
Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359
https://doi.org/10.1186/s12859-018-2334-8

SOFTWARE Open Access

A new cross-platform architecture for
epi-info software suite
Blake Camp*, Jaya Krishna Mandivarapu, Nagashayan Ramamurthy, James Wingo,
Anu G. Bourgeois, Xiaojun Cao and Rajshekhar Sunderraman

From the 6th Workshop on Computational Advances in Molecular Epidemiology (CAME 2017)
Boston, MA, USA. 20 August 2017

Abstract

Background: The Epi-Info software suite, built and maintained by the Centers for Disease Control and Prevention
(CDC), is widely used by epidemiologists and public health researchers to collect and analyze public health data,
especially in the event of outbreaks such as Ebola and Zika. As it exists today, Epi-Info Desktop runs only on the
Windows platform, and the larger Epi-Info Suite of products consists of separate codebases for several different
devices and use-cases. Software portability has become increasingly important over the past few years as it offers a
number of obvious benefits. These include reduced development time, reduced cost, and simplified system
architecture. Thus, there is a blatant need for continued research. Specifically, it is critical to fully understand any
underlying negative performance issues which arise from platform-agnostic systems. Such understanding should
allow for improved design, and thus result in substantial mitigation of reduced performance. In this paper, we present
a viable cross-platform architecture for Epi-Info which solves many of these problems.

Results: We have successfully generated executables for Linux, Mac, and Windows from a single code-base, and we
have shown that performance need not be completely sacrificed when building a cross-platform application. This has
been accomplished by using Electron as a wrapper for an AngularJS app, a Python analytics module, and a local,
browser-based NoSQL database.

Conclusions: Promising results warrant future research. Specifically, the design allows for cross-platform
form-design, data-collection, offline/online modes, scalable storage, automatic local-to-remote data sync, and fast
analytics which rival more traditional approaches.

Keywords: Cross-platform, Form-design, Analytics, Pubic-health, NoSQL, Electron, Data-collection

Background
Developed by the Centers for Disease Control and Pre-
vention (CDC) [1], Epi-Info is a software package which
enables public health workers to assess disease outbreak,
collect data, manage surveillance data sets, and analyze
data [2]. The Epi-Info software is widely used by the epi-
demiologists and health professionals in the governments,
public health non-profits, NGO’s, universities and health
schools (for example, [3–5]). It is estimated that there
are over one million users [2]. The desktop software has

*Correspondence: bcamp2@gsu.edu
Department of Computer Science, Georgia State University, 25 Park Place,
Atlanta, GA, USA

undergone a number of revisions and is currently built
upon the Windows operating system. While popular, it
has become clear that there are several areas in which
the product needs to be improved [6]. First, a particu-
lar deficiency of the system that needs to be addressed
is the software’s inability to run on Linux or Macs. A
tool that is truly capable of contributing to the inter-
national community’s fight against infectious diseases
should support as many operating systems and devices
as possible. An open-source and cross-platform version
of such software package will allow the developers from
around the world to access, design and enhance Epi-
Info. Second, having been under development for more
than three decades, Epi-Info is now comprised of several

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2334-8&domain=pdf
mailto: bcamp2@gsu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 54 of 67

separate applications, codebases and use-cases includ-
ing desktop, mobile, web, and cloud. This has resulted
in an unfortunate increase in development complexity.
Outbreaks can often spread faster than engineers can
keep up. It is not uncommon for new analytics compo-
nents or data-collection tools to be requested by public
health teams on the ground during highly active out-
break situations. This on-the-fly requirements specifica-
tion and engineering can be difficult to manage together
with complicated codebases. Third, the existing interfaces
for offline data-collection and maintenance protocols are
not altogether intuitive. The processes for importing or
broadcasting between remote servers and local client
machines may present steep learning curves for public
health officials.
In this work, we propose and implement a new cross-

platform architecture for Epi-Info software suite, which
can simplify the codebases, expedite the development
process and incorporate open-source techniques for flex-
ible interfaces. The proposed architecture adopts the
Electron [7] as the cross-platform framework to achieve
significant reduction in development time and cost. The
open-source techniques in NoSQL and Python are also
introduced into Epi-Info. NoSQL, as a viable database
option, can scale extremely well and provide a flexible
structure to otherwise unstructured data. Python [8] has
emerged as a very popular languages for data analytics
and becomes the coding language of choice for many in
the science community. Its robust statistical libraries and
machine learning frameworks make it a suitable choice for
Epi-Info. In addition, the ease-of-use and platform uni-
versality from Python can greatly reduce the development
time of any newmodules in the event of some emergencies
or outbreak.
A Web-Based Form-Designer is not currently part of

the existing Epi-Info suite, but such a product has been
needed for some time [2]. One challenge here is finding
a balance between flexibility, speed, and ease-of-use with
respect to the form design process. We propose to use
AngularJS [9]. Even though AngularJS does not natively
support drag & drop functionality, we develop a back-to-
front design methodology to ensure a user-friendly, yet
effective form-designer.

Implementation
We present a cross-platform system architecture which
allows for intuitive form-design, data-collection, online
and offline modes, automatic local-remote data sync, fast
analytics, and scalable storage. The overall system archi-
tecture is shown in Fig. 1.
The Epi-Info deployment consists of

• A server-side CouchDB database which stores shared
form templates, data, and other user information

such as dashboards etc. This data is exposed as
RESTful Web Services to the clients, and

• Multiple clients, each equipped with an AngularJS
application that provides all the functionality of
Epi-Info including form design, deployment of forms,
data collection, and user dashboards, and on demand
analytics. Each client stores its data in PouchDB,
which is automatically synchronized the CouchDB
on the server. The client also includes a Python/Flask
module that provides access to a large set of analytics
functionality. All of the client is encapsulated with
the Electron, a platform-independent application
framework.

Client Side Architecture
To address the cross-platform system requirement, we
use Electron as a wrap- per for an AngularJS front-end,
a Python Analytics module, and an embedded NoSQL
database called PouchDB.
The database accessibility protocol was an important

design consideration. PouchDB is a lightweight, browser-
based NoSQL database which is designed to automatically
sync with a remote Couch (Fig. 2) Database. However,
the proper access point was not immediately obviously.
As shown in Fig. 1, the PouchDB is accessed directly
by the Angular front-end. Importantly, this configuration
was chosen because the alternative approach, whereby
the database is accessed directly by the Python Analyt-
ics module, would have required the use of a Python-
PouchDB wrapper. The documentation for the wrapper is
very light, and it has been much easier to use the origi-
nal API’s for database interaction. Any data needed by the
Python Analytics module can be requested and sent via a
simple HTTP connection.
The Flask framework manages the Python code. When

the Electron application is initiated, a child process is
spawned which starts the Flask server, allowing access to
the Python analytics module. This has proved successful
and it has allowed us to seamlessly integrate Angular and
Python in a single, local application.When an analytics requ-
est is made, for example, the data is simply re-routed to the
appropriate Python function via the HTTP connection.
Python was chosen because of it’s popularity and

platform-agnosticism. It is critical that researchers from
around the world be allowed to contribute to this project
in a timely way. This can be facilitated by offering a plat-
form comprised of tools which are popular and universal.

NoSQL and PouchDB
NoSQL databases have been one of our primary areas of
research to date. They are understood to scale extremely
well because they are well-suited to provide a flexible
structure to otherwise unstructured data. That fact has
proven helpful when storing Epi-Form schemas. However,



Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 55 of 67

Fig. 1 System Architecture - Local PouchDB clients sync automatically with a central CouchDB cloud server,allowing for seamless online-offline
transition

Fig. 2 Client Side Architecture - An AngularJS app, Python Analytics Module, and local PouchDB



Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 56 of 67

we have identified several other database-related issues
which require careful consideration.
It was necessary to choose an appropriate candidate

to be embedded with our Electron Application. This is
critical because larger NoSQL databases, like MongoDB,
require different installation protocols for different oper-
ating systems. Recall once again, our primary objective
is to be a platform-agnostic application that is extremely
user-friendly, and very little effort to download and install.
Thus, our approach has been to embed a lightweight
NoSQL database within our Electron desktop application.
After research, PouchDB was selected as the NoSQL

database, and we consider it to be a viable option going
forward. It’s robust documentation, community support,
and seamless synchronization with CouchDB makes it
very attractive. Furthermore, it is easy to embed, and
can be interfaced directly with the Angular frontend.
Specifically, PouchDB is designed to sync automati-
cally with a remote Couch Database. This allows for
seamless transition between online and offline modes,
and guards against the potential for data-loss during
transfer.
As a result of this auto-sync, any underlying changes

to data on local client machines can be automatically
broadcast a centralized remote database, and subse-
quently on to any additional client machines. Further-
more, PouchDB provides a detailed change-log which
identifies and explains any alterations in local data or
data-structure.

Analytics Module
Epi-Info is essentially data-collection and analytics soft-
ware. Consequently, the analytics module is perhaps the
most crucial component, and the primary objective was to
increase speed and efficiency. In the following paragraphs,
we outline an approach which successfully mitigates the
negative effects often found in cross-platform and NoSQL
systems.

It was important to precisely identify each point of
data-transfer and manipulation in order to pinpoint any
potential bottlenecks (Fig. 3, Table 1).
In order to expedite the analytics cycle, we demon-

strate drastic performance improvement by storing two
copies of any particular dataset. We keep one copy in
PouchDB, so that it may be available for automatic syncing
with the central CouchDB. We keep another in a com-
pressed format native to Python, called HDF5. Even on
a slow machine, the read and write times for HDF5 are
extremely fast, better even than SQL or CSV. Additionally,
the excellent compression ratio means that even though
we store the data twice, we increase the total storage-size
requirement by less than 10%.
As shown in Table 1, the most costly processes, with

respect to time, involve retrieving the data from PouchDB,
sending the data to the analytics module, and converting
the data to a useable DataFrame. This problem is exac-
erbated if the database is allowed to accumulate alot of
data prior to carrying out these steps. Thus, it is pos-
sible to mitigate such effects by performing the opera-
tions iteratively, whenever new data is entered into the
database. The compressed HDF5 DataFrame must be
continuously maintained, allowing for immediate analyt-
ics requests at all times. Fortunately, PouchDB comes
equipped witha change-log which offers a detailed expla-
nation of any changes to the underlying data. This can be
used to subsequently update the compressed DataFrame.
The result is a system that would allow for very fast
access to data and analytics which rivals even traditional
approaches. Additional performance metrics are provided
in the “Results” section of this paper.

Form Designer
The challenge associated with building a web-based form
designer is derived from a need to balance flexibil-
ity with specificity. The current desktop form-designer
provided by Epi-Info offers extreme precision, allowing

Fig. 3 System Data-Flow - Each step requires time, see Table 1



Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 57 of 67

Table 1 Approximate time-requirements for critical data-flow
processes

Process Time (Data: 50k x 200)

(300MB)

1 Retrieve data from PouchDB 1 minute

2 HTTP POST, send JSON data to Python 30 seconds

3 Convert JSON to Pandas DataFrame 30–45 seconds

4 Compress/Write JSON to HDF <1 second (compresses

to only 21MB)

5 Analytics varies, but fast

6 HTTP POST, return results to Angular varies

Test Data: 50k records, by 200 features

form-creators the ability to define form elements on a
pixel-by-pixel basis. The form-schemas are then stored as
XML, and the exact positions of form elements are sub-
sequently recorded. On the one hand, this is desirable
because health form appearance often requires such acute
attention to detail. On the other, this can cause a large
increase in design time. With our web-based AngularJS
form designer, we strike a balance between the two char-
acteristics, offering users an acceptable level of precision
while simultaneously expediting the form-design process
with a flexible and intuitive interface (Fig. 4).

Results
To date, we have successfully generated executables for
Windows, Mac, and Linux machines from a single code

base, and we have shown that performance need not
be completely sacrificed when building a cross-platform
application.
Figure 5 shows a typical Epi-Info desktop workflow.

Our product can successfully support: Form Design,
Import/Export of Forms to a centralized database, Data-
Entry, Advanced Analytics, Savable and Customizable
Advanced Analytics Dashboards (Fig. 6), and Report
Export.
By incorporating the use of a compressed HDF5

DataFrame, we have successfully demonstrated that we
can expedite the analytics cycle, thus mitigating many
of the negative effects typically associated with cross-
platform or NoSQL applications. For a dataset with 50,000
records and 200 columns, the software can read the
data, perform a user- defined 10-variable multiple logis-
tic regression, and report the results in under 2 s, even on
modest machines.
Additionally, the use of multiple cores can further opti-

mize the analytics module. This allows multiple analytics
requests to bemade on-the-fly as needed. Reports are sent
back to the user-interface as those jobs are completed.
That is, any single request need not wait for a previous job
to finish as long as there is another core available for use
on the machine (Fig. 7).

Additional Considerations
The design presented in this paper should be regarded
as one acceptable approach with respect to the the
aforementioned requirements. However, numerous other

Fig. 4 Screenshot of Angular-based drag-and-drop Form Designer



Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 58 of 67

Fig. 5 Typical Epi-Info workflow

frameworks, architectures, and configurations could
potentially prove adequate. In this section, our reasons for
favoring this system will be explained more thoroughly.
The research conducted during the course of this

project resulted in discussions with several additional
research groups. Of particular note, was a collaborative
multi-day meeting with a team from the University of
Brasilia and representatives from the Itaipu Bi-National
Energy Plant. During the meeting, a consensus was artic-
ulated which highlighted the need for greater amounts
of international standardization and collaboration as sep-
arate nations and organizations seek to fight the spread
of infectious diseases, particularly with respect to the
technology involved. On that front, there was additional
agreement that there are two domains where this is par-
ticularly important: data standardization, and software
standardization.
The standardization of data is a challenging task, but

progress has been made thanks in part to Health Level
Seven International (HL7). Recently they have published
a standard for public-health data knows as the FHIR, and
it is currently being incorporated into various software
tools around the planet. There seems to be less cohe-
sion, however, on the software standardization front. This
can be attributed to the enormous amounts of specific

use-cases, location-specific needs, and a disjoint interna-
tional community of engineers. Indeed, the CDC often
plays a leadership role in many areas of the world in the
event of outbreaks. Nevertheless, there are countless other
organizations, such as Itaipu, which each have separate
teams building unique tools to combat specific regional
problems. Consequently, it appears there is a fair amount
of redundancy with respect to functionality and code.
This problem is likely to persist without the oversight of
an international standardizing orginization. However, it is
possible that the problem could bemitigated, even slightly,
by the use of broadly-adopted and flexible technologies.
When appropriate, generality and popularity should be
favored.
Central to the initial conceptualization of our design

was the selection as Python as the language of choice
for the Analytics Module. As mentioned, this was due
in large part to its popularity among the scientific com-
puting community and its platform agnostic quality. This
ultimately factored greatly into the choice of a suit-
able cross-platform framework. Framework candidates
which were discussed included Electron, Kivy, and .NET-
Core. Electron and Kivy were selected for closer inspec-
tion due to language familiarity amongst the design
team.
Kivy is a cross-platform framework for developing

Python apps. It runs on iOS, Linux, Windows, Android,
and OSX; making it very attractive. However, it would
have required time to become acquainted with the front-
end framework provided by Kivy, as it does not rely on
traditional web-technologies. Ultimately, this encouraged
us to move towards Electron.
Electron, as opposed to Kivy, allows engineers to work

with familiar technologies which can be easily encapsu-
lated in the framework. We feel that this should allow
for increased flexibility, a reduction in development time,
and greater ability to share components across applica-
tions. It is not clear, for example, that it would be easy to
deploy the majority of a Kivy app to the web. However,
the Electron app we have designed should be fairly easy to
migrate. Additionally, there are mobile frameworks, such
as Ionic, which would also facilitate the simple transfer of
the majority of code to a mobile app.
We were greatly encouraged by the technological simi-

larity presented by the group from Itaipu. Like us, they use
a combination of AngualarJS and Python. Their current
app, however, is entirely web-based, yet they have a need
for offline capability. Because we both are using highly
flexible, similar technologies, there is a real opportunity
for collaboration and outright code-sharing. We feel it
would be easy to extend their application, wrap it in an
electron framework with an embedded NoSQL database,
and allow for a robust offline use-case. This would simply
not be possible if each group were not using such widely



Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 59 of 67

Fig. 6 Screenshot of GSU Epi-Info Analytics interface

adopted technologies, and it shows the power and need
for additional software standardization.
Importantly, new technologies must first be examined

and evaluated based on the quality of community sup-
port. Public-Health is a critical domain, and it would not
be wise to imprudently experiment with untested and

weakly-supported tools. This was discovered first hand
by our researchers, particularly when tasked with choos-
ing an acceptable local NoSQL database. Many newer,
lightweight NoSQL databases have very shallow docu-
mentation and community support. ForerunnerDB was
one such product which ultimately proved impractical.

Fig. 7 High level view of step-by-step analytics optimization using multiple cores



Camp et al. BMC Bioinformatics 2018, 19(Suppl 11):359 Page 60 of 67

Development was drastically slowed whenever a small bug
was found in the database code because the required doc-
umentation literally did not exist. Eventually, PouchDB
was discovered, and we found it to have adequate sup-
port, greatly simplifying and expediting the development
process.

Conclusions
Creative system design can alleviate many of the unde-
sirable qualities typically associated with cross-platform
frameworks, such as Electron. This can require a mix of
languages, databases, and design patterns. The power of
the resulting system has, in this case, proven to be worth
the effort, successfully addressing many of the necessary
system requirements.
With our cross-platform framework design for Epi-

Info, the international community will now have the
tools to rapidly respond to an emergency outbreak, even
under remote conditions. By designing a single code-
base that is capable of generating executables for multi-
ple platforms, developers can quickly provide customized
components to those deployed. Our work towards opti-
mizing the data analytics will enable better coordina-
tion and a more effective response to any outbreak
around the globe. However, future research is still needed,
such as the development and deployment of Epi-Info on
mobile devices, including hand held tablets and smart
phones. It is also imperative to develop methods to auto-
mate and adapt data synchronization with centralized
servers/coud in an opportunistic way when connectivity is
available.

Availability and Requirements
Project name: GSU Epi-Info
Project home page: http://epi.cs.gsu.edu & https://
bitbucket.org/bbc1183/epi-info/
Operating system(s): Platform independent. However,
there are known issues with respect to installing electron
on Ubuntu 16.04. Recommend Ubuntu 14 for develop-
ment.
Programming language(s): NodeJS, AngularJS, Python
Other requirements: In the repository located at https://
bitbucket.org/bbc1183/epi-info/, the active branch is
called ’dev’. The current software is located in the direc-
tory called ’electron-with-python’. There is a readme.txt in
the root of that directory. Will not work out of the box on
Ubuntu 16.04.
License:MIT
Any restrictions to use by non-acedemics:Not applicable.

Abbreviations
CDC: Centers for Disease Control and Prevention; HDF5: Hierarchical Data
Format (HDF) is a set of file formats (HDF4, HDF5) designed to store and
organize large amounts of data; NoSQL: Non-relational database

Funding
Research was partially funded by the CDC under contract number
200-2016-91969. Publication costs are covered by the Department of
Computer Science, Georgia State University.

Availability of data andmaterials
Detailed installation instructions and a list of development dependencies can
be found at: https://bitbucket.org/bbc1183/epi-info/. Check out the ‘dev’
branch, and go into the directory called ‘electron-with-python’. There is a
readme.txt in the root of that directory.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 11, 2018: Proceedings from the 6thWorkshop on Computational
Advances in Molecular Epidemiology (CAME 2017). The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-19-supplement-11.

Authors’ contributions
BC was responsible for project Management. He was fully involved in most
aspects of system specifications, design, and development. AGB was the
project lead and contributed substantially with respect to analysis of system
performance. XC acted in a supervory role and offered networking expertise.
RS acted in a supervisory role and contributed significantly during the system
specification and design phase. JKM was the primary researcher responsible
for data analytics. NR researched and selected the appropriate databases. JW
was responsible for development of the form designer. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Published: 22 October 2018

References
1. Centers for Disease Control and Prevention. https://www.cdc.gov/.

Accessed 6 July 2018.
2. CDC Epi Info. https://www.cdc.gov/epiinfo/index.html. Accessed 6 July

2018.
3. Cathy Ann Marshall EM, Unwin N. An epidemiological study of rates of

illness in passengers and crew at a busy caribbean cruise port. BMC Public
Health. 2016;16:314.

4. Brian A Maponga, Daniel Chirundu NTGMTGS, Takundwa L. Risk factors for
contracting watery diarrhoea in kadoma city, zimbabwe, 2011: a case
control study. BMC Infect Dis. 2013;13:567.

5. Matthew Scotch, Bambang Parmanto CSG, Sharma RK. Exploring the role
of gis during community health assessment problem solving: experiences
of public health professionals. Int J Health Geogr. 2006;5:39.

6. Dean AG, Dean JADC, et al. Epi info, version 6: a word processing,
database, and statistics program for epidemiology on microcomputers.
PhD thesis. Atlanta: Centers for Disease Control and Prevention; 1995.

7. Electron: Build Cross Platform Desktop Apps with Javascript, HTML, and
CSS. https://electron.atom.io/. Accessed 6 July 2018.

8. Python. https://www.python.org/. Accessed 6 July 2018.
9. Angular. https://angular.io/. Accessed 6 July 2018.

http://epi.cs.gsu.edu
https://bitbucket.org/bbc1183/epi-info/
https://bitbucket.org/bbc1183/epi-info/
https://bitbucket.org/bbc1183/epi-info/
https://bitbucket.org/bbc1183/epi-info/
https://bitbucket.org/bbc1183/epi-info/
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-11
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-11
https://www.cdc.gov/
https://www.cdc.gov/epiinfo/index.html
https://electron.atom.io/
https://www.python.org/
https://angular.io/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Client Side Architecture
	NoSQL and PouchDB
	Analytics Module
	Form Designer

	Results
	Additional Considerations
	Conclusions
	Availability and Requirements
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References

