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Abstract

Background: Many biological analysis tasks require extraction of families of genetically similar sequences from large
datasets produced by Next-generation Sequencing (NGS). Such tasks include detection of viral transmissions by
analysis of all genetically close pairs of sequences from viral datasets sampled from infected individuals or studying of
evolution of viruses or immune repertoires by analysis of network of intra-host viral variants or antibody clonotypes
formed by genetically close sequences. The most obvious naïeve algorithms to extract such sequence families are
impractical in light of the massive size of modern NGS datasets.

Results: In this paper, we present fast and scalable k-mer-based framework to perform such sequence similarity
queries efficiently, which specifically targets data produced by deep sequencing of heterogeneous populations such
as viruses. It shows better filtering quality and time performance when comparing to other tools. The tool is freely
available for download at https://github.com/vyacheslav-tsivina/signature-sj

Conclusion: The proposed tool allows for efficient detection of genetic relatedness between genomic samples
produced by deep sequencing of heterogeneous populations. It should be especially useful for analysis of relatedness
of genomes of viruses with unevenly distributed variable genomic regions, such as HIV and HCV. For the future we
envision, that besides applications in molecular epidemiology the tool can also be adapted to immunosequencing
and metagenomics data.

Keywords: Similarity search, Similarity join, K-mer, Filtering, Edit distance, Hamming distance

Background
Consider two sets T1 and T2 each containing N DNA or
RNA sequences of length L. The similarity join problem
consists in locating the set P of all pairs of sequences, with
one sequence from T1 and the other from T2, within an
edit distance or Hamming distance defined by the speci-
fied threshold t. In molecular epidemiology, this compu-
tational problem needs to be solved for detection of viral
transmissions from sequences of intra-host viral variants
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sampled from infected individuals [1, 2]. Viral popula-
tions, for which the minimal inter-sample distance does
not exceed the threshold, are considered to be potentially
linked by transmission [1], while the number of pairs in P
may suggest the time since a transmission event [3]. The
related genetic network construction problem aims to build
a graph with vertices corresponding to sequences from a
given dataset T and edges corresponding to all pairs of
sequences with an edit or Hamming distance less than the
threshold t. This problem arises in studying and analysis
of viral populations [4] or antibody repertoires [5]. Similar
problems also emerged under different names in various
areas of computer science [6–10].
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The edit distance between a pair of sequences can be
calculated in time O(L2) using dynamic programming
[11]. If only distances below a desired threshold t which
is small relative to L are desired. The distance calculation
can be carried out with a small subset of diagonals neigh-
boring the main diagonal of the dynamic programming
matrix, leading to O(tL) time algorithm [12]. In this case
a naïve algorithm for the similarity join problem requiring
pairwise comparison of all sequences has an asymptotic
running time O(tLN2), which is still impractical for more
than several thousand sequences.
Several filtering-based approaches have been put for-

ward to improve the efficiency of the similarity join-type
problems by reducing the number of pairs to be com-
pared. Note that while fast heuristic and approximate
methods exist such as Shingling [13], LSH [7], or BLAST
[14], this paper focuses on the problem of exact distance
calculation.
The common filtering approach is based on on the fun-

damental idea that related sequences should share long
k-mers (substrings of length k) [15]. Several existingmeth-
ods rely on signature schemes to quickly locate feasibly
linked pairs [6] by assuming that pairs with an edit or
Hamming distance which does not exceed a threshold t
will share at least a certain number of k-mer-based sig-
nature keys. However, straightforward application of this
technique to viral sequencing data is not sufficiently effi-
cient, since mutations are not distributed uniformly along
viral genomes, but tend to concentrate in short hypervari-
able regions [16]. As a result, many viral sequences share
k-mers, thus significantly reducing the efficiency of filter-
ing. The same effect has been observed for immunose-
quencing data [5], where all antibodies originating from
the same V gene often share a k-mer from that gene.
In this paper, we describe a tool which uses k-mer-based

signature filtering scheme optimized for viral data to solve
the following problems:

• Sample pair filtering: given two NGS sequence
samples T1 and T2, quickly determine whether the
distances between all inter-sample pairs of sequences
are greater than the threshold t.

• Inter-sample sequence retrieval (similarity join):
given two NGS sequence samples T1 and T2, find all
inter-sample pairs of sequences at edit distance or
hamming distance below the threshold t.

• Intra-sample sequence retrieval (or genetic network
construction): given an NGS sequence sample T1,
find all pairs of sequences at edit distance or
hamming distance below the threshold t.

The tool was validated using Hepatitis C Virus (HCV)
data in the settings used for detection of viral transmis-
sions and outbreaks [1, 2].

Methods
Notation
In the methods description, we assume that input
sequence samples T1 and T2 both contain N sequences of
length L, which cover the same genomic region. From here
onwards we will use k as a fixed predefined parameter.
Further we will use the following notation:

• S = s1s2 . . . sL - sequence over the alphabet
{A,C,T ,G}.

• S[ i : j]= sisi+1 . . . sj - subsequence of S starting at
position i and ending at position j.

• k-mer - any subsequence of length k
• k-segment - k-mer that starts at a position 1 + ik,

i = 0, 1, 2, . . ..
• K(S) - the set of all k -mers of the sequence S.
• R(S) - the family of all k -segments of the sequence S

(possibly with repetitions).
• h(S,Q) - Hamming distance between two sequences

S and Q
• l(S,Q) - edit distance (Levenshtein distance) between

two sequences S and Q

• led(S,Q) =
{
l(S,Q), ifl(S,Q) ≤ t
−1, otherwise

- limited edit

distance, as mentioned above, could be calculated
using dynamic programming [12]

Main Data Structure
Our signature-based filtering scheme is based on the
following simple observation:

Proposition 1.1 [6] If l(S,Q) ≤ t, then |K(Q) ∩ R(S)| ≥
m − t, where m = ⌊L

k
⌋
.

Proof If S and Q differ by an edit distance of t, then
by the pigeon hole principal at most t k-segments dif-
fer between the sequences S and Q. So at least m − t
k-segments must be the same.

Thus we need a fast way to calculate the number of com-
mon k-segments and k-mers for a given pair of sequences.
To do it we introduce a hash function:

hash(S[ i : j] ) =
j∑

l=i
f j−l(sl), (1)

where f : {A,C,G,T} → {0, 1, 2, 3} is an arbitrary bijec-
tion. For k-mers with k < 32, this hash function allows
us to store them as 64-bit integers and can be quickly
recursively calculated as follows:

hash(S[ i+1 : j+1] ) = hash(S[ i : j] )−4n−1f (si)+f (sj+1)

(2)
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In addition, the hash can be inverted and so only the hash
values of k − mers need to be stored.
In the proposed framework, each sample T is stored

using a data structure further referred to as a T-dictionary
and denoted by dict(T), which consists of the following
fields:

• dict(T).HM - an inverted index of T [17], i.e. a hash
table, where each key is a k-mer hash and its value is
a set of all sequences from T that contain this k-mer.

• dict(T).KM - A set of all possible k-mer hashes in T
• dict(T).KS - hash table, where keys are sequences

and values are lists of their k -segments (represented
by their hash values) from 1 to m

• dict(T).SC - A list of L sets SC1, . . . , SCm, where SCi
is a set of all k -segments in a position 1 + ik
(represented by their hash values).

Algorithm Description
We will first describe the approach for the sample pair
filtering problem. Building a simple and fast filter for unre-
lated samples T1 and T2 is easy by applying Proposition
1.1 to whole samples as follows. Recall that T1 and T2
are considered to be genetically related, if the minimal
edit distance between their sequences does not exceed the
threshold t. Given two dictionaries dict(T1) and dict(T2),
the necessary condition for their genetic relatedness is
an existence of at least m − t positions {i1, i2, . . . , im−t}
such that dict(T1).SCij ∩ dict(T2).KM �= ∅ for every
j = 1, . . . ,m − t. The sample pair filter pseudocode is
presented at Algorithm 1.

Algorithm 1 Simple filter for unrelated samples
1: function CALCULATECOINCI-

DENCES(dictT1,dictT2,m,t)
2: coincidences = 0
3: for lSegmentHashes ∈ dict1.SC do
4: for hash ∈ lSegmentHashes do
5: if hash ∈ dict2.KM then
6: coincidences ←

coincidences + 1
7: break
8: end if
9: end for

10: end for
11: return coincidences ≥ m − t
12: end function
13:

Assuming that membership verification for a hash set
dict(T).KM can be performed in time O(1), the worst-
case running time of the filter is O(NL). In real settings,

samples with genetically related sequences produce signif-
icantly smaller maps dict(T).SC, thus leading to a lower
average running time than in the worst case.
The algorithms for inter-sample sequence retrieval and

intra-sample sequence retrieval problems are very similar,
so we will describe the approach for the former problem.
As before, let T1 and T2 be two samples. The algorithm
first constructs the set of candidate neighbors CNS ⊆ T2
for every sequence S ∈ T1. This procedure (the filtering),
is followed by the verification procedure, which calculates
actual neighbors of all sequences S ∈ T1 by calculating
distances between S and all sequences S′ ∈ CNS. The
pseudocode for inter-sample sequence retrieval algorithm
is presented in Algorithm 2.
The basic filtering strategy utilizes Proposition 1.1, with

the following features aiming at improvement of the run-
ning time. For each S ∈ T1, the set CNS can be imple-
mented as a hash table, with keys being sequences S′ ∈ T2
and values CNS(S′) being numbers of matches between
k-segments in S and k-mers of S′. Let LS be the num-
ber of k-segments of S that occur as k-mers in T2, and
I = (i1, i2, . . . .iLS ) be the list of starting positions of these
k-segments. To calculate the number of matches between
k-segments in S and k-mers of S′ we may iterate over the
list I and increment the current value of CNS(S′), when
necessary. If after j iterations the inequality

m − t ≤ LS − j + CNS(S′) (3)

does not hold, then S′ cannot accumulate the required
number of matches with the remaining iterations, and
therefore the sequence S′ can be filtered out right away.
These considerations imply that the order in which start-
ing positions of k-segments are examined is important in
determining the algorithm’s running time.
The order of k-segment starting positions is determined

heuristically as follows. For each position i let kS(i) =
|dict(T2).HM(S[ i : i+k−1] )| be the number of sequences
from T2 that contain the i-th k-segment from S. If we
sort positions by ascending order of the numbers kS(i) it
usually leads to faster pruning of sequence pairs as this
order minimizes the size of the candidate set that must be
examined at each iteration.
Another simple adjustment could be implemented using

the fact that the hamming distance is an upper bound for
an edit distance, while the calculation of the former is sig-
nificantly faster. Therefore if h(S,Q) ≤ t, then Q can be
added to the list of neighbors of Swithout the edit distance
calculation.

Hamming distance adjustment
The filtering strategy described above can be further
improved, if the input sequences are aligned to a reference.
In this case the samples can be compared using Ham-
ming distance instead of an edit distance. For Hamming
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Algorithm 2 Signature-based filter to find sequence pairs closer than threshold
1: function SIGNATUREFILTER(T1,T2,dictT1,dictT2,t)
2: for s ∈ T1 do � lines 4 through 12 calculate candidates list CNs for each sequence s
3: CNs ←hash map (sequence→hit count)
4: order ← indexes of segments sorted in ascending order by their frequencies in T2
5: Ls ← number of k-segments from s that appear in T2
6: for i = 0 → Ls do
7: if i ≤ Ls − (m − t) then
8: FILL(CNs,s,dictT1,dictT2,order,i) � Fill candidates list with sequences that have i-th

k-segment from s
9: else

10: CNs ← FILTER(CNs,s,dictT1,dictT2,order,i) � Filter sequences from candidates list that
do not sharem − k k-mers

11: end if
12: end for
13: � lines 15 through 21 examine sequences from the candidate list CNs
14: for s’ ∈ keys of CNs do
15: if h(s,s’) ≤ t or led(s,s’) �= −1 then
16: s and s’ are related
17: end if
18: end for
19: end for
20: end function
21:
22: � function FILL adds all sequences from T2 that share the same k-mer with s
23: function FILL(CNs,s,dictT1,dictT2,order,i)
24: segmentHash ← dictT1.KS[s][order[i]]
25: for s’ ∈ dict2.HM[segmentHash] do
26: add {s’,1} to CNs or increment current value for key s’
27: end for
28: end function
29:
30: � function checks candidate sequences and remove them if they do not share enough k-mers with s
31: function FILTER(CNs,s,dictT1,dictT2,order,i)
32: segmentHash ← dictT1.KS[s][order[i]]
33: filteredCandidates ← hash map (sequence→hit count)
34: for s’ ∈ CNs do
35: isInDict ← s’ ∈ dictT2.HM[segmentHash]
36: � we keep sequence if it has k-mer equal to current segment in s or if it already has enough hits
37: if isInDict or m − t ≤ Ls − i + candidates[s’] then
38: addVar ← 1 if isInDict is true, 0 otherwise
39: add {s’,CNs[s’] + addVar} to filteredCandidates
40: end if
41: end for
42: return filteredCandidates
43: end function

distance, Proposition 1.1 can be applied to k-segments
of both comparable sequences thus simplifying the filling
and filtering steps.
Furthermore, genomic heterogeneity is distributed

highly irregularly along the genomes of species of inter-
est. For example, Fig. 1 illustrates the distribution of

nucleotide entropy for a particular intra-host popula-
tion along the 264bp-long genomic HCV region at the
junction of envelope glycoproteins E1 and E2, which is
often used in epidemiological and immunological stud-
ies [1, 18, 19]. It should be noticed that k-segments
from conserved regions are significantly less useful for
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Fig. 1 Distribution of nucleotide entropy along the E1/E2 region of HCV for a population of 469 unrelated genotype 1a sequences obtained from
NCBI

the filtering as we want to maximize detectable dif-
ferences between tested sequences. The non-uniformity
in genomic heterogeneity can be taken into account by
switching to the framework with k-segments of unequal
size. By selecting k-segment boundaries that contain
roughly equal amounts of average information entropy
over the dataset, the filtering speed and quality could
be significantly improved. Figure 2 provides an exam-
ple, when entropy-based k-segments length allows more
accurate filtering than uniform k-segments length. For-
mally, let Hi = − ∑4

j=1 P(xij)log2(P(xij)) be the sample
nucleotide entropy at position i, where P(xij) is a fre-
quency of nucleotide xij on i-th position of the alignment.
The segments are selected in such a way that for every
segment [ i, j] we have

∑j
l=i Hl ≈ H

m
, where H = ∑L

i=1Hi

and m is the number of segments. Different numbers of

Fig. 2 Example of two exact pairs of strings, but with equal (k = 4) (a)
and entropy-based (b) segments size and t = 1. In case (a) the pair
passes the filter, in case (b) it doesn’t pass the filter

segments were examined empirically and the best perfor-
mance was obtained withm = t + 7.

Results
Validation Data
The developed tool was validated using NGS datasets of
intra-host HCV populations sampled from infected indi-
viduals. Each dataset contains the E1/E2 junction of the
HCV genome of length 264nt, which contains the Hyper
Variable Region 1 (HVR1) region. Each sample was pro-
cessed by error correction and haplotyping tools, and as a
result we receive as an input datasets consisting of unique
HCV haplotypes.
We used a set of 413 samples from [2] with 501.5 hap-

lotypes per sample in average produced by NGS; 8 datat-
sets d1, . . . , d8 with 1000, 2000, . . . , 128 000 sequences
produced by random sampling from NGS dataset with
sequences sampled from chronically infected individuals
and one additional NGS dataset m1 consisting of 10 467
sequences. The data are available in tool’s repository.
In all tests, the threshold t = 3.77% ≡ 10nt was

used. This value is derived in [1] as empirically validated
recommended threshold for separation between epidemi-
ologically related and unrelated intra-host HCV HVR1
populations.
All tests were run on server with 128 Intel Xenon E7-

4850 2.1GHz cores and 1.4Tb RAM. For Inter-sample
sequence retrieval desktop PC was used with 4 Intel(R)
Core(TM) i7-5500 2.4GHz cores and 8Gb RAM. All code
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Table 1 Results of Filter Composition pipeline and k-mer based
signature scheme filtering for Sample pair filtering and
Inter-Sample Sequence Retrieval problems

Method Filter Composition Signature Scheme

Percent of filtered sample pairs 85.1% 92%

Percent of filtered sequence pairs 91.5% 99.996%

Total Time ∼ 5 min ∼ 15 sec

is written on Java to provide a threaded, platform indepen-
dent solution.

Sample pair filtering and Inter-Sample Sequence Retrieval
validation
For Sample pair filtering and Inter-Sample Sequence
Retrieval problems, we validated the tool using HCV
datasets from [2]. The proposed approach has been com-
pared with the Filter Composition pipeline proposed in
[2]. Both methods were run on a desktop computer, as in
the original paper [2]. The results are reported in Table 1.
Here we show the result of comparison of all pairs of
samples and all inter-sample pairs of sequences.
The proposed sample pair filtration algorithm removed

92% of all possible samples pair comparisons, and
sequence pair filtering algorithm managed to filter out
99.996% of all possible sequence pairs. The latter means
that only 888,914 out of 22,037,502,011 sequence pairs
passed from filtering to verification stage of the algorithm.
As a result, the proposed approach significantly outper-
forms the Filter Composition Pipeline in filtering quality
and in running time.
We studied how the filtering quality is affected by differ-

ent optimization subroutines (Table 2). Disabling sample
pair filtering increases the running time for comparison
of all samples by 42%, while the impact of sorting of k-
segment starting positions is even higher, with disabling
of this step slowing down the comparison by 254%.
Preprocessing and dictionary building can take up a

significant portion of the total running time of a signature-
based filtering algorithm, when samples are distant and
few distance calculations are required. For the given col-
lection of 413 samples, preprocessing of all samples takes
∼ 4840ms, which constitutes approximately 1/3 of the
total running time of the algorithm. Note that in the case
when significant number of closely related sequence pairs
is present, the situation is different (see the next section).

Table 2 Algorithm run time without optimization subroutines

Feature Time

No sample pair filter ∼21.3s

No sorting of k-segment starting positions ∼38.1s

Table 3 Intra-sample Sequence Retrieval Running Time

Dataset Pairs in output Brute force time, s Signature method time, s

d1 60 421 6.6 0.2

d2 370 262 25.9 0.3

d3 1 800 945 102 1.8

d4 5 848 556 413 2.8

d5 18 570 536 1 624 4

d6 38 835 302 6 499 7.8

d7 155 373 208 26 400 23

d8 621 556 832 105 555 83

m1 51 453 578 883 17

The algorithm performance depends on the size of the
k-mers and k-segments. Small k leads to larger number
of matches between k-segments and k-mers of distant
sequences, which can cause extra sequences to be added
to the candidate lists thus leading to decrease in filter-
ing quality. Larger k leads to fewer false matches but
unfortunately also a larger k-mer dictionaries. We exam-
ined different k-mer sizes to determine the optimal size
for our datasets and found that k = 11 gives the best
performance.

Intra-sample Sequence Retrieval Validation
For Intra-sample Sequence Retrieval Problem, we vali-
dated the proposed approach using datasets d1,...,d8,m1.
First, for it was compared with a single-thread, brute force
method with the worst-case complexity O(N2Lt), which
performs pairwise comparison of all sequences and calcu-
lates limited edit distance using dynamic programming as
described in [12]. The results are presented in Table 3.
The running time of the proposed tool was also com-

pared with the running time of a recently published
method from [5], which was originally designed for the
analogous problem for immunosequencing data. Figure 3
illustrates that signature-based filtering approach demon-
strates the significant advantage.
Figure 4 demonstrates that for aligned sequences

in most cases the adjustment utilizing entropy-based
variable-size k-segments allows to achieve a significant
speedup with respect to a constant-size k-segment.
The speedup described above is achieved by the com-

bination of the several features. The first feature is the
quality of filtering, which is analyzed in Tables 4 and 5.
On average, only ∼ 10% of sequence pairs that pass filter-
ing step (“false positives”) are not genetically related. As
expected, most of the false positive pairs were very close
to the threshold (Fig. 5). With the threshold set at t = 10,
pairs with an edit distance of l(S,Q) = 11, 12, 13 repre-
sent up to 75% of all false positives. Pairs that are so close
to the threshold are difficult to filter out.
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Fig. 3 Running times of method from [5] (blue) and the proposed method (red) on datasets d1-d8

Fig. 4 Comparison of running times of equal segment size and entropy-based approaches for single sample problem

Table 4 Filtering quality (unaligned sequences)

Test Pairs in output Pairs that passed filtering Filtering PPV # of led(S,Q) calculations led(S,Q)/allpairs

d1 60 421 65 937 0.9163 5 517 1.1%

d2 370 262 397 987 0.9303 18 754 0.93%

d3 1 800 945 1 873 268 0.9614 72 820 0.91%

d4 5 848 556 6 256 934 0.9347 411 660 1.28%

d5 18 570 536 21 028 890 0.8831 2 477 531 1.94%

d6 38 835 302 46 744 915 0.8308 7 952 495 1.55%

d7 155 373 208 187 011 650 0.8308 31 809 970 1.55%

d8 621 556 832 748 119 580 0.8308 127 239 860 1.55%

m1 51 453 578 54 640 978 0.9417 7 303 118 14.2%
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Table 5 Filtering quality (aligned sequences))

Test Pairs in output Pairs that passed filtering Filtering PPV

d1 60 420 64 573 0.9357

d2 379 233 385 646 0.9834

d3 1 800 448 1 862 914 0.9665

d4 5 845 274 6 204 049 0.9422

d5 18 551 359 20 706 813 0.8959

d6 38 792 420 44 939 957 0.8632

d7 155 201 680 179 791 828 0.8632

d8 620 870 720 719 231 312 0.8632

m1 47 101 270 48 888 011 0.9635

Another important feature is the fact that as the input
increases in size the runtime of the algorithm is dom-
inated by the edit distance calculations (Fig. 6). How-
ever, the filtering and the Hamming distance shortcut
reduces the number of edit distance calculations that must
be performed. As a result, the actual edit distance is
only calculated on small portion of the total pairs from
the dataset (Table 4).
We attempted to improve the filtering performance

using other methods such as k-mer similarity [20],
true matches [6], Hamming radius filter [2]. However,
the overhead of these methods was greater than any
runtime savings.

Discussion
In this paper we presented an efficient signature-based
tool to solve problems of edit or Hamming distance
sequence retrieval for NGS data obtained from heteroge-
neous viral populations. It outperforms other approaches
to this problem by including several data-specific steps
and filters. The proposed approach was designed having

problems of computational molecular epidemiology in
mind. Until recent years, genomic analyses of viral trans-
missions and epidemic spread used a single viral sequence
per infected individual. The advent of sequencing tech-
nologies now allows to analyze thousands of viral haplo-
types per patient. Furthermore, just in the United States,
from 2.7 million to 3.9 million people are infected with
HCV [21], while ∼ 1.1 million people are infected with
HIV [22]. These numbers put an immense computational
burden on real-time advanced molecular surveillance sys-
tems, such as Global Hepatitis Outbreak Surveillance
Technology (GHOST) [23], which is currently being
deployed by Centers for Disease Control and Preven-
tion. When deployed, such system should have compu-
tational capacity to identify, whether a query set of viral
samples is genetically related with any sample from a
database consisting of hundreds of thousands of sam-
ples each consisting of thousands of sequences. The pro-
posed approach aim to allow to process such queries
efficiently. It builds on the general idea proposed in [6],
which is heavily optimized by utilization of efficient data
structures, such as inverted indexes and hash maps, and
introduction of running time-improving procedures, such
as efficient hash values calculation and determination
of optimal order of k-mers processing. The proposed
optimization steps allows for more than 2.5-fold run-
ning time decrease in comparison with the non-optimized
filtering (Table 2). Furthermore, the proposed method
takes into account uneven distribution of heterogeneous
position along viral genomes by using variable entropy-
based k-mers. It allows to improve both filtering quality
(Fig. 2) and speed (Fig. 4). In general, for viral sam-
ples comparison the proposed filtering approach allows
to eliminate the overwhelming majority of sequence com-
parisons and achieve a substantial running time decrease
(Tables 1, 2, 3, 4 and 5).

Fig. 5 False positive sequence pairs(l(S,Q) > t) at different edit distances l
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Fig. 6 Contribution of algorithm subroutines to its total running time, unaligned sequences

Conclusion
The proposed tool allows for efficient detection of
genetic relatedness between genomic samples produced
by deep sequencing of heterogeneous populations. The
tool is freely available for download at https://github.com/
vyacheslav-tsivina/signature-sj. It should be especially
useful for analysis of relatedness of genomes of viruses
with unevenly distributed variable genomic regions, such
as HIV and HCV. For the future we envision, that besides
applications in molecular epidemiology the tool can also
be adapted to immunosequencing and metagenomics
data.
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