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An integrated strategy for identifying new
targets and inferring the mechanism of
action: taking rhein as an example
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Abstract

Background: Target identification is necessary for the comprehensive inference of the mechanism of action of a
compound. The application of computational methods to predict the targets of bioactive compounds saves cost
and time in drug research and development. Therefore, we designed an integrated strategy consisting of ligand-
protein docking, network analysis, enrichment analysis, and an experimental surface plasmon resonance (SPR)
method to identify and validate new targets, and then used enriched pathways to elucidate the underlying
pharmacological mechanisms. Here, we used rhein, a compound with various pharmacological activities, as an
example to find some of its previously unknown targets and to determine its pharmacological activity.

Results: A total of nine candidate targets were discovered, including LCK, HSP90AA1, RAB5A, EGFR, CDK2, CDK6,
GSK3B, p38, and JNK. LCK was confirmed through SPR experiments, and HSP90AA1, EGFR, CDK6, p38, and JNK were
validated through previous reports. Rhein network regulations are complex and interconnected. The therapeutic
effect of rhein is the synergistic and comprehensive result of this vast and complex network, and the perturbation
of multiple targets gives rhein its various pharmacological activities.

Conclusions: This study provided a new integrated strategy to identify new targets of bioactive compounds and
reveal their molecular mechanisms of action.
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Background
In real biological systems, bioactive compounds gener-
ally bind to more than one target proteins to exert their
biological activities [1]. Target identification is therefore
necessary for the comprehensive inference of the action
mechanisms of a compound. Although wet lab experi-
ments are more convincing, the application of in silico
computational methods to predict targets of bioactive
compounds has become more important in recent years
[2]. Current computational methods for drug target dis-
covery fall into three categories: structure-based,
ligand-based, and phenotype-based virtual screening [3].
The structure-based methods involve the molecular
docking between a ligand and a target, and the scoring
function is used to assess the likelihood of the ligand

binding to a protein. The disadvantages of this method in-
clude high false positives and weak accuracies [4]. The
ligand-based methods are based on using similarities be-
tween known ligands to speculate on unknown structures
of receptor sites; thus, such methods are not appropriate
for the analysis of proteins without known ligands [5].
The phenotype-based methods aim at analysing pheno-
typic responses, such as gene expression profiles in cell
lines or proteomic information, but may neglect valuable
information from other types of data sources [6]. Perhaps,
any method used alone will have its own short board, so
the combination of multiple methods is a train of thought.
Actually, an effective drug often regulate several bio-

logical processes by acting on multiple targets, which
can form a complex interaction network [2]. The com-
plex network can provide a lot of target topological
information through network analysis. Therefore, the
network analysis can be used to study the complex inter-
actions between targets and may be a good method for
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new target identification. However, it cannot reflect the
whole biological processes since how targets influence
the biological processes are lacked. The enrichment ana-
lysis can link interactions between proteins and bio-
logical processes. Therefore, the enrichment analysis can
supplement the deficiency of network analysis for identi-
fying targets and inferring their regulation on biological
processes [7]. Nowadays, network visualisation and bio-
informatics enrichment tools have promoted the under-
standing of complex drug-target and target-target
interactions, accelerated the drug discovery through the
identification of topological structures in biological net-
works, developed a systematic understanding of drug ac-
tion and disease complexity, and improved the efficiency
and safety of drug design [8–10].
Rhein is an active alipophilic anthraquinone that is

mainly extracted from several traditional plant rhizomes,
including Rheum palmatum L., Aloe barbadensis Miller,
Cassia angustifolia Vahl., and Polygonum multiflorum
Thunb. [11]. Rhein has various pharmacological effects,
such as anti-inflammatory, anti-tumour, antioxidant,
antifibrotic, hepatoprotective, and nephroprotective ac-
tivities [12, 13]. According to our research, more than
1000 articles about rhein have been published in
PubMed; over 100 of these have discussed its pharmaco-
logical mechanism of action [13]. Many targets of rhein
have been identified in recent years. Rhein could suppress
all the tested RXRA-involved homo-or-heterodimeric
transcription activities, decrease the expression of VEGFA,
EGF, HIF1A, ERBB2, and PTGS2 proteins, decrease the
activity of NFKB1 and RELA proteins [14, 15], and in-
crease the levels of apoptosis-related proteins including
BAX, CASP3, and CASP8 [16]. Moreover, the regulation
of multiple pathways by rhein, such as the MAPK,
PI3K-AKT, NF-κB, and TGF-β signalling pathways, cell
cycle, and cell apoptosis, has been a particular focus of re-
search [17–19]. Since rhein affects so many different tar-
gets and regulates multiple pathways in the body, we
believe that rhein can be repurposed to treat even more
diseases, and its new targets can still be discovered.
In this study, an integrated strategy consisting of

ligand-protein docking, network analysis, enrichment
analysis, and experimental validation was developed and
applied to identify new rhein targets and infer the mech-
anisms underlying the pharmacological effects of rhein.
Using this approach, we could easily identify the targets
of one drug or one bioactive compound and infer their
molecular mechanisms.

Methods
The integrated strategy for target identification involved
four main steps: (1) Preliminary screening by
ligand-protein docking; (2) Further screening by network
analysis; (3) Final screening by enrichment analysis; (4)

Validating candidate targets through the surface plasmon
resonance (SPR) interaction experiment. The strategy of
target identification is shown in Fig. 1.

Ligand-protein docking for potential targets
Here, two steps were designed for the preliminary
screening of targets. First, the inverse molecular docking,
one of the ligand-based virtual screening, was used to
quickly narrow the screening range of potential targets
by the fit scores. Then, the accurate molecular docking,
one of the structure-based virtual screening, was used to
further screen potential targets.
For the inverse molecular docking analysis, the 3D

molecular structure of a compound of interest (down-
loaded from the ZINC database [20]) was uploaded to
the PharmMapper Server. The PharmMapper was a
freely accessible web server designed to discover poten-
tial targets for given molecules using the pharmacophore
mapping approach. It was backed up by a large pharma-
cophore database that includes 2241 human protein tar-
gets extracted from TargetBank, DrugBank, BindingDB,
and PDTD [21]. Here, the “select targets set” parameter
was set as “human protein targets only”, and all other
parameters were set to their default values. Based on the
fit score, the top 300 proteins (default values) were ob-
tained and referred to as the potential targets; their 3D
molecular structures were downloaded from the Protein
Data Bank [22].
Due to the low screening threshold for the inverse mo-

lecular docking, accurate molecular docking is used for fur-
ther screening. All the potential targets were pre-processed
with PyMOL [23]. Water molecules, metal ions, and other
small molecules were removed from the model. Hydrogen
atoms were then added, and all non-hydrogen atoms were
not allowed to move. The search space for each target was
determined according to the coordinate and size of the
experimental-bound ligand structure. Subsequently, all
structure files of the pre-processed targets and their experi-
mental ligands were saved. To obtain the most stable con-
formations, all experimental ligands and rhein were
optimised using the CHARMM force field. Next, a docking
protocol was performed to determine the interactions be-
tween the ligands and the proteins. This study was con-
ducted using the free software AutoDock Vina, which
calculates the mode of combination and affinity [24]. The
scoring function was used to evaluate the binding intensity,
with a smaller score representing stronger binding. There-
fore, if the docking score was less than that of the experi-
mental ligands, the corresponding potential target was
selected for further studies.

Network analysis for potential targets
The network construction is a key step in the network
analysis. Before building the network, known targets of a
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given compound were collected from the STITCH (a
database of known interactions between chemicals and
proteins) [25]. Next, the known targets and the potential
ones were integrated. They were mapped to several pro-
tein–protein interaction (PPI) databases, including BIO-
GRID, INTACT, MINT, DIP, BIND, and HPRD, by
BisoGenet [26] to construct a target PPI network. Subse-
quently, an extended PPI (EPPI) network was further
constructed by adding the nearest PPI neighbours. In
these networks, each node is a protein, and two proteins
are connected if there are interactions between them.
The network visualisation was performed using Cytos-
cape (version 2.8) [27].
To reduce the false-positive rate in the molecular

docking, a network analysis was then performed, and
the topological parameters of the network were ob-
tained. The network topological parameters, including
the node degree, betweenness centrality, clustering coef-
ficient, closeness centrality, and topological coefficient,
reflect the structural relationship between each node in
a network. These five topological parameters were calcu-
lated by the NetworkAnalyzer [28]. Next, the resulting
receiver operating characteristic (ROC) curves of five
topological parameters were plotted using GraphPad
Prism (Version 6.01). The ROC curve, which could be
used to evaluate the ability of topological parameters to
identify targets, was a graphical plot with the false posi-
tive rate (FPR, i.e. 1-Specificity) as the horizontal axis
and true positive rate (TPR, i.e. Sensitivity) as the verti-
cal axis. Here, the FPR was the rate of potential targets
considered as true targets, and the TPR was the rate of
known targets considered as true targets. Subsequently,

the network parameter with the largest area under the
ROC curve (AUC) was selected to be the key parameter,
and the best cut-off value of this parameter was deter-
mined to be the value with the largest Youden index
(Youden index = Sensitivity + Specificity - 1). Finally, all
of the potential targets with key parameter values greater
than the cut-off value were selected.

Enrichment analysis for potential targets
The enrichment analysis made it easy to associate pro-
teins with biological processes. In this method, we as-
sumed that potential target proteins would be selected
as candidate targets if the enrichment analysis indicated
that they were in the same biological process with
known ones. Therefore, the enrichment analysis of the
known and potential targets was performed using the
DAVID tool [10]. The pathways with significant enrich-
ment derived from the KEGG pathway database were se-
lected if p-value < 0.05 [29]. Next, all potential targets in
enriched pathways were eventually screened. These po-
tential targets for final screening were defined as candi-
date targets, which meant that these targets were highly
likely to be the true targets if experimentally proven.

Experimental validation of the candidate targets
SPR is an important tool to determine the interactions
between drugs and targets [30], and is widely used for
detecting binding events, such as antibody–antigen, pro-
tein–protein, and receptor–ligand interactions [31, 32].
Binding experiments and kinetic analyses were per-
formed using the PlexArray® HT system (Plexera®, LLC),
based on SPR imaging (SPRi) at 25 °C with an injection

Fig. 1 The strategy of the target identification
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rate of 2 μL·s− 1. The sample (object compound), positive
control (rapamycin), and negative control (dimethyl
sulphoxide) were printed on a 3D photo-crosslinking
chip via a photo-crosslinking instrument (Amersham)
[33]. The candidate protein solution in the running buf-
fer (10 mM HEPES (pH 7.4), 150 mM NaCl, 0.005%
Tween-20, and 3.4 mM EDTA) was used as the analyte
at 375, 750, 1500, and 3000 nM by serial dilution. The
sample injection cycle consisted of a 300 s association
phase with an analyte solution and a 300 s dissociation
phase with a running buffer. For the sensor chip regen-
eration, 10 mM glycine-HCl (pH 2.0, 3 μL·s− 1, 300 s)
was then injected. All data were collected and monitored
by the Plexera SPRi system and analysed using Plexer-
aDE software.

Results
Virtual screening based on ligand-protein docking
Ligand-protein docking was the first step in this study.
Taking rhein as an example, 300 potential targets were
quickly obtained from 2241 human protein targets by in-
verse molecular docking (Additional file 1: Table S1).
However, many false positives could have existed in
these 300 potential targets because of the low threshold
present in the inverse docking. To decrease the
false-positive rate, accurate molecular docking was used
for further screening, reducing the number of potential
targets to 67 (Additional file 1: Table S2).

Virtual screening based on network analysis
Network analysis was the second step. The PPI and
EPPI networks was constructed after integrating poten-
tial and known targets of Rhein. Fig. 2a represents the

integrated results of the 10 known targets (RXRA,
CASP3, CASP8, BAX, LOX, RELA, NFKB1, VEGFA,
RARA, and SRD5A2) and 67 potential targets. This
network consisted of 77 nodes; more than half of the
nodes were linked by 60 edges to form a cluster. As
shown in Fig. 2b, the EPPI network included 3349
nodes and 66,348 edges; only three isolated nodes
existed. Clearly, most of the known targets and poten-
tial targets had a close relationship with each other.
In a complex network, the topology of the network

carried a lot of important information that would help
the target identification. Therefore, the degree, between-
ness centrality, clustering coefficient, closeness central-
ity, and topological coefficient were chosen to further
analyse the EPPI network to reduce the FPR. In the net-
work analysis results (Additional file 1: Table S3), the
ROC curves of betweenness centrality, degree, and
closeness centrality were above the reference line,
whereas the clustering coefficient and topological coeffi-
cient were under the reference line (Fig. 3). In this study,
only the parameters above the reference line made sense.
The betweenness centrality describes the capacity of car-
rying traffic; the degree reflects the importance of a node
in the network; the closeness centrality represents the
degree of closeness between a node and other nodes in
the network [34]. The AUCs of all the network parame-
ters were displayed in Table 1. Typically, the larger AUC
value was corresponding to the better target identifica-
tion ability for the parameter. Although all three param-
eters are critical, betweenness centrality was selected as
the key parameter because it had the largest AUC
(0.710). Finally, 21 nodes were screened because they
were above the cut-off of betweenness centrality

Fig. 2 Network construction of rhein targets. a Rhein target protein–protein interaction network (PPI). b Extended rhein target PPI network (EPPI).
In these networks, each node is a protein, and an edge indicates that two proteins interact with each other. Purple nodes represent known rhein
targets; green nodes represent potential rhein targets; light blue nodes represent extended adjacent proteins of rhein targets
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(0.0016) in the EPPI network. These 21 nodes included
7 known targets and 14 potential targets, and they were
displayed in Table 2.

Virtual screening based on enrichment analysis
Enrichment analysis was the third step to supplement the
deficiency of network analysis for identifying targets. As a
result, 15 out of 21 proteins were enriched including 6
known targets (RELA, NFKB1, CASP3, CASP8, RXRA,
and VEGFA) and 9 potential ones (LCK, HSP90AA1,

RAB5A, EGFR, CDK2, CDK6, GSK3B, MAPK8, and
MAPK14). Thus, these 9 potential targets were regarded
as rhein candidate targets. In addition, all 15 proteins were
respectively present in 11 items in KEGG pathways (see
Additional file 1: Table S4).

SPR experimental validation for rhein candidate targets
According to the literature search results, 5 of the 9 can-
didate targets, including EGFR [35, 36], MAPK8 [17],
MAPK14 [37], CDK6 [38], and HSP90AA1 [15], had

Fig. 3 The receiver-operator characteristic (ROC) curves of five topological parameters in the extended protein–protein interaction (EPPI) network

Table 1 Area under the ROC curve

Test Result Variable(s) Area Std. Errora Asymptotic Sig.b Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

Betweenness Centrality .710 .090 .033 .533 .886

Degree .690 .093 .054 .508 .871

Closeness Centrality .627 .109 .198 .413 .841

Clustering Coefficient .383 .068 .234 .250 .515

Topological Coefficient .248 .059 .010 .133 .363
aUnder the nonparametric assumption
bNull hypothesis: true area = 0.5
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Table 2 21 selected targets based on network analysis

Target Name Gene
Symbol

Target
Type

Be Enriched or
Not

Betweenness
Centrality

Heat shock protein 90 kDa alpha (cytosolic), class A member 1 HSP90AA1 Candidate Yes 0.04743

Epidermal growth factor receptor EGFR Candidate Yes 0.02710

Cyclin-dependent kinase 2 CDK2 Candidate Yes 0.01959

Albumin ALB Candidate No 0.01653

Glycogen synthase kinase 3 beta GSK3B Candidate Yes 0.01317

V-rel reticuloendotheliosis viral oncogene homolog A (avian) RELA Known Yes 0.00777

Mitogen-activated protein kinase 14 MAPK14 Candidate Yes 0.00765

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 NFKB1 Known Yes 0.00364

Dipeptidyl-peptidase 4 DPP4 Candidate No 0.00348

Mitogen-activated protein kinase 8 MAPK8 Candidate Yes 0.00321

Lymphocyte-specific protein tyrosine kinase LCK Candidate Yes 0.00279

Cyclin-dependent kinase 6 CDK6 Candidate Yes 0.00277

RAB5A, member RAS oncogene family RAB5A Candidate No 0.00275

Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),
member 1

SERPINA1 Candidate No 0.00244

Cathepsin B CTSB Candidate No 0.00241

Caspase 3, apoptosis-related cysteine peptidase CASP3 Known Yes 0.00238

K(lysine) acetyltransferase 2B KAT2B Candidate No 0.00237

Retinoic acid receptor, alpha RARA Known Yes 0.00198

Vascular endothelial growth factor A VEGFA Known Yes 0.00178

Caspase 8, apoptosis-related cysteine peptidase CASP8 Known Yes 0.00165

Retinoid X receptor, alpha RXRA Known Yes 0.00163

Fig. 4 The surface plasmon resonance (SPR) results of the interaction between LCK and rhein. Increased concentration of LCK protein showed a
trend of increased binding with rhein; the equilibrium dissociation constant (KD) was 1.060 × 10− 6 M
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been previously reported, in spite of not being included
in the STITCH database. Therefore, the remaining four
candidate targets (LCK, RAB5A, CDK2, and GSK3B)
were selected for further research using SPR. The posi-
tive and negative control signals were shown in supple-
mentary materials (Additional file 1: Figure S1), which
indicated that the sensor chip quality was normal. In the
experimental results, for LCK, the binding tendency to
rhein increased with increasing the concentration of the
protein, whereas for RAB5A, CDK2, and GSK3B, the
tendency was not obvious. The binding curves of rhein
with LCK were shown in Fig. 4. The kinetic parameters
were fitted and obtained using the LCK signals bound
with rhein. The association rate constant (ka), dissoci-
ation rate constant (kd), and equilibrium dissociation
constant (KD) were 186 (M·s)− 1, 1.97 × 10− 4 s− 1, and
1.060 × 10− 6 M, respectively. Therefore, after the experi-
mental verification of SPR, we had reason to believe that
LCK was a new target of rhein.

Discussion
At present, there had been many successful cases of
ligand-protein docking for target identification [39, 40].
The use of ligand-protein docking provided the conditions
for the rapid screening of potential targets, rather than the
aimless trial of luck. In this study, virtual screening based
on ligand-protein docking was divided into two steps. The
first step was inverse rhein molecular docking analysis. In
this step, 300 potential targets were selected from 2241
human protein targets. The second step was the accurate
rhein molecular docking analysis. In this step, the 300 tar-
gets were further reduced to 67 potential targets. These
two steps were designed to reduce the rate of false posi-
tives and obtain more accurate targets. Although the
ligand-protein docking was popular for drug target identi-
fication, challenges remained for this method due to its
limitations that included insufficiencies of the database re-
sources, imperfections of the scoring functions, and in-
accurate selection of binding sites and docking poses [41].
Due to these limitations, there may still be a few false pos-
itives among the 67 potential targets. In addition, the dir-
ect verification of 67 potential targets by experiments was
time-consuming and costly. Therefore, a further method
was needed to screen potential targets and reduce false
positive targets.
The network analysis was a new strategy to compre-

hensively screen drug targets [8]. In biological networks,
the targets of one bioactive compound always gathered
in a cluster. For instance, there were close interactions
between the targets of nearly any bioactive compound in
the STITCH database [42], which meant that the adja-
cent nodes of a known target were likely to be a target
as well. To clearly illustrate the principle of network
analysis, the diagrammatic sketch of the idea was

constructed as shown in Fig. 5. In this diagrammatic
sketch, plane a represented the target PPI of one bio-
active compound, targets of which were mapped to a
biological network (plane b). All the known targets of
this bioactive compound clustered together, and the tar-
get EPPI of this compound was the network with broken
circle in plane b. Then, the plane c was selected from
the EPPI according to the importance of nodes in the
EPPI network. Thus, the potential targets in plane c
were used for further screen. In this study, the PPI net-
work of rhein targets was consisted of a big cluster with
40 nodes linked by 60 interactions along with 37 isolated
nodes. Further research should consider whether these
37 isolated nodes were connected to other known tar-
gets via neighbouring nodes such that one whole cluster
forms. Certainly, each node in the cluster had a high
probability of being a target. Therefore, the EPPI net-
work was further constructed to filter targets. Topo-
logical characteristics offered significant insight into
biologically relevant connectivity patterns, and pinpoint
likely key targets in the network [43]. The node degree
represented the number of other nodes connected to a
node. A high degree node was generally considered to
be important because of its extensive connectivity [44,
45]. Similarly, the closeness centrality represented the
degree of closeness between a node and other nodes in
the network. The node with a large closeness centrality
was also a protein of great importance. The betweenness
centrality was another basic property of a network. The
node with a large betweenness centrality was always a
key transmit point for biological information flow; if this
node was lost or blocked in a network, it resulted in the
emergence of many modules [34, 46]. Here, betweenness
centrality was determined as a key parameter because it
had the largest AUC (0.710), which implied the best pre-
dictive rate. Then, the 21 nodes were screened according
to the highest cut-off (0.0016) of betweenness centrality.
These 21 nodes included 7 known targets and 14 poten-
tial targets. Examples used in this study demonstrated
that our network analysis method was very efficient, re-
ducing 67 potential targets to 14 ones. However, our
network analysis needed two prerequisite conditions: 1.
There must be a certain number of known targets; 2.
There should be direct or indirect links between known
and potential targets. In other words, if the number of
known targets was insufficient enough or the known tar-
gets were not closely related to potential targets, the
false positives or false negatives might increase in the re-
sults. In addition, the network analysis could not reflect
the flow of biological information because the network
used in network analysis was usually undirected. There-
fore, the enrichment analysis was another required
method in order to further reduce the false positives and
to consider the flow of bio-information closer to reality.
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The pathway enrichment analysis was usually used to
assess the distribution of given proteins in the KEGG
pathway and determine their contribution to biological
processes. This method would calculate the hypergeo-
metric distributions between given proteins and pathways
and return a P-value for each pathway in which the given
proteins existed. Based on the P-value, it was assessed
whether the given proteins were enriched in that pathway
[10]. Obviously, the enrichment analysis had significant
implications for establishing the relationships between
proteins and pathways. Here, the enrichment analysis was

innovatively used for the target identification since the
enriched proteins often played similar and important bio-
logical roles in the biological process, and were likely to be
the targets of the bioactive molecule. For example, the
activation of JAK2 and STAT3 induced the expression of
TNF-α and IL-6 in acute renal injury, while curcumin pro-
tected against the acute renal injury by distinctly inhibiting
the activation of JAK2 and STAT3 in the JAK2/STAT3
pathway [47]. As shown in Fig. 5, the proteins with the
flow of biological information in plane d were enriched
from plane c, and thus the range of potential targets

Fig. 5 Diagrammatic sketch of the idea for network analysis and enrichment analysis. In this diagrammatic sketch, plane a represents the target
protein–protein interaction (PPI) of one bioactive compound, targets of which were mapped to a biological network (plane b). In fact, the target
extended PPI (EPPI) of this bioactive compound is the network with broken circle in plane b. According to the importance of nodes in the
network, plane c was selected from the EPPI via network analysis. The plane d represents the enriched pathway of proteins in plane c. Thus, the
potential targets of this bioactive compound in plane d could be considered to be candidate targets
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would be more accurate after the enrichment analysis. In
this study, 21 proteins from the network analysis screen-
ing were subjected to the enrichment analysis. The results
showed that 15 proteins were enriched and 9 of the 15
proteins were potential targets and determined to be can-
didate targets. Interestingly, 5 of the 9 candidate targets
had been previously reported, in spite of not being in-
cluded in the STITCH database. This situation further
verified the accuracy and reliability of the integration strat-
egy used in this study. Moreover, 11 KEGG pathways that
were significantly enriched interacted closely through the
15 enriched proteins, as shown in Fig. 6. All 11 KEGG
pathways were associated with inflammation, proliferation
and apoptosis, which were consistent with the pharmaco-
logical activities of rhein, again suggesting that each
enriched protein was likely to be a target.
LCK, a member of the Src family of protein tyrosine ki-

nases [48], was a new rhein target identified by our strategy.
Our SPR experiment revealed that LCK could interact with
rhein, and the binding tendency was proportional to the
protein concentration. In biological systems, LCK played an
important role in the T-cell antigen receptor (TCR)-linked
signal transduction pathway as a non-receptor tyrosine

kinase [49]. LCK constitutively associated with the cytoplas-
mic portions of the CD4 and CD8 surface receptors, and
then initiated the TCR-linked signaling pathway [50]. Upon
TCR stimulation, LCK phosphorylated the TCR, thus lead-
ing to the recruitment, phosphorylation, and activation of
ZAP70 [51]. Activated ZAP70 then directly or indirectly
regulated the MAPK and the NFKB signalling pathways,
subsequently affecting cell proliferation and inflammatory
processes [52, 53]. As a new target of rhein, LCK might play
an important role in the treatment of cancer or inflamma-
tion. Of course, the therapeutic effect of rhein was not only
due to regulating the LCK target, but also was the result of
synergistic and comprehensive regulation of multiple tar-
gets in different pathways [13]. Rhein could inhibit the
phosphorylation of EGFR, p38 and JNK in the classical
MAPK cascade [17, 35–37], repress the activity of RELA
and NFKB1 in the NF-κB signalling pathway [17, 54–56],
promote apoptosis through the activation of CASP3 and
CASP8 in the apoptotic pathway [57], induce G0/G1 arrest
through CDK6 inhibition in the cell cycle [38], decrease the
expression of VEGFA and the activity of HSP90AA1 and
RXRA in other pathways [14, 15, 58]. Apparently, the
rhein-mediated biological network was vast and complex.

Fig. 6 The integrated network of enrichment pathways of rhein targets. This pathway was constructed via manually extracting the biological
process which is related to enriched targets of rhein from the KEGG pathway. The main body of a biological process was extracted if a rhein
target was in this biological process. The protein marked by star is the rhein target. Purple and green stars represent known and candidate
targets, respectively
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The therapeutic effect of rhein was the synergistic and
comprehensive result of this vast and complex network
[13], and the perturbation of multiple targets gave rhein a
variable and effective pharmacological activity.

Conclusion
In this study, ligand-protein docking, network analysis,
and enrichment analysis were integrated to identify new
targets of rhein, followed by the validation of these tar-
gets using SPR experiments. Although any one of these
methods had been applied to the target identification be-
fore, the rational combination of them for the target
identification was novel. The integrated network of
enriched pathways was used to elucidate the compre-
hensive pharmacological mechanisms of rhein. This
study provided a new strategy to effectively identify can-
didate targets and infer the molecular mechanisms of
bioactive compounds.
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