied the
procedure to four real cancer data sets. All computations
were performed using the R language and Environment
for Statistical Computing (R) 3.3.1 [18, 19] in combination
with Bioconductor 3.3 [6]. As the proposed method may
depend on the quantiles estimation of each gene expres-
sion for different conditions, different sample size situa-
tions including the case of small samples were considered
in the simulated studies. Moreover, for both simulated and
actual data, the method was compared with other well-
recognized methods in order to assess whether it could
compete with them.

Simulation study 1
We assumed a total of 1000 genes, among which 50,
100 or 200 were differentially expressed (DE) genes. On
the one hand, the expression levels of all no DE genes
were generated by N

(
0, σ 2

g

)
and N

(
0, γ 2

g

)
distributions

in conditions X and Y, respectively. On the other hand,
the DE genes were generated using the N

(
0,α2

g

)
and

N
(
μg ,β2

g

)
distributions for conditions X and Y, respec-

tively, with
∣∣μg

∣∣ = �g max
{
αg ,βg

}
. Parameter�g sets the

importance of gene g, being gene gmore important as long
as �g is bigger. Within this general setting, three different
scenarios were considered:
Scenario 1:All genes had equal variability (σg =γg=1 ,αg =

βg = 1), and all DE genes are equally important under this
scenario, i.e., �g = �, with � in {1.5, 2, 3}.
Scenario 2:All genes had not necessarily equal variabil-

ity (σg �= γg ,αg �= βg). These variabilities were randomly
selected among {1, 1.2, 1.5, 2}. All DE genes are equally
important, i.e., �g = � for all g, with � in {1.5, 2, 3}.
Scenario 3:All genes had not necessarily equal variabil-

ity
(
σg �= γg ,αg �= βg

)
neither the importance of DE genes

is the same (�g �= �h, g �= h). Variability parameters
were randomly selected in {1, 1.2, 1.5, 2} as in the previous
scenario and �g values were randomly selected among
{1.5, 2, 3}.
To better understand the performance of our approach,

we simulated the data for the three scenarios assuming
equal sample sizes for X and Y (nX = nY = 30) and dif-
ferent sample sizes (nX = 30, nY = 10). For the most
general situation, scenario 3, we also considered the case
nX = nY = 10 in order to evaluate the procedure for small
sample sizes.
Using the area under the ROC curve, for the three sce-

nairos and for nX = nY = 30, nX = 30, nY = 10 and
nX = nY = 10, the ORdensity results were compared
with those obtained using other well-known methods in
this field, such as Significant Analysis of Microarrays [2]
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and Linear models with Empirical Bayes statistic (limma
[4, 5]). Furthermore, for each situation 100 replicates were
performed.
The Significant Analysis of Microarrays (SAM) method

is a modification of the t-statistic and it was introduced
to avoid the effect of the small per-gene variances that
can make small fold-changes statistically significant. This
modification adds a value which is calculated from the
distribution of gene-specific standard errors. SAM was
applied using the package samr for Bioconductor [6] in
R language and Environment for Statistical Computing
[18, 19].
The Empirical Bayes statistic (eBayes) is equivalent

to shrinking the estimated sample variances towards a
pooled estimate, resulting in far more stable inference
when the number of arrays is small. The linear model with
empirical Bayes statistic (called limma in the following)
was applied using the limma package for Bioconduc-
tor [6] in R language and Environment for Statistical
Computing [18, 19].

Simulation study 2
The simulation was set with blocks of DE genes [20]
which are correlated within each block. The data was sim-
ulated from a multivariate normal distribution, with all
genes having variance 1 and correlation 0.9 between genes
within each block. It means that the variance-covariance
matrix was a block-diagonal matrix such as:

� =

⎛

⎜
⎜⎜
⎝

σ block 0 . . . 0
0 σ block . . . 0
...

...
...

...
0 0 . . . σ block

⎞

⎟⎟
⎟
⎠

where σ block = (
σgh

)
gh with σgg = 1 and σgh = 0.9 g �= h.

We considered 1, 2 or 3 blocks, and each block with 5,
20 or 100 DE genes. Following [20], the difference between
mean values of conditions X and Y was set depending on
the number of blocks:
One block: μA = −1.65, μB = 1.65
Two blocks: μA = (−1.18,−1.18)′, μB = (1.18, 1.18)′
Three blocks: μA = (−0.98,−0.98,−0.98)′, μB =

(0.98, 0.98, 0.98)′
Once the DE genes were generated, 4000 variables rep-

resenting no DE genes were added: 2000 following a
N(0, 1) distribution and 2000 following a U(−1, 1) distri-
bution.
For the different number of blocks, we considered equal

sample sizes for X and Y (nX = nY = 30) and different
sample sizes (nX = 30, nY = 10). For each situation 100
replicates were done and using the area under the ROC
curve, the OR results were compared with those obtained
by limma and SAM.

In all the above simulations, in order to obtain compara-
ble results throughout the 100 runs, we always considered
3 clusters determined by PAM [16] clustering procedure.
Obviously, to be absolutely accurate it would have been
necessary to determine the number of clusters in each
dataset.

Actual data sets: lymphoma, Golub, colon and prostate
cancer
We considered four publicly available cancer data sets: a
well-known lymphoma data set which is in the R package
spls, and post-processed Golub, colon and prostate data
sets that were downloaded from [21].With these data sets,
we compared the ORdensity results with SAM and limma.
The standard rule used for selecting a gene as DE with

limma was to present an adjusted p-value smaller than
0.05. To compute the adjusted p-values for gene ranking
we used a very stringent method (Bonferroni), and a more
liberal procedure (BH, [9]). For SAM, the considered rule
was to present a q-value [22] equal to 0.
For the ORdensity procedure, the Partition Around

Medoids (PAM) [16] clustering and the silhouette analy-
sis [17] were performed in order to establish the number
of clusters and both the strong and relaxed selection were
considered.
We evaluated the obtained results considering three

different perspectives: the agreement between the three
methods of the selected gene lists; the ability to main-
tain consistent lists with samples based on subsets of
80% of the original data selected at random, and the
leave-one-out cross-validation correct classification rate
for future classifications obtained when a Weighted Dis-
tance Based Discriminant analysis (WDB-discriminant)
using Euclidean distance was performed [23]. Weighted
Distance Based Discriminant (WDB-discriminant) is an
improvement of the Distance Base rule [24, 25] which
takes into account the statistical depth of the units.
The WDB-discriminant was applied using the WeD-
iBaDis package available at https://github.com/ItziarI/
WeDiBaDis.

Lymphoma cancer data set:
This data set [26] contains the gene expression of 1095
genes measured on 42 adults with large B-cell lymphoma
(DLBCL), which can present two different molecular
forms denoted by DLBCL1 and DLBCL2, respectively.
Half of the samples presented the form DLBCL1 and the
other half the form DLBCL2.

Golub data set:
The data set [27] contains the gene expression of 7129
genes. There are 72 samples with two different types of
leukaemia, 47 acute lymphoblastic leukaemia (ALL) and
25 with acute myeloblastic leukaemia (AML).

https://github.com/ItziarI/WeDiBaDis
https://github.com/ItziarI/WeDiBaDis
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Colon cancer data set:
This colon cancer data study [28] consists of 6000 genes
measured on 62 patients, 40 of them diagnosed with colon
cancer and 22 of them are healthy.

Prostate cancer data set:
This study [29] considered 12,626 genes and 102 samples,
50 of which were non-tumour prostate samples and 52 of
which were prostate tumours.
In all the experiments, simulated or actual data sets,

we considered the differences between the three quar-
tiles, that is, Cp = {0.25, 0.5, 0.75}. Moreover, we scaled
these differences and weighted them by {1/4, 1/2, 1/4}
respectively, making the most important difference the
one between the medians (See Note 1 and 2, in the
“Methods” section). In the case of the Golub data set,
these differences were not scaled because for some of the
genes the interquartile range was null.

Results
Next, we present the results obtained with the simulated
data, as well as the actual cancer data sets.
With the simulated microarray data, we evaluated the

behavior of the method in relation to the correct selection
of DE genes since, in this case, we know which genes are
actually differentially expressed. We evaluated the general
behavior of the procedure in relation with the propor-
tion of False Positive among the selected genes as DE
and using the area under the ROC curve value, we com-
pared the ORdensity results with those obtained using the
alternative approaches, SAM and limma. Furthermore, we
present a detail evaluation of both, the first and the second
step of the method.
With the actual microarray data, we evaluated and com-

pared our procedure with the alternative approaches SAM
and limma, measuring the ability of the method in pre-
serving predictive accuracy classifying the samples, and
the stability of the lists of selected genes when a fraction
of the samples (20%) was eliminated at random.

Simulation study 1
General behavior
As a general summary, the results indicated that the three
variables that the method builds, OR, FP and dFP, are
good discriminative variables, separating correctly the DE
genes from the not DE genes. On the one hand, the
number of DE genes not detected by the method was
very small and always related with the less DE genes (see
“Detail evaluation of step 1” subsection). On the other
hand, with the strong selection no False Positives were
detected.With themore relaxed selection and considering
the partition in three clusters for all the runs, the results
indicated that, in all situations, the method only consid-
ers as DE genes those from clusters 1 and 2. The False

Positives were mostly in cluster 2 and the worst results
were obtained with 50 simulated genes and for small sam-
ple sizes (equal to 10). However, for the majority of the
situations the average number of False Positives was 0 in
cluster 1 and very small in cluster 2. It is worth to mention
that partition in 3 clusters is not necessarily the best par-
tition that could be obtained in each of the 100 runs. As
a consequence, the variability of the percentage of False
Positives in cluster 2 was very high for some cases. That
is, for some of the runs, cluster 2 was formed by DE genes
but not for other runs, for which a partition with differ-
ent number of clusters would have probably been more
appropriate (see Detail evaluation of step 2 subsection).

Detail evaluation of step 1
Regarding this step, it is necessary to evaluate the number
of simulated DE genes that the method did not con-
sider as potential genes and therefore were missed. The
results indicated that as the number of simulated DE genes
increases, it is easy to not include at least one DE gene in
the set of potential DE genes. Moreover, when the sample
size for one or the two conditions was small (equal to 10),
the sensibility to include among the potential all the sim-
ulated DE genes decreases. Nevertheless, the proportion
of DE genes considered as potential DE genes was always
very large, and DE genes not considered as potential genes
were very few and always associated with � = 1.5.
With more detail, on the simulated data sets with equal

sample sizes for the two conditions (nX = nY = 30), and
in scenarios 1 and 2, when all the simulated DE genes were
related to the same value of the parameter �g (�g = �

for all DE genes), we can observe that as the number of
simulated DE genes increases, it is easy to not include at
least one DE gene in the set of potentialDE genes (Table 2,
Fig. 4 and Additional file 1: Table S13, Figure S8). How-
ever, it is clear that, in any case, the proportion of DE
genes considered as potentialDE genes is very large, being
always higher than 95% and only in two cases presents a
lower value (78.80% and 85.24%, respectively). Moreover,
these worst results were associated with the lowest value
of �, specifically � = 1.5. In scenario 3, where the impor-
tance of DE genes is different and set by their values �g
selected at random in {1.5, 2, 3}, it is interesting to analyze
what is the importance of the genes that are not consid-
ered as potential in set Sα . For instance, in the case of
50 DE genes, on average 99.32% of them are included in
S0.01. Moreover, the DE genes not detected as potential
had �g = 1.5, the lowest value. Thus, all the DE genes
not considered as potential in S0.01 are between the less
DE. Similar results are observed in the rest of the Table
(Additional file 1: Table S14, and Figure S9).
In the case where the sample sizes for the two conditions

were different (nX = 30, nY = 10) and for the three sce-
narios, as we can observe, the results were very similar. As
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Table 2 Simulation study 1, scenario 1 with nX = nY = 30 and
100 runs

� = 1.5
Nb. of α

DE genes 0.1 0.05 0.01

50 p̂m 0.08 0.20 0.80

% 99.84 (0.54) 99.56 (0.92) 97.20 (2.2)

100 p̂m 0.13 0.45 0.99

% 99.87 (0.34) 99.34 (0.66) 95.20 (2.3)

200 p̂m 0.80 0.99 1.00

% 99.27 (0.56) 96.70 (1.5) 78.80 (4.0)

� = 2
Nb. of α

DE genes 0.1 0.05 0.01

50 p̂m 0.00 0.00 0.00

% 100 100 100

100 p̂m 0.00 0.00 0.05

% 100 100 99.95 (0.22)

200 p̂m 0.01 0.03 0.95

% 100 99.98 (0.09) 98.50 (0.83)

� = 3
Nb. of α

DE genes 0.1 0.05 0.01

50 p̂m 0.00 0.00 0.00

% 100 100 100

100 p̂m 0.00 0.00 0.00

% 100 100 100

200 p̂m 0.00 0.00 0.00

% 100 100 100

Evaluation of the first step of the ORdensity method using different values of α. The
Table shows the estimated probability, p̂m , of no considering as potential DE gene at
least one gene that it really is, and the mean proportion of DE genes (row named
“%”) that the procedure considered as potential DE genes. Corresponding standard
deviations are in brackets

the sample size in one condition is smaller, the sensibility
to include among the potential all the DE genes decreases,
that is, the probability of not considering as potential DE
gene at least one DE gene really increases (Table 3, Fig. 5
andAdditional file 1: Tables S15andS16, Figures S10 and S11).
For scenario 3, when both sample sizes are small (nX =

nY = 10) similar results were obtained. Nevertheless,
the mean proportion of DE genes that were included
in the potential was notably lower. Again, the missed DE
genes were mostly related to �g = 1.5 (Additional file 1:
Table S17 and Figure S12).

Detail evaluation of step 2
In the second step of the procedure, the interest lies in
evaluating the number of False Positive genes selected by

the method. As a general summary, with the strong selec-
tion no False Positive were selected. When the method
used the more relaxed selection it retained as DE, in
all cases, genes in clusters 1 and 2. The False Positive
genes were mostly in cluster 2 and the worst results were
obtained with 50 simulated genes and for small sample
sizes (equal to 10). As mentioned before, partition in 3
clusters, throughout all runs, may lead to a high variability
in cluster 2.
Focusing on the details, it can be seen that in scenario 1,

nX = nY = 30, � = 1.5, and for any number of simu-
lated DE genes, by chance an average of 8.5 False Positive
permuted cases would be expected in the 10-NN. For 50
simulated DE genes, clearly, in clusters 1 and 2 the mean
FP value is below 8.3. Then, the method considered genes
in clusters 1 and 2 as DE, with on average less than one
False Positive gene in cluster 1 (0.2% in cluster 1) and
an average of 4.5 False Positive genes in cluster 2 (20.7%
in cluster 2). When the number of simulated DE genes
increases, a small number of False Positive genes were
obtained. For 100 simulated DE genes, again the method
considered those in clusters 1 and 2 as DE genes, with 0
False Positive in cluster 1 and on average less than one
False Positive gene in cluster 2 (1.6%). Similar results were
obtained for 200 simulated DE genes. For greater values of
�, and for any number of simulated DE genes, the aver-
age number of False Positives per cluster is 0 or very small,
being in the worst case equal to 1.6 (Table 4, Fig. 6). With
equal sample sizes for the two conditions (nX = nY = 30),
in scenarios 2 and 3, again, small values of the average
number of False Positives per cluster were obtained, being
0 or less than one in the majority of the situations. In
the worst situation related to 50 simulated DE genes, the
average number of False Positives per cluster was 1.47.
With different samples sizes (nX = 30, nY = 10) and

even small sample sizes (nX = nY = 10), the average num-
ber of False Positive genes was again very small. The worst
cases were obtained when only 50 simulated DE genes and
� = 1.5 were considered. In the majority of the other sit-
uations, the average number of False Positive genes was 0
or less than one (Table 4, Fig. 6 and in Additional file 1:
Tables S18–S23, Figures S13–S18).
Moreover, for scenario 3, where DE genes were associ-

ated with different values of�g , observing the distribution
of DE genes within each cluster in relation with their cor-
responding �g values, we obtained that the most impor-
tant DE genes, which are related to �g = 3, are mainly
in cluster 1, and that the DE genes included in cluster 3
are the less important since they are related most princi-
pally to �g = 1.5 and never with �g = 3. It is worth
noting that even for a small number of samples (nX =
nY = 10) similar results were obtained (Additional file 1:
Tables S19, S22 and S23 last column and Figures S14, S17
and S18).



Irigoien and Arenas BMC Bioinformatics  (2018) 19:317 Page 10 of 20

b

a

Fig. 4 Simulation study 1, scenario 1 with nX = nY = 30 and 100 runs. Evaluation of the first step of the ORdensity method using different values of
α. Top: in x axis number of DE genes; in y axis estimated probability, p̂m , of no considering as potential DE gene at least one gene that it really is.
Bottom: in x axis number of DE genes; in y axis mean proportion of DE genes that the procedure considered as potential DE genes
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Table 3 Simulation study 1, scenario 1 with nX = 30, nY = 10
and 100 runs

� = 1.5
Nb. of α

DE genes 0.1 0.05 0.01

50 p̂m 0.85 1 1

% 97.2 (2.8) 91.1 (2.1) 69.6 (6.7)

100 p̂m 1 1 1

% 93.7 (2.5) 86.0 (3.5) 60.1 (5.0)

200 p̂m 1 1 1

% 84.9 (2.6) 70.5 (3.5) 34.9 (3.4)

� = 2
Nb. of α

DE genes 0.1 0.05 0.01

50 p̂m 0.13 0.33 0.98

% 99.7 (0.7) 99.2 (1.2) 93.2 (3.6)

100 p̂m 0.38 0.88 1

% 99.6 (0.6) 98.4 (1.0) 88.4 (3.2)

200 p̂m 0.99 1 1

% 97.8 (1.1) 92.1 (1.9) 65.3 (4.0)

� = 3
Nb. of α

DE genes 0.1 0.05 0.01

50 p̂m 0.00 0.00 0.02

% 100 100 96.0 (0.3)

100 p̂m 0.00 0.00 0.14

% 100 100 99.8 (0.5)

200 p̂m 0.01 0.11 0.97

% 100.0 (0.1) 99.9 (0.2) 98.1 (1.1)

Evaluation of the first step of the ORdensity method using different values of α. The
Table shows the estimated probability, p̂m , of no considering as a potential DE gene
at least one gene that it really is, and the mean proportion of DE genes (row named
“%”) that the procedure considered as potential DE genes. Corresponding standard
deviations are in brackets

Simulation study 2
General behavior
As in the above simulation study, the method identified
correctly the DE genes. With the strong selection, again,
no False Positive genes were obtained. With the more
relaxed selection, the worst results were obtained with
only 5 simulated DE genes. In the majority of situations
the method only considers as DE genes those in cluster 1,
with 0 or a very small number of False Positive genes.

Evaluation of the area under the ROC curve
Themean AUC values were very large and similar to those
obtained by SAM and limma even when the sample sizes
are small (Table 5, andAdditional file 1: Tables S24 and S25).

Detail evaluation of step 1
Concerning the results of the first step, we can observe
that as a general behaviour, themethod conrectly included
the DE genes in the set of potential genes. With an equal
number of samples (nX = nY = 30), the method included
all the DE genes in the set of potential genes, being
99.8% the worst result in the case of 3 blocks (Table 6).
When the number of samples in one condition is small
(nX = 30, nY = 10) and there is only one block of cor-
related genes, the same behaviour can be observed. With
2 or 3 blocks of correlated genes some of the DE can
be missed, however, the proportion of DE genes that are
actually in Sα is very large, being 87.5% in the worst case
(Additional file 1: Table 26, Figure 19).

Detail evaluation of step 2
As a general comment, one can see a strong correla-
tion/correspondence between being a cluster with high
OR and low false positiveness in the neighbourhood (FP,
dFP), along with a small number of False Positive genes
in the cluster. This holds for a different number of blocks
and a different number of genes in the blocks. With nX =
nY = 30 and one block (Table 7, Fig. 7), the worst results
were obtained for 5 simulated DE genes. In this case, the
method only considered those in cluster 1 as DE genes,
but the size of cluster 1 varied between 5 and 58 genes.
This high variability in the number of genes in cluster
1 is probably due to always considering 3 clusters. For
20 or 100 simulated DE genes, again the procedure only
considers genes in cluster 1 and not one False Positive
gene was detected. For two blocks, with 5 and 20, again
only cluster 1 was considered and no False Positives were
obtained. With 100 simulated DE genes in each block,
clusters 1 and 2 were considered by the method with 0
and 15.9 False Positives genes, respectively. With three
blocks, independently of the number of simulated DE
genes, no False Positives were found. Similar results were
obtained for nX = 30, nY = 10 (Additional file 1: Table 27,
Figure 20).

Evaluation of the area under the ROC curve
For nX = nY = 30, the mean AUC values were very large
and somewhat better than those obtained with limma and
SAM, especially for one and two blocks (Table 8). Similar
results were found for nX = 30, nY = 10.
In summary, the results with simulated data showed

that ORdensity correctly detects the DE genes and is
competitive with other well-known methods.

Actual data: lymphoma, Golub, colon and prostate cancer
data sets
For the three procedures, the number of genes selected
under the standard criterion varies, being much larger for
SAM and limma.
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b

a

Fig. 5 Simulation study 1, scenario 1 with nX = 30, nY = 10 and 100 runs. Evaluation of the first step of the ORdensity method using different values
of α. Top: in x axis number of DE genes; in y axis estimated probability, p̂m , of no considering as potential DE gene at least one gene that it really is.
Bottom: in x axis number of DE genes; in y axis mean proportion of DE genes that the procedure considered as potential DE genes
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Table 4 Simulation study 1, scenario 1 with nX = nY = 30 and
100 runs

� DE 10f0 Ci n̄i OR FP dFP FPC

(sd) (sd) (sd) (sd) (sd)

C1∗ 30.7 45.7 0.5 0.4 0.2

(7.9) (6.7) (0.3) (0.3) (0.9)

50 8.5 C2∗ 21.8 19.4 5.4 7.5 20.7

(5.9) (5.0) (2.1) (4.4) (20.9)

C3 32.9 8.4 9.2 29.0 93.7

(6.3) (0.6) (0.2) (3.0) (5.8)

C∗
1 34.1 46.5 0.0 0.0 0.0

(11.3) (6.3) (0.1) (0.1) (0.2)

1.5 100 8.5 C∗
2 56.2 22.5 1.5 1.8 1.6

(10.3) (2.7) (0.67) (9.0) (2.0)

C3 32.1 9.1 8.7 21.5 68.9

(5.6) (0.5) (0.35) (2.0) (8.9)

C∗
1 59.3 29.5 0.0 0.0 0.0

(12.5) (2.8) (0.0) (0.0) (0)

200 8.5 C∗
2 113.0 14.8 0.5 0.8 0.4

(13.0) (1.0) (0.2) (0.2) (0.6)

C3 25.3 8.0 6.0 9.9 14.9

(6.5) (0.5) (0.9) (1.8) (8.2)

C∗
1 22.3 86.3 0.0 0.0 0.0

(9.2) (17.1) (0.1) (0.0) (0)

50 8.0 C∗
2 27.8 42.0 1.4 1.5 5.8

(6.9) (9.2) (2.0) (3.3) (18.0)

C3 36.0 9.1 9.2 27.8 97.0

(5.3) (0.61) (0.19) (2.0) (2.7)

C∗
1 35.5 74.7 0.0 0.0 0.0

(7.9) (8.1) (0.0) (0.0) (0)

2 100 8.0 C∗
2 63.1 37.3 0.4 0.4 0.3

(7.9) (3.1) (0.2) (0.2) (0.7)

C3 26.0 8.8 9.3 24.9 93.7

(4.7) (0.6) (0.3) (1.9) (4.5)

C∗
1 69.2 46.6 0.0 0.0 0.0

(14.1) (3.9) (0.0) (0.0) (0)

200 8.0 C∗
2 122.9 23.8 0.2 0.2 0.0

(17.0) (2.4) (0.1) (0.1) (0.3)

C3 13.1 8.9 8.1 13.0 58.0

(17.3) (2.4) (2.0) (4.1) (23.1)

C∗
1 18.9 191.2 0.0 0.0 0.0

(6.6) (22.7) (0.0) (0.0) (0)

50 7.2 C∗
2 31.5 99.9 0.29 0.4 2.1

(4.9) (16.1) (1.2) (2.6) (14.1)

C3 37.0 9.0 9.2 27.7 99.8

(5.1) (0.6) (0.19) (1.5) (0.8)

Table 4 Simulation study 1, scenario 1 with nX = nY = 30 and
100 runs (Continued)

� DE 10f0 Ci n̄i OR FP dFP FPC

(sd) (sd) (sd) (sd) (sd)

C∗
1 38.6 155.7 0.0 0.0 0.0

(10.0) (15.1) (0.0) (0.0) (0)

3 100 7.1 C∗
2 61.3 83.4 0.0 0.0 0.0

(10.0) (6.6) (0.1) (0.0) (0)

C3 25.1 8.7 9.3 25.8 99.6

(4.5) (0.49) (0.26) (1.7) (1.1)

C∗
1 74.1 95.8 0 0 0.0

(16.4) (8.2) (0) (0) (0)

200 7.1 C∗
2 115.5 53.1 0.0 0.0 0.0

(21.3) (6.6) (0.0) (0.0) (0)

C3 16.1 12.5 8.3 16.4 86.0

(24.8) (11.9) (3.2) (6.8) (33.6)

Evaluation of the second step of the ORdensity method with α = 0.05. In the first
two columns, delta (�) values and number of total simulated DE genes. In column
3, the 10× f0 values where f0 is the average proportion of permuted cases in sets Ui .
In column 4, the “*” indicates the clusters considered by the procedure. Columns
5–8 contain for each cluster: the mean number of genes (n̄i), the mean of OR values
(OR), the mean of FP values (FP), the mean of dFP values (dFP). In the last column the
mean of False Positives genes per cluster in % (FPC). Corresponding standard
deviations are in brackets

For the lymphoma data set (1095 genes), the ORdensity
procedure selected 96 potential DE genes (#S0.05 = 96),
distributed in two clusters with 19 and 77 genes, respec-
tively. However, the strong selection could not be used
since no gene had FP and dFP values equal to 0. The
limma method produced a list with 24 and 88 genes using
Bonferroni and BH procedures, respectively. The SAM
procedure produced a list containing 64 genes. When the
Golub data set (with 7129 genes) was considered, the pro-
cedure selected 556 potentialDE genes, distributed in two
groups with 291 and 265 genes, respectively. Among the
genes in cluster 1, only 4 had FP and dFP values equal to
zero. Thus, with the ORdensity, the most restricted crite-
rion gave a list with only 4 genes and the relaxed criterion
gave a list with 291 genes. The limma method produced a
list with 193 and 938 genes using, respectively, Bonferroni
and BH methods, and the SAM procedure produced a list
with 403 genes.
For the colon data set (6000 genes), the ORdensity pro-

cedure selected 186 genes as DE potential genes (#S0.05 =
186), distributed in three clusters with 59, 88 and 39 genes,
respectively. Among the 59 genes of cluster 1, twelve of
them had no false positive permuted cases in their neigh-
bourhood, with FP and dFP values equal to zero. Thus,
with the ORdensity, the most restricted criterion gave a
list with only 12 genes and the relaxed criterion gave a
list with 59 genes. The limma method produced a list
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Fig. 6 Simulation study 1, scenario 1 with nX = nY = 30 and 100 runs. Evaluation of the second step of the ORdensity method with α = 0.05. In x
axis number of DE genes; in y axis the mean of False Positives genes per cluster in % (FPC). In red cluster 1 (C1), in green cluster 2 (C2) and in blue
cluster 3 (C3)

with 49 and 366 genes using Bonferroni and BH, respec-
tively, and the SAM procedure produced a list containing
166 genes.
In the case of the prostate data set (12626 genes),

1531 potential DE genes (#S0.05 = 1531) were detected
belonging to two clusters with 990 and 541 genes, respec-
tively. Out of the 990 genes in cluster 1, 131 had no
false positive permuted cases in their neighbourhood,
with FP and dFP values equal to zero. Different num-
ber of selected genes were considered: the 131 pro-
duced by the more restricted ORdensity; the 990 for the
relaxed ORdensity; the 1531 total candidate genes; the
263 and 2684 selected by limma rule under Bonferroni
and BH, respectively, and the 3322 genes selected under
SAM procedure.
The results obtained with these actual data sets

are shown in Tables 9, 10, 11 and 12, respectively. The
leave-one-out cross-validation correct classification rate
(rows I in Tables 9, 10, 11 and 12) indicates that ORdensity
does not lead to overfitting, and can achieve the objectives
of reducing the set of selected genes and reaching high
leave-one-out cross-validation correct classification accu-
racy rates. With the lymphoma data set, the ORdensity,
with the 19 genes selected, reached 100% of leave-one-out

cross-validation correct classification rate and this result
was matched by SAM and limma using 19 or 24 genes,
respectively. With the Golub data set and using only 4
genes, a correct classification rate of 90.28% was reached
and with the 291 genes selected by the relaxed selection
the maximum value of 97.22% was obtained. With limma
or SAM, using the first 4 selected genes, the classification
rate was improved (97.22 versus 90.28), but using limma
or SAM there was not any objective criterion to select 4
genes. A similar situation happened with the colon and
prostate data sets.
As can be observed (rows II in Tables 9, 10, 11

and 12), the three methods only share some of the genes
in their respective lists, as is usual in these type of
procedures. Furthermore, the method with which our
analysis shares more genes varies according to each
data set.
These results indicated that ORdensity returns a small

number of crucial genes, that are strongly related to the
disease, since the values of leave-one-out cross-validation
correct classification rates are large. As a general trend,
SAM and limma consider a larger number of DE genes,
but nevertheless it does not guarantee to obtain better
leave-one-out cross-validation correct classification rates.
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Table 5 AUC mean values for Simulation study 1, scenario 1 and
100 runs. In first column: n indicates the number of DE gens; �
the � values; A the ORdensity method; B the limma method and
C the SAMmethod

nX = nY = 30
n 50 100
� 1.5 2 3 1.5 2 3

A 0.998 0.998 0.997 0.998 0.997 0.995

(0.002) (0.001) (0.002) (0.001) (0.002) (0.003)

B 0.995 0.993 0.993 0.997 0.993 0.993

(0.002) (0.000) (0.000) (0.003) (0.000) (0.000)

C 0.994 0.993 0.993 0.996 0.993 0.993

(0.003) (0.000) (0.000) (0.002) (0.000) (0.000)

nX = nY = 30 nX = 30, nY = 10
n 200 50
� 1.5 2 3 1.5 2 3

A 0.996 0.997 0.993 0.974 0.996 0.998

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

B 0.997 0.992 0.992 0.967 0.996 0.993

(0.003) (0.001) (0.000) (0.011) (0.003) (0.001)

C 0.998 0.992 0.992 0.940 0.994 0.993

(0.002) (0.001) (0.000) (0.016) (0.003) (0.001)

nX = 30, nY = 10
n 100 200
� 1.5 2 3 1.5 2 3

A 0.973 0.994 0.998 0.959 0.992 0.997

(0.001) (0.002) (0.003) (0.000) (0.000) (0.000)

B 0.981 0.997 0.993 0.993 0.998 0.992

(0.006) (0.003) (0.000) (0.002) (0.002) (0.000)

C 0.946 0.995 0.993 0.960 0.996 0.992

(0.010) (0.003) (0.000) (0.007) (0.002) (0.000)

nX = nY = 10
n 50 100
� 1.5 2 3 1.5 2 3

A 0.925 0.974 0.998 0.921 0.971 0.997

(0.014) (0.011) (0.011) (0.010) (0.001) (0.008)

B 0.894 0.980 0.994 0.931 0.989 0.994

(0.023) (0.009) (0.001) (0.013) (0.004) (0.002)

C 0.859 0.959 0.994 0.865 0.960 0.994

(0.023) (0.015) (0.001) (0.016) (0.009) (0.002)

nX = nY = 10
n 200
� 1.5 2 3

A 0.900 0.956 0.996

(0.002) (0.001) (0.001)

B 0.968 0.996 0.993

(0.007) (0.001) (0.003)

C 0.876 0.974 0.995

(0.017) (0.007) (0.003)

Table 6 Simulation study 2 with nX = nY = 30 and 100 runs

Number of 1 block 2 blocks
DE genes α α

per block 0.1 0.05 0.01 0.1 0.05 0.01

5 p̂m 0 0 0 0 0 0

% 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

20 p̂m 0 0 0 0 0 0

% 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

100 p̂m 0 0 0 0 0 0

% 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

Number of 3 blocks
DE genes α

per block 0.1 0.05 0.01

5 p̂m 0 0 0

% 100 (0) 100 (0) 100 (0)

20 p̂m 0 0 0.01

% 100 100 99.9 (0.7)

100 p̂m 0 0.01 0.04

% 100 (0) 100.0 (0.0) 99.8 (1.9)

Evaluation of the first step of the ORdensity method using different values of α. The
Table shows the estimated probability, p̂m , of no considering as a potential DE gene
at least one gene that it really is, and the mean proportion of DE genes (row named
“%”) that the procedure considered as potential DE genes. Corresponding standard
deviations are in brackets

It is important to note that ORdensity identifies several
genes, not detected by the other methods, that are biolog-
ically relevant. For instance, consider the strong selection
with the leukemia data set. Interestingly, genes selected
only by our method could be fundamental to explain some
traits of the leukemia. For example, our method recog-
nizes genes that codify for cyclin D2 (protein involved in
cell cycle), neprilysin (an enzyme common in acute lym-
phoblastic leukemia), a protein-tyrosine phosphatase of
T-cells and a protein similar to phorbolin-1 (that can be
expressed in leukocytes).
Finally, we evaluated the stability of the procedure in

order to assess how often a gene, selected as DE with
the original sample, was selected again when a fraction
of the 20% of the original data was eliminated at ran-
dom. In order to mitigate any effect of selection bias,
the process was repeated 10 times. Note that (rows III in
Tables 9, 10, 11 and 12) ORdensity procedure was, in gen-
eral, the method that best kept a coherent list with DE
genes.
From a biomedical point of view, all the above results

indicated that our method is very valuable to detect a
small group of genes with a large effect in a particular dis-
ease. Therefore, this information can be used to develop
new in vivo and in vitro studies.
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Table 7 Simulation study 2, with nX = nY = 30 and 100 runs

B DE 10f0 Ci n̄i OR FP dFP FPC
(sd) (sd) (sd) (sd) (sd)

C∗
1 27.9 160.4 6.6 8.1 32.0

(31.2) (102.2) (1.1) (10.8) (43.9)

5 9.1 C2 92.1 10.1 9.0 24.1 100

(25.5) (0.8) (0.4) (4.0) (0)

C3 82.5 7.8 9.4 41.6 100

(17.9) (0.3) (0.3) (2.2) (0)

C∗
1 20.0 233.0 0.0 0.0 0.0

(0.0) (35.1) (0.0) (0.0) (0)

1 20 9.1 C2 96.5 10.4 9.0 22.0 100

(12.7) (0.5) (0.1) (1.5) (0)

C3 90.1 7.7 9.2 41.1 100

(14.2) (0.2) (0.1) (1.4) (0)

C∗
1 100.0 209.5 0.0 0.0 0.0

(0.0) (32.9) (0.0) (0.0) (0)

100 8.9 C2 73.7 10.8 9.1 20.7 100

(10.9) (0.59) (0.2) (1.5) (0)

C3 69.1 8.2 9.2 37.5 100

(11.2) (0.25) (0.2) (1.6) (0)

C∗
1 9.9 119.7 1.0 0.2 0.0

(0.6 ) (16.9) (0.2) (0.0) (0.0)

10 9.1 C2 102.2 10.5 9.0 22.1 99.9

(14.2) (0.7) (0.1) (1.5) (0.7)

C3 94.2 7.7 9.2 41.7 100

(13.2) (0.2) (0.1) (1.4) (0.0)

C∗
1 40.0 118.6 0.0 0.0 0.0

(0.1) (20.0) (0.0) (0.0) (0.0)

2 40 9.1 C2 97.0 10.3 9.1 22.2 100

(12.0) (0.5) (0.1) (0.4) (0.0)

C3 87.4 7.7 9.2 41.2 100

(12.9) (0.2) (0.1) (1.2) (0.0)

C∗
1 115.9 120.1 0.0 0.0 0.0

(38.9) (18.9) (0.0) (0.0) (0.0)

200 8.6 C∗
2 95.3 72.7 1.6 3.7 16.7

(15.5) (31.3) (3.5) (8.2) (37.8)

C3 118.5 8.9 9.3 31.2 100

(28.3) (0.5) (0.1) (3.2) (0.0)

C∗
1 14.6 86.2 0.26 0.09 0.0

(1.14) (14.1) (0.31) (0.11) (0)

15 9.0 C2 103.9 9.0 8.4 22.1 99.6

(11.8) (0.13) (0.48) (1.5) (1.1)

C3 92.8 7.2 9.2 41.6 100

(10.7) (0.77) (0.13) (1.4) (0.0)

C∗
1 59.9 81.2 0.03 0.03 0.0

Table 7 Simulation study 2, with nX = nY = 30 and 100 runs
(Continued)

B DE 10f0 Ci n̄i OR FP dFP FPC

(sd) (sd) (sd) (sd) (sd)

(0.29) (12.1) (0.07) (0.06) (0)

3 60 8.9 C2 93.8 10.3 9.1 22.3 99.9

(12.3) (0.43) (0.13) (1.4) (0.3)

C3 87.2 7.7 9.2 41.3 100

(11.4) (0.16) (0.13) (1.3) (0.0)

C∗
1 142.4 81.0 0.00 0.00 0.0

(31.0) (13.7) (0.00) (0.00) (0)

300 8.4 C∗
2 157.5 54.6 0.03 0.04 0.0

(31.0) (11.1) (0.06) (0.09) (0)

C3 119.2 8.9 9.4 30.3 99.9

(11.4) (0.28) (0.10) (0.96) (0.02)

Evaluation of the second step of the ORdensity method with α = 0.05. In the first
column number of blocks. In column 2, the number of total simulated DE genes. In
column 3, the 10 × f0 values where f0 is the average proportion of permuted cases
in sets Ui . In column 4, the “*” indicates the clusters considered by the procedure.
Columns 5–8 contain for each cluster: the mean number of genes (n̄i ), the mean of
OR values (OR), the mean of FP values (FP), the mean of dFP values (dFP). In the last
column the mean of False Positives genes per cluster in % (FPC). Corresponding
standard deviations are in brackets

Discussion
In this paper, a novel procedure, ORdensity, is proposed
for the detection of differentially expressed genes. The
proposed method is not a gene-by-gene procedure, and
it takes into account the relationships between genes.
The procedure obtains a ranking of importance of genes
based in three measures, which reflect if the differences
between quantiles for a gene under the two considered
experimental conditions are important enough in order
to consider the gene as a DE gene and if, in its neigh-
bourhood, there are permuted false positives or not. We
have presented an exhaustive evaluation of the perfor-
mance of ORdensity using simulated microarray data, and
results indicated that the new method correctly detects
the DE genes. Furthermore, the simulation study showed
that the procedure is useful even with small samples and
it is competitive with other well established procedures,
such as SAM and limma. The results, obtained with actual
cancer microarray data sets, showed that ORdensity is
very useful to obtain a small number of DE genes with
high correct classification rate by the leave-one-out cross-
validation approach and it is, in general, more stable than
other well accepted procedures when the original sample
is substituted with a subsample.
The main advantages of the proposed method are,

therefore, that it returns very small sets of genes that
retain a high predictive accuracy; the selected gene list is
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Fig. 7 Simulation study 2 with nX = nY = 30 and 100 runs. Evaluation of the second step of the ORdensity method with α = 0.05. In x axis number
of DE genes; in y axis the mean of False Positives genes per cluster in % (FPC). In red cluster 1 (C1), in green cluster 2 (C2) and in blue cluster 3 (C3)

Table 8 AUC mean values for Simulation study 2, with
nX = nY = 30 and 100 runs

nX = nY = 30
1 block 2 blocks

Nb. DE genes 5 20 100 5 20 50

ORdensity 0.995 0.995 0.980 0.993 0.998 0.985

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

limma 0.701 0.854 0.903 0.796 0.789 0.917

(0.0004) (0.001) (0.001) (0.000) (0.001) (0.045)

SAM 0.701 0.854 0.902 0.796 0.789 0.918

(0.001) (0.001) (0.00002) (0.000) (0.0003) (0.045)

3 block
Nb. DE genes 5 20 50

ORdensity 0.983 0.997 0.990

(0.002) (0.000) (0.000)

limma 0.982 0.997 0.990

(0.001) (0.003) (0.069)

SAM 0.825 0.994 0.876

(0.000) (0.003) (0.070)

Table 9 Lymphoma cancer data set

Ns

19 24 64 88 96

I ORdensity 100 100 100 100 100

limma 95.24 100 100 100 -

SAM 100 100 100 - -

II A vs B 13 17 14 17 -

A vs C 14 16 42 63 -

B vs C 17 23 58 - -

III ORdensity 10.2 13.2 40.4 61.4 65.3

(1.48) (2.84) (2.01) (2.27) (3.13)

limma 7.9 9.7 27.4 36.7 -

(0.87) (1.57) (2.17) (1.34) -

SAM 14.2 17.3 51.4 - -

(2.82) (3.97) (8.85) - -

Results for different number (Ns) of selected genes: 19 with ORdensity relaxed
selection; 24 with limma and Bonferroni; 64 with SAM; 88 with limma and BH, and
96 total potential DE genes. Rows I present the leave-one-out cross-validation
correct classification rate. In bold, the results for the genes selected under standard
criteria for ORdensity, limma and SAM procedures; in rows II, number of common
selected genes between the ORdensity, limma and SAM approaches; in rows III,
mean and standard deviation (in brackets) of the number of genes that for 10
subsamples were always kept selected
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Table 10 Golub cancer data set

Ns

4 193 291

I ORdensity (A) 90.28 97.22 97.22
limma (B) 97.22 97.22 97.22
SAM (C) 97.22 97.22 97.22

II A vs B 1 127 206
A vs C 1 130 213
B vs C 4 175 265

III ORdensity 0.5 (0.71) 150.4 (3.89) 241.8 (6.94)
limma 0 12.3 (2.26) 4.3 (1.83)
SAM 3.3 (0.48) 151.8 (24.18) 220.7 (35.88)

Ns

403 556 938

I ORdensity (A) 97.22 97.22 -
limma (B) 97.22 97.22 97.22
SAM (C) 97.22 - -

II A vs B 274 358 -
A vs C 280 - -
B vs C 368 - -

III ORdensity 334.1 (6.03) 473.3 (9.56) -
limma 029.2 (2.44) 55.5 (3.10) 149.3 (6.36)
SAM 316.3 (50.06) - -

Results for different number (Ns) of selected genes: 4 with ORdensity strong
selection; 193 with limma and Bonferroni; 291 with ORdensity relaxed selection; 403
with SAM; 556 total potential DE genes and 938 with limma and BH. Rows I present
the leave-one-out cross-validation correct classification rate. In bold, the results for
the genes selected under the standard criteria for ORdensity, limma and SAM
procedures; in rows II, number of common selected genes between the ORdensity,
limma and SAM approaches; in rows III, mean and standard deviation (in brackets) of
the number of genes that for 10 subsamples were always kept selected

Table 11 Colon cancer data set

Ns

12 49 59

I ORdensity (A) 88.71 90.32 90.32
limma (B) 91.94 88.71 88.71
SAM (C) 85.48 88.71 88.71

II A vs B 7 32 38
A vs C 0 14 22
B vs C 2 26 29

III ORdensity 7.5 (1.27) 35.4 (4.09) 43.0 (3.56)
limma 0.1 (0.32) 3.5 (0.85) 4.1 (0.57)
SAM 1.8 (1.14) 23.7 (2.98) 29.4 (3.57)

Ns

166 186 366

I ORdensity (A) 87.10 87.10 -
limma (B) 87.10 87.10 87.10
SAM (C) 87.10 - -

II A vs B 119 134 -
A vs C 118 - -
B vs C 155 - -

III ORdensity 127.2 (4.49) 142.5 (4.84) -
limma 13.1 (1.37) 16.7 (2.21) 72.1 (4.72)
SAM 136.7 (5.23) - -

Results for different number (Ns) of selected genes: 12 with ORdensity strong
selection; 49 with limma and Bonferroni; 59 with ORdensity relaxed selection; 166
with SAM; 186 total potential DE genes and 366 with limma and BH. Rows I present
the leave-one-out cross-validation correct classification rate. In bold, the results for
the genes selected under standard criteria for ORdensity, limma and SAM
procedures; in rows II, number of common selected genes between the ORdensity,
limma and SAM approaches. In rows III, mean and standard deviation (in brackets) of
the number of genes that for 10 subsamples were always kept selected

Table 12 Prostate cancer data set

Ns

131 263 990

I ORdensity (A) 75.49 74.51 70.59

limma (B) 86.27 82.35 71.57

SAM (C) 82.35 76.47 70.59

II A vs B 64 170 691

A vs C 64 159 746

B vs C 54 211 791

III ORdensity 72.4 (7.12) 184.1 (23.56) 787.6 (29.40)

limma 108.6 (4.99) 220.2 (10.07) 827.2 (39.17)

SAM 0.7 (0.67) 4.4 (0.84) 66.1 (4.38)

Ns

1531 2684 3322

I ORdensity (A) 66.67 - -

limma (B) 70.59 68.63 -

SAM (C) 70.59 66.67 65.69

II A vs B 961 - -

A vs C 1035 - -

B vs C 1321 2422 -

III ORdensity 1215.4 (99.66) - -

limma 1297.9 (50.64) 2299.5 (86.19) -

SAM 165.1 (6.15) 563 (19.87) 862.2 (19.41)

Results for different number (Ns) of selected genes: 131 with ORdensity strong
selection; 263 with limma and Bonferroni; 990 with ORdensity relaxed selection;
1531 total potential DE genes; 2684 with limma and BH, and 3322 with SAM. Rows I
present the leave-one-out cross-validation correct classification rate. In bold, the
results for the genes selected under standard criteria for ORdensity, limma and SAM
procedures; in rows II, number of common selected genes between the ORdensity,
limma and SAM approaches; in rows III, mean and standard deviation (in brackets) of
the number of genes that for 10 subsamples were always kept selected

stable; it avoids the classical multiple comparison restric-
tions; as it takes into consideration the tails of distri-
butions, it can detect outlying genes that only exhibit
differential qualities in the tails, and, moreover, as we
can cluster the genes using the three discriminative val-
ues OR, FP and dFP, different patterns of genes can
be obtained. The results generated by our new proce-
dure could be of extreme interest to biomedical research,
because they can focus on a short, but crucial number of
genes. Thus, these small numbers of genes could act as
the corner stones to understand the origin and develop-
ment of several serious diseases. The idea that lies beneath
the proposed methodology seems applicable to RNA-
Sequencing data. However, although it is usual to model
RNA-Seq data as both negative binomial distribution
and as normal distribution by ln-transforming normal-
ized count data, because the properties of RNA-Seq data
have not yet been fully established, additional research
is needed.
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Conclusions
Here we present a new method to identify differentially
expressed genes that avoids losing sensitivity due to cor-
rection by multiple comparisons. This method is able
to identify the nucleus of the genes that are candidates
to explain a particular disease or pathology. With this
information, further biomedical studies can be developed,
focusing the attention in these candidate genes.
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