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Abstract

Background: Conventional phylogenetic clustering approaches rely on arbitrary cutpoints applied a posteriori to
phylogenetic estimates. Although in practice, Bayesian and bootstrap-based clustering tend to lead to similar
estimates, they often produce conflicting measures of confidence in clusters. The current study proposes a new
Bayesian phylogenetic clustering algorithm, which we refer to as DM-PhyClus (Dirichlet-Multinomial Phylogenetic
Clustering), that identifies sets of sequences resulting from quick transmission chains, thus yielding easily-interpretable
clusters, without using any ad hoc distance or confidence requirement.

Results: Simulations reveal that DM-PhyClus can outperform conventional clustering methods, as well as the Gap
procedure, a pure distance-based algorithm, in terms of mean cluster recovery. We apply DM-PhyClus to a sample of
real HIV-1 sequences, producing a set of clusters whose inference is in line with the conclusions of a previous
thorough analysis.

Conclusions: DM-PhyClus, by eliminating the need for cutpoints and producing sensible inference for cluster
configurations, can facilitate transmission cluster detection. Future efforts to reduce incidence of infectious diseases,
like HIV-1, will need reliable estimates of transmission clusters. It follows that algorithms like DM-PhyClus could serve
to better inform public health strategies.
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Background
The collection and, often public, availability of viral geno-
typing data has made phylogenetics, the field concerned
with the inference from genetic data of the ancestral
history of organisms, a popular tool for modelling epi-
demics [1, 2]. Phylogenetic models represent the ances-
tral relationships between sequences of nucleotides or
amino acids with a hierarchical tree structure known as
a phylogeny. Phylogenetics can help guide public health
efforts to curb incidence of HIV-1 and tuberculosis
[3–5], by revealing the existence of transmission clus-
ters, epidemiologically-linked individuals infected by a
genetically-similar pathogen. Transmission clusters are
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known to affect incidence and may hinder the implemen-
tation of effective intervention strategies [6].

Transmission cluster inference
Observed clustering in viral sequencing data, thought
to result from series of fast onward transmission events
called quick transmission chains, is a convenient proxy for
transmission clusters [7]. To estimate transmission clus-
ters from an inferred phylogeny, a collection of ad hoc
rules are conventionally applied. One normally looks for
a partition of the sample into clades. A clade is a set
of sequences corresponding to all tips descended from a
given ancestral node in the tree. Usually, a clade corre-
sponds to a cluster only when it is known with high confi-
dence, and when its sequences are similar. Unsurprisingly,
disagreements over clustering rules are common, and
what the resulting partitions mean in an epidemiological
sense is still unclear [8, 9].
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Study objective
In the present study, we aim to propose a new
Bayesian phylogenetic clustering algorithm, called DM-
PhyClus, which stands for Dirichlet-Multinomial Phy-
logenetic Clustering, that eliminates the need for arbi-
trary distance and confidence criteria. DM-PhyClus looks
directly for sets of sequences resulting from quick
transmission chains, thus also improving interpretability
of clusters.

Phylogenetic inference and clustering
Bayesian phylogenetic inference is commonly used in the
clustering of sequencing data, mainly because it read-
ily provides an intuitive confidence measure for inferred
clades [10, 11]. Popular software implementations include
BEAST and MrBayes [11, 12], which both rely on vari-
ations of the Markov Chain Monte Carlo (MCMC)
approach. Convergence issues have prompted the devel-
opment of several other approaches, based, for example,
on Sequential Monte Carlo [13] and Stochastic Approxi-
mation Monte Carlo [14].
Software like MEGA and PAUP* [15, 16] have made

maximum likelihood (ML) phylogenetic reconstruction
a popular alternative. RAxML [17] and FastTree [18]
are more recent options, designed specifically to han-
dle large datasets. They both rely on heuristic tree-
searching strategies to considerably speed up likelihood
optimization. Generally, methods for maximum likeli-
hood phylogenetic reconstruction do not yield measures
of confidence for clades, which are necessary to apply
conventional clustering rules. To solve that problem, they
are combined with a bootstrap scheme. However, the
interpretation of bootstrap support for clades remains
controversial [19–21].
Bayesian and ML phylogenetic approaches involve gen-

erating a large collection of trees. The maximum pos-
terior probability (MAP) or ML estimate are natural
choices for the tree that best describes the ancestry of
the data. However, especially in large samples, the score
for those estimates may not be much higher than that
for many other trees. Therefore, summarizing a col-
lection of phylogenies by building a so-called consen-
sus tree [22–24] is common. Unlike conventional point
estimates, consensus trees provide measures of uncer-
tainty for elements in the tree topology, an unambiguous
representation of the hierarchical nesting of clades in
the phylogeny.
After computing a sensible phylogenetic estimate, one

can then proceed to estimate clusters. [7] define a cluster
as a clade known with high confidence, and with patris-
tic distances bounded above by a reasonably low value,
where the patristic distance between any two sequences
is calculated by summing branch lengths along the path
linking the corresponding tips in the tree. The method

itself however does not specify how confidence and
distance requirements should be selected. In their ML-
bootstrap analysis for example, [7] used a confidence
threshold of 98% and a patristic distance requirement
of 0.015 nt/bp.
Prosperi et al. [25] designed PhyloPart, a method that

also defines clusters as clades known with high con-
fidence. The genetic distance requirement is now for-
mulated in terms of the median patristic distance in a
clade. To conclude in clustering, we must have median
patristic distance in a clade below a value equal to a
reasonably low percentile of patristic distances in the
entire tree. In their analyses, [25] used the 1st, 10th,
15th, and 30th percentiles. The choice of a percentile
threshold is arbitrary: in their study, it was selected
to maximize agreement with a number of confirmed
clusters.
Alternatively, [26] proposed ClusterPicker, that also

finds clusters by identifying clades inferred with rea-
sonably high confidence. The distance requirement in
ClusterPicker does not involve patristic distances, but
rather simple pairwise estimates of genetic distance, com-
puted for example with the JC69, K80, HKY85, or raw
(Hamming) model [27–29]. The method is convenient,
as it can be applied readily to consensus trees, which do
not naturally have branch lengths. Once again, the tun-
ing of the clustering requirements is left entirely to the
investigator.
Clustering criteria are often arbitrary, and tend to be

poorly justified. In Bayesian phylogenetic clustering, pos-
terior probability requirements of 1 are the most common
[19, 30], although studies may opt for a lower value [31].
In the ML-bootstrap framework, clade support require-
ments as low as 70% [32–34], or above 90% [7, 26, 35]
are common. A lot of variability is also observed in
genetic distance requirements. For instance, [35] use the
HKY+γ model [29] to assess pairwise distances between
sequences and impose a maximum distance of 0.045 nt/bp
within any cluster. [25] instead find that a median patristic
distance requirement of 0.07 nt/bp maximizes correspon-
dence with known clusters.
The variety of standards encountered in the literature

may reflect a lack of agreement as to what clusters corre-
spond to [8]. More recently, [36] proposed the Gap Pro-
cedure, a distance-based clustering approach that avoids
phylogenetic reconstruction and cutpoint selection alto-
gether by defining clusters based on a measure of dis-
tinctiveness. Although it is very fast, it does not provide
any means to evaluate uncertainty around its point esti-
mates. Like the Gap Procedure, the method presented in
this paper aims to avoid cutpoint selection by giving clus-
ters a straightforward definition. However, it should also
offer an intuitive measure of confidence in cluster esti-
mates. We designed it specifically for clustering HIV-1
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sequencing data, which will be the main substantive focus
in the remainder of the paper.

Methods
DM-PhyClus is a MCMC-based algorithm [37] that inno-
vates by relying on a definition of transmission clus-
ters that better reflects clinical understanding, and by
avoiding ad hoc distance and confidence requirements.
DM-PhyClus makes use of a likelihood formulation that
distinguishes between between-cluster and within-cluster
components of the phylogeny, cf. Fig. 1. The between-
cluster phylogeny represents the ancestral relationships
between each cluster’s most recent common ancestor
(MRCA), and the within-cluster phylogenies, the ancestral
history of each cluster.
Under DM-PhyClus, clusters have a clear definition:

they are sets of sequences whose ancestral history is char-
acterized by a specific distribution for branch lengths. In
order for clusters to reflect quick transmission chains, we
attribute branch lengths in the within-cluster phylogenies
a prior with a reasonably low mean, in comparison to that
for branches in the between-cluster phylogeny.

Fig. 1 A phylogeny split into between- and within- cluster
components. Sequences C01-1 and C01-2 belong to cluster 1, while
C02-1, C02-2, and C02-3 belong to cluster 2. Sequence S01 is a
singleton, that is, a cluster of size 1, and O is an outgroup, used to root
the sample phylogeny. The red sub-phylogeny is called the
between-cluster phylogeny, while the blue sub-phylogenies are called
the within-cluster phylogenies

Likelihood
We compute the tree likelihood recursively with Felsen-
stein’s tree-pruning algorithm [38]. Let (y1, . . . , yn) denote
the sequence data, and yi,s, the state at the s’th site,
s = 1, . . . , S, of sequence i. If sequences are made up of
nucleotides, yi,s can take one of 4 values, each represented
by a unit vector of length 4. For example, nucleotides A
and T are represented by vectors (1, 0, 0, 0) and (0, 1, 0, 0),
respectively.
At each site, evolution along branches of the tree, whose

topology and branch lengths are denoted τ and l, respec-
tively, follows a continuous time Markov chain with rate
matrix Q. Further, we assume that among-sites variation
in evolution rates follows a discrete gamma distribution
with nr categories and parameter r. Evolution occurs inde-
pendently at different sites and so, the likelihood takes
value,

ζ (τ , l, nr , r,Q) =
S∏

s=1
ζs (τ , l, nr , r,Q) , (1)

where ζs(τ , l, nr , r,Q) represents the likelihood contribu-
tion of site s.
Let j and k index the two children of an arbitrary internal

node i in topology τ , and x. be a numerical code for the
state at node ., e.g. A = 1, T = 2, C = 3,G = 4. Let L(s,i,m)

xi
represent the probability of observing the configuration at
all tips descended from parent node i at site s, conditional
on state xi at that node and rate variation category m. We
have that,

L(s,i,m)
xi =

∑

xj
pxi,xj

(
ξmlj

)
L(s,j,m)
xj

∑

xk

pxi,xk (ξmlk) L(s,k,m)
xk ,

(2)

where pxi,x. (ξml.) represents the transition probability
from state xi to x. along a branch of length l., with coef-
ficient ξm being a scaling factor resulting from the con-
ditioning on rate variation category m. We note that xi
indexes the L(s,i,m) vector, and it follows that the vector has
as many elements as there are states in the data, e.g. 4 for
nucleotide data. From the Markov assumption, it follows
that,

pxi,x. (ξml.) = exp (Qξml.) .

When index i is for a tip, we have that L(s,i,m) = yi,s. We
must compute L(s,i,m) for each combination of site s, node
i, and rate variation categorym.
We start by computing L(s,i,m) for all nodes i whose chil-

dren j and k are both tips. Then, we list all pairs of nodes
j and k for which both L(s,j,m) and L(s,k,m) are known, and
compute L(s,i,m) for each of them.
Let the root of the tree have index ϑ . We have that the

likelihood contribution of site s takes value,
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ζs(τ , l, nr , r,Q) = 1
nr

nr∑

m=1

∑

xϑ

L(s,ϑ ,m)
xϑ

pxϑ ,

where p represents the limiting probabilities of the
Markov chain.
In real DNA sequences, sequencing may reveal that

two or more nucleotides can be found at certain sites,
producing an ambiguity. In the case of HIV, the sequences
used when fitting phylogenetic models are summaries of
the viral population found within infected individuals.
Ambiguities are especially common in such sequences,
since genetic diversity in the within-host viral population
increases quickly after the infection event took place [39].
In Felsenstein’s tree-pruning algorithm, ambiguities are
expressed as a sum of the unit vectors for the potential
states. For example, if A and T are observed at site m in
sequence i, we get that yi,m =[ 1, 1, 0, 0].

Priors
We denote branch lengths in the within-cluster and
between-cluster components l(w) and l(b), respectively.
We assign branch lengths in the between-cluster phy-
logeny a log-normal prior with parameters μ and σ . We
picked that distribution because of its potentially heavy
right tail, which allows for a small number of distinctively
long branches. We tune priors for those parameters based
on a desired mean and coefficient of variation. To lighten
the computational load, we assign that mean a uniform
prior over a finite number of discrete values, and the coef-
ficient of variation is fixed. We assign branch lengths in
within-cluster phylogenies an exponential prior with rate
δ, whose prior is, like before, discrete uniform over a finite
range of sensible values.
We assign cluster membership indices c = (c1, . . . , cn)

a multinomial prior with probability parameters π =
(π1, . . . ,πmax(c)), weighted by values from a Poisson distri-
bution, with rate parameter λ, evaluated at max(c) and an
indicator function giving probability 0 to configurations
not meeting the clade assumption,

P(c1, . . . , cn | τ , λ,π) ∝
(

n
n1 . . . nmax(c)

)
π
n1
1 · · · πnmax(c)

max(c)
exp(−λ)λmax(c)

max(c)!
×

× I[ Partition allowed by τ ] ,

(3)

with nk = ∑n
i=1 I[ ci = k] and I[ .] being an indicator

function.
The probability parameters have a symmetric Dirichlet

hyperprior with concentration parameter α, to which we
assign a gamma hyperprior with shape and scale param-
eters η and β . We summarize parameters in Fig. 2 and
present more information on the algorithm’s input, e.g.

Fig. 2 Graphical representation of the relationships between
parameters and the data. Parameters in a black box are fixed.
Parameters in a red box are marginalized out. The vector (y1, . . . , yn)
is the sample, and “SD” stands for standard deviation. We denote the

within-cluster phylogenies
(
τ

(w)
1 , . . . , τ (w)

k

)
, k being the number of

clusters, and the between-cluster phylogeny, τ (b) . Within-cluster
phylogenies are degenerate when they support a cluster of size 1,
while the between-cluster phylogeny is degenerate when the sample
comprises only one cluster. The log-normal prior distribution for the
between-cluster branch lengths is reparameterized in such a way that
it has mean and standard deviation parameters, like in the normal
distribution

parameters, priors, hyperpriors and tuning parameters,
and outputs in Appendix 1.

Posterior probability derivation
We are interested primarily in the posterior distribution
of cluster membership indices c and so, we marginalize
out probability parameters π , as well as all branch lengths.
Marginalizing out π from Eq. 3, we obtain,

P(c1, . . . , cn | τ ,α, λ) ∝ B(n + α)

B(α)

(
n

n1 . . . nmax(c)

)
λmax(c) exp(−λ)

max(c)!
×

× I[ Partition allowed by τ ] ,

(4)

with,

B(α) =
∏max(c)

i=1 �(αi)

�
(∑max(c)

i=1 αi
) .

We use Monte Carlo integration to marginalize out
branch lengths from the likelihood. When the num-
ber of Monte Carlo replications K is large enough, the
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probability of a transition from state xi to xj over any given
branch is approximately,

P(xj | xi, c) =
∫

D(l|c)
[
exp(Ql)

]
(xi ,xj) p(l | c)dl ≈ 1

K

K∑

k=1

[
exp(Qlk)

]
(xi ,xj) ,

(5)

where D(l | c) is the domain of l | c, p(l | c) is the prior
distribution of l conditional on c, and lk is drawn from that
distribution. [ exp(Ql)] denotes the transition probability
matrix along a branch of length l, and [ exp(Ql)](xi,xj) rep-
resents element (xi, xj) of thatmatrix. The conditioning on
c appears as a result of the marginalization, because of the
different priors for branch lengths in the within-cluster
phylogenies and the between-cluster phylogeny.
The posterior distribution of the cluster membership

indices is denoted,

P(c1, . . . , cn |y1, . . . , yn, τ ,α, λ) ∝ ζ(τ , nr , r,Q |c1, . . . , cn)P(c1, . . . , cn |τ ,α, λ),

where P(c1, . . . , cn | τ ,α, λ) is given by Eq. 4 and
ζ(τ , nr , r,Q | c1, . . . , cn) is obtained by replacing
pxi,x.(ξml.) in Eq. 2 by the approximation derived in Eq. 5,
but with simulated branch lengths lk being multiplied
by ξm. There is a one-to-one correspondence between
(c1, . . . , cn) and the breakdown of τ into within-cluster
phylogenies and between-cluster phylogeny, and the con-
ditioning on (c1, . . . , cn) in themarginal likelihood appears
as a result.

Transition kernels and Metropolis-Hastings (MH) ratios
DM-PhyClus first searches for a sensible phylogenetic
estimate, that acts to restrict the space of potential cluster
membership indices, and then, conditional on that phy-
logeny, performs successive Metropolis-Hastings (MH)
updates of the concentration parameter and the cluster
membership indices.
We sample tentative transitions in the space of concen-

tration parameter α from a uniform distribution defined
over an interval of length 1 centered around the current
value of α, resulting in the transition kernel ratio reducing
to 1. We propose moves in the space of cluster member-
ship indices c by using a cluster split-merge strategy. Any
cluster of size 2 or more can be split in two disjoint clus-
ters, corresponding to the clades supported by the chil-
dren of the original cluster’s root. We can merge any two
neighbouring clusters, or in other words, any two clusters
whose most recent common ancestor is at most one split
above their respective roots. The transition kernel is a dis-
crete uniform distribution over all split-merge transitions
allowed by the topology from the current state. It follows
that the transition kernel ratio is equal to the total number
of potential moves from the current configuration divided
by the total number of potential moves starting from the
proposal. With the ratio of priors obtained from Eq. 4 and

the conventional likelihood ratio, we have all necessary
components for computing the MH ratio.

Point estimates for cluster membership indices
We produce two kinds of estimates for cluster member-
ship indices, the maximum posterior probability (MAP)
estimate, and the linkage-xx estimate, which we obtain in
three steps,

1 Derive an adjacency matrix from each sampled
cluster membership indices vector.
An adjacency matrix is a symmetrical matrix with a 1
at position (i, j) if elements i and j co-cluster, and
with a 0 otherwise.

2 Average adjacency matrices computed in step 1 and
apply a co-clustering frequency threshold of xx.
The average adjacency matrix provides co-clustering
frequencies. All frequencies higher than the
threshold are rounded up to 1, while all others are
rounded down to 0.

3 Identify all disjoint sets, called modules or
components, from the matrix obtained in step 2.
Two sets of sequences are disjoint if no co-clustering
exists between them. We use the walktrap algorithm
[40] to detect disjoint sets, which leads to the cluster
estimates.

We present a structured, step-by-step description of
DM-PhyClus in Appendix 1.

Simulation study
Data
We simulate an HIV-1 sequence dataset of size 200 by
going through the following steps:

1 Sample the total number of clusters from a Poisson
distribution with mean 50,

2 Sample cluster assignment probabilities from a
symmetric Dirichlet distribution with a
concentration parameter generated from a normal
distribution with mean 10 and standard deviation 2,

3 Sample 200 values from a multinomial distribution
with the obtained probability vector,

4 Generate each within-cluster phylogeny by picking a
topology at random, and by sampling branch lengths
from an exponential distribution with mean equal to
0.003,

5 Generate the between-cluster phylogeny by picking a
topology at random, and by sampling branch lengths
from a log-normal distribution with mean and
standard deviation equal to 0.008,

6 Let the HXB2 sequence evolve along the simulated
tree, with evolution rate matrix and limiting
probabilities obtained from [41].
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HXB2 is an HIV-1 subtype B sequence that serves as a ref-
erence for site position numbers in any HIV-1 sequence.
In other words, the range of site indices in any HIV-1
sequence is found by aligning it with HXB2. We gen-
erate 50 datasets in total, and add to each of them an
arbitrary subtype C outgroup (http://www.hiv.lanl.gov/,
accession number: AB254141) for rooting the inferred
phylogenies. We list parameters used for data generation
in Appendix 2.

Scenarios
Assessing sensitivity of the cluster estimates to the con-
centration parameter prior is vital, as it may be challeng-
ing to properly specify in practice. For each simulated
dataset, we run DM-PhyClus under the assumption
that the concentration parameter follows a gamma dis-
tribution with scale parameter 0.1, and, successively,
with means 1, 10, and 100. The use of fixed estimates
for the mutation rate matrix and limiting probabilities
may also affect cluster recovery. To verify that such a
restriction is not overly detrimental to cluster recovery,
we use values for those parameters obtained from a sep-
arate analysis of a real HIV-1 sequence dataset, that we
ensure are reasonably different from those used for data
generation.

Setup
Given the synthetic nature of the problem, tuning priors
for branch lengths is difficult and so, we opt for an empir-
ical Bayes approach. We setup a first round of simulations
with the following scheme:

For each simulated dataset:
1 Use RAxML [17] to derive a maximum likelihood

phylogenetic estimate and perform 500 bootstrap
iterations, producing the usual clade support
estimates,

2 Obtain an initial set of clusters by running a depth-
first search on the ML tree: stop exploration along
any path once you find a clade with bootstrap support
greater than 70% and with patristic distances below a
certain threshold, selected through maximization of
the Dunn index [42], a measure of clustering quality,

3 Derive mean branch lengths for the within- and
between-cluster phylogenies,

4 Define a range around each of the two means
obtained previously with radius equal to 8% of the
obtained value,

5 Select 20 equidistant points in each range, at which
transition probability matrices are computed by
sampling 100,000 values from the log-normal
distribution for between-cluster branch lengths, or
the exponential distribution for within-cluster
branch lengths,

6 Use the initial set of clusters as a starting value for
the chain in DM-PhyClus, and use the maximum
likelihood topology to bound the space of cluster
membership indices.

We made the decision to use only 20 points to increase
computational speed. In light of that choice, we then
selected the 8% radius to ensure that transitions in
the space of transition probability matrices were likely
enough.
In a second round of simulations, before launching

the chain, we explore the topological space around the
maximum likelihood phylogeny, using nearest-neighbour
interchange to find a configuration that improves pos-
terior probability, and letting values for the concentra-
tion parameter and cluster membership indices vary as
well. We start the MCMC run once a suitable topol-
ogy is identified. We present an exhaustive list of the
tuning parameter values used in the simulations in
Appendix 2.

Chain configuration and point estimates comparison
For each simulated dataset, we produce 55,000 samples
from the posterior distribution of the cluster member-
ship indices vector. We apply a thinning ratio of 1 over
50, and take out the first 5000 iterations as a burn in,
leaving us with 1000 samples. Once the MCMC run is
complete, we obtain the MAP and linkage-xx cluster esti-
mates, and measure overlap between the real and inferred
clusters with the adjusted Rand Index (ARI), a measure
of similarity between two sets of clusters. It involves the
ratio of pairs of elements that are similarly co-clustered
or dissociated in both sets to the total number of pairs
in the sample, combined with a numerical adjustment for
chance. It is bounded above by 1, which indicates perfect
correspondence. We compare those estimates to those
we initially obtained from RAxML, which we refer to as
the Bootstrap-70 estimates, and to the estimates from the
so-called Gap procedure, a quick distance-based genetic
sequence clustering approach that requires minimal tun-
ing [36]. The Bootstrap-70 estimate is a natural standard
for comparison, since it is obtained by applying a con-
ventional method for the clustering of HIV-1 sequencing
data [19].

Real data analysis
Data
The original sample consists of 3537 HIV-1 subtype
B sequences collected for the Québec HIV genotyping
program [7]. Each sequence is from a different male
patient belonging to the injection drug user (IDU) or
men who have sex with men (MSM) risk category, and
that has not yet started antiretroviral therapy, the stan-
dard treatment regimen for HIV-positive individuals. The

http://www.hiv.lanl.gov/
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dataset includes sites 10–297 of the protease region
(PR), and 112–741 of the reverse transcriptase (RT)
region, of the pol gene.
Brenner et al. [6] obtained an initial set of clusters

by partitioning the sample through inspection of the
maximum likelihood tree, selecting clades with boot-
strap support greater than 98% and whose patristic dis-
tances were below 0.01 nt/bp. They also looked for
congruent polymorphisms and mutational motifs. When-
ever new sequences entered the database, they updated
their cluster estimates by re-inferring the tree, and
attaching new sequences to previously-inferred clusters
when the clade they belonged to had bootstrap sup-
port greater than 98%. They also used clinical and
demographic information to exclude sequences from
inferred clusters.
We focus on a subsample of 526 sequences, made

up of 18 previously-inferred clusters of sizes ranging
from 2 to 69, inclusively, as well as 12 singletons
selected uniformly at random in the original sample.
We add to the sample 3 subtype C outgroups from
Zambia, downloaded from the Los Alamos HIV-1
sequencing database (http://www.hiv.lanl.gov/, accession
numbers AB254141, AB254142, AB254143).

Bootstrap analysis
To evaluate sensitivity of DM-PhyClus to the input topol-
ogy, we produce 100 bootstrap samples of the data
by resampling site indices with replacement and re-
assembling each sequence based on the sampled indices.
We use maximum likelihood topological estimates and
use the same strategy as in the simulations to obtain
starting values for the chain. Each run also consists of
55,000 iterations, with a burn-in of 5000 and a thinning
ratio of 1/50.

Approximation of the fully Bayesian analysis
Fixing the topological parameter in the chain results in
the inference not being fully Bayesian. Such an approx-
imation is acceptable only so long as we can estab-
lish that the results do not differ too much from
those resulting from the fully Bayesian approach. To
do so, we first use MrBayes [11], run under the
default configuration, to sample 1.5 million phyloge-
nies from the posterior distribution P(τ | y, . . . ),
where . . . represents the other parameters. We take
out the first 375,000 phylogenies as a burn-in, and
apply a thinning ratio of 1/500. Of the remaining
2250 phylogenies, we select 100 uniformly at ran-
dom, which we use as input in 100 separate runs
of DM-PhyClus. Each run produces samples from the
conditional posterior distribution of the cluster mem-
bership indices P(c | τi, . . . , y), i = 1, . . . , 100.
Noting that,

P(c | y) = Eτ [P(c | τ , y)]≈
100∑

i=1
P(c | τi, y)/100,

we see that high overlap between the maximum pos-
terior probability cluster membership indices obtained
from the 100 chains ensures that the peak of P(c | y)
is found at a configuration similar to those obtained
in each individual run, thus confirming the quality
of the approximation resulting from the conditioning
assumption.

Main run
We obtain starting values with the help of RAxML, under
the assumption that genetic distance follows the GTR
+ �(3) model. As in the simulations, we configure pri-
ors for branch lengths based on the maximum likelihood
topology. We use limiting probabilities and nucleotide
substitution rates previously inferred for HIV-1 subtype
B [41]. We assume discrete gamma substitution rate vari-
ation with 3 categories. Finally, we fix the rate param-
eter for the Poisson distribution at 30, the number of
clusters obtained in [6]. We run 220,000 iterations, keep-
ing one iteration out of 150 and taking out the first
70,000 iterations as a burn-in. We then obtain point
estimates for cluster membership indices as before. An
exhaustive list of tuning parameter values used in all
real data analyses is available in Appendix 3. With this
analysis, we aim to highlight the extent to which the
cluster estimates produced by DM-PhyClus differ from
those presented in [6], that were based on a conven-
tional analysis relying on ad hoc cutpoints. Our choice of
Poisson and evolutionary parameters aims to reflect our
prior understanding of the clustering in the data as best
as possible.

Software
We present a technical description of the software in
Appendix 4. We implement the algorithm in R, with
functions contained in the phangorn, ape, and phytools
libraries [43, 44]. Likelihood evaluations rely on compiled
C++ code integrated into the R script using the Rcpp and
RcppArmadillo packages [45, 46]. We produce starting
values with RAxML [17]. Finally, we also produce clus-
ter estimates with the the GapProcedure package [36].
A package, DMphyClus, is available on Github (https://
github.com/villandre/DMphyClus) and will be submitted
to CRAN.

Results
Simulation study
On an Intel(R) Xeon(R) CPU E7-4820 v4 2.00GHz CPU,
running 55,000 iterations took on average a bit more
than 2 hours. Log-posterior probability graphs show no
obvious issue with autocorrelation or convergence, and

http://www.hiv.lanl.gov/
https://github.com/villandre/DMphyClus
https://github.com/villandre/DMphyClus
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indicate good mixing (see, for example, Appendix 5). We
show the obtained ARIs for the six scenarios in Table 1
(the raw data used to produce the tables are available as
Additional files 1, 2, 3, 4, 5 and 6). Overall, mean clus-
ter recovery from DM-PhyClus was superior than that
from the conventional Bootstrap-70 approach and Gap-
Procedure, both of which usually struggled to recover
the clusters. We observe a noticeable drop in mean over-
lap when the concentration parameter has a prior whose
mean is much smaller than that used for data generation,
but not when it is larger.

The linkage-xx estimates performed comparably or
slightly better than the MAP estimates when the linkage
requirement was 0.7 − 0.8 and the prior on the
concentration parameter had mean equal or superior
to the the true value. When the prior underesti-
mated the true concentration parameter value how-
ever, the linkage estimates greatly improved recovery,
sometimes as much as 10%, as long as the linkage
requirement was not 1. Maximum observed recovery
rates were also consistently superior for the linkage
estimates.

Table 1 Summary statistics for adjusted Rand indices (ARI) for cluster membership estimates obtained from chains run on 50 datasets
under different simulation scenarios

Topology used Alpha mean Estimator Min. Max. 10th perc. Median 90th perc. Mean SD SE

GapProcedure - - 0.012 0.719 0.030 0.385 0.654 0.361 0.227 0.005

Bootstrap-70 - - 0.074 0.882 0.256 0.483 0.771 0.504 0.221 0.004

ML topology 10 MAP 0.000 0.935 0.686 0.820 0.900 0.769 0.210 0.004

Linkage-0.7 0.000 0.946 0.711 0.853 0.920 0.793 0.213 0.004

Linkage-0.8 0.000 0.971 0.707 0.838 0.912 0.793 0.213 0.004

Linkage-0.9 0.000 0.962 0.710 0.822 0.893 0.771 0.206 0.004

Linkage-1 0.089 0.710 0.359 0.494 0.631 0.484 0.129 0.003

1 MAP 0.098 0.862 0.328 0.619 0.833 0.601 0.199 0.004

Linkage-0.7 0.012 0.939 0.381 0.725 0.861 0.653 0.218 0.004

Linkage-0.8 0.011 0.959 0.394 0.760 0.865 0.680 0.207 0.004

Linkage-0.9 0.053 0.937 0.466 0.776 0.885 0.712 0.191 0.004

Linkage-1 0.159 0.716 0.397 0.470 0.646 0.491 0.103 0.002

100 MAP 0.123 0.931 0.594 0.848 0.917 0.790 0.196 0.004

Linkage-0.7 0.123 0.973 0.346 0.859 0.931 0.791 0.215 0.004

Linkage-0.8 0.123 0.971 0.348 0.852 0.920 0.785 0.211 0.004

Linkage-0.9 0.123 0.980 0.378 0.820 0.896 0.761 0.202 0.004

Linkage-1 0.123 0.802 0.351 0.514 0.652 0.504 0.133 0.003

MAP topology 10 MAP 0.000 0.935 0.714 0.839 0.923 0.798 0.180 0.004

Linkage-0.7 0.000 0.950 0.727 0.858 0.919 0.818 0.172 0.004

Linkage-0.8 0.000 0.953 0.791 0.846 0.919 0.823 0.165 0.003

Linkage-0.9 0.000 0.947 0.751 0.824 0.891 0.798 0.156 0.003

Linkage-1 0.000 0.686 0.318 0.449 0.598 0.454 0.117 0.002

1 MAP 0.011 0.870 0.329 0.623 0.832 0.598 0.203 0.004

Linkage-0.7 0.162 0.930 0.321 0.738 0.848 0.649 0.212 0.004

Linkage-0.8 0.170 0.931 0.384 0.746 0.872 0.671 0.201 0.004

Linkage-0.9 0.175 0.911 0.437 0.764 0.852 0.693 0.178 0.004

Linkage-1 0.341 0.745 0.396 0.516 0.660 0.524 0.093 0.002

100 MAP 0.123 0.947 0.761 0.854 0.914 0.816 0.171 0.003

Linkage-0.7 0.123 0.976 0.793 0.867 0.923 0.830 0.170 0.003

Linkage-0.8 0.123 0.970 0.789 0.857 0.914 0.825 0.169 0.003

Linkage-0.9 0.123 0.965 0.703 0.819 0.901 0.789 0.164 0.003

Linkage-1 0.123 0.672 0.298 0.459 0.619 0.457 0.122 0.002
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The slightly better performance of DM-PhyClus when
the concentration parameter has a mean greater than that
used for data generation was unexpected. We observe
it both when the MAP and ML topologies are used.
When the concentration parameter prior had mean 10,
two chains returned a MAP configuration with a sin-
gle cluster, producing the 0 in the table, which explains
at least part of the gap. The datasets analysed by those
chains seem to imply a hard clustering problem, as evi-
denced by the low recovery rates from Bootstrap-70, 0.13
and 0.18. Overall, starting with the MAP configuration
from a shorter preliminary run resulted in small increases
in mean recovery rates. When the concentration prior
mean was 10, the same two chains as before resulted in
a MAP configuration with only 1 cluster, yielding ARI
= 0. With median recovery around 0.87 in the better
scenarios, we are not overly worried about the conse-
quences of using fixed values for the limiting probabilities
and mutation rate matrices, as long as they are selected
reasonably.

Real data analysis
Bootstrap analysis
We measured overlap within all pairs of MAP con-
figurations produced in the bootstrap analysis. ARIs
ranged from 0.10 to 0.98, with median 0.83 and mean
0.72, indicating reasonable robustness of the chain to
the assumed topology. Unsurprisingly, linkage estimates
led to essentially the same conclusion. For example,
overlap between cluster configurations proposed under
the linkage-0.7 estimate ranged from 0.11 to 0.98, with
median 0.83 and mean 0.70. Moreover, concordance
between MAP estimates from the bootstrap replicas and
the MAP cluster configuration obtained from the full data
was generally high, with median and mean ARI equal to
0.88 and 0.80, respectively.

Approximation of the fully Bayesian analysis
Estimates based on the 100 topologies sampled with
MrBayes were overall very similar, leading to the con-
clusion that the DM-PhyClus estimates are reasonable
approximations of those resulting from a fully Bayesian
analysis. Indeed, concordance between the MAP esti-
mates obtained from the 100 chains tended to be high:
ARIs ranged from 0.38 to 1, with median and mean
0.89 and 0.86, respectively. Overlap with the usual MAP
estimate, obtained conditional on the topology found to
optimize joint posterior probability after a short explo-
ration of the topological space, was also considerable, with
median and mean 0.92 and 0.90, respectively.

Full data analysis
The MAP configuration obtained from DM-PhyClus
revealed the existence of 16 clusters of size 2 or more,

and 2 singletons. Linkage estimates were identical to the
MAP estimate when the linkage requirement was 98% or
below, indicating little uncertainty in the returned par-
tition. The Gap Procedure returned a rather similar set
of clusters (ARI = 0.87). We represent clusters from
DM-PhyClus against those from the curated analysis in
Fig. 3. DM-PhyClus has a tendency tomerge neighbouring
clusters, as evidenced by the smaller number of single-
tons and the merger of clusters 43 and 83, which also
absorbed sequence r132, and of clusters 27 and 49. The
GapProcedure, on the other hand, proposed a configura-
tion with 43 clusters of size 2 or more, and 14 singletons,
splitting, for example, clusters 18 and 59 in 3 and 8 sets,
respectively.

Discussion
In this paper, we introduced a phylogenetic clustering
algorithm, DM-PhyClus, that integrates an original cluster
definition into cluster inference, which results in more
intuitive estimates, unlike conventional approaches, that
rely instead on arbitrary cutpoints applied a posteri-
ori to a phylogenetic estimate. Simulations indicate that
the algorithm can accurately recover phylogenetic clus-
ters, often outperforming more conventional approaches.
Analysis of a real dataset of HIV-1 subtype B sequences
revealed a set of clusters largely similar to that from
a previous analysis, but with more straightforward
inference.
The study does have some limitations. Because of time

constraints, we were only able to run short chains in
the simulations. Log-posterior probability graphs for the
simulated samples however did strongly suggest that
the chains had converged, making us confident that
increasing the number of iterations would not change
our conclusions. We suspect that the apparent weak-
ness of Bootstrap-70 might be in part attributable to the
use of the Dunn index. For several simulated datasets,
we noticed that it failed to identify the optimal par-
tition in terms of recovery. Comparing our results to
that optimal partition would have been unfair, how-
ever, since identifying it requires knowledge of the
true clusters.
For computational reasons and to ensure adequate

mixing in the chain, we opted for a fixed topology, thus
limiting the number of partitions the algorithm can pro-
pose and ignoring uncertainty in phylogenetic recon-
struction. This restricts the support of the domain for
cluster membership indices, and may, as a result, inflate
the posterior probability estimate for certain clusterings.
Although simulations and the real data analyses indicate
that this simplification works well in practice, proposing
an efficient transition kernel that jointly updates clus-
ter membership indices and the phylogeny would be
necessary.
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Fig. 3 Comparison of the DM-PhyClus cluster estimates with a proposed cluster configuration for the real dataset. The coordinates on the vertical
axis indicate cluster membership according to [6], and the colour and number of each dot, the cluster membership according to the maximum
posterior probability (MAP) estimate of DM-PhyClus

Moreover, we used RAxMLmainly because of its speed.
It produces a heuristic estimate of the maximum likeli-
hood phylogeny, and it is possible that a different algo-
rithm, such as the one in MEGA [15], might suggest a
different tree. RAxML has a long development history
and has been thoroughly tested, and so, we trust the
quality of its estimates. It follows that we do not expect
them to differ widely from those produced by comparable
software.

Further DM-PhyClus rests on the assumption that
cluster-specific phylogenies have a distinctive branch
length distribution. Our goal was to reflect intuitive
understanding of transmission clusters, but our branch
length assumptions do remain simplistic. Phylogenies for
HIV-1, for instance, are characterized by long external
branches [39]. The presence of a few very long exter-
nal branches is problematic for certain clustering algo-
rithms that rely on a maximum distance requirement,
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and could potentially affect the results of DM-PhyClus.
Moreover the exponential prior is known for produc-
ing overly long trees [47]. The assumption however is
common in Bayesian phylogenetic inference [12], and
leads to considerable computational simplifications. It is
possible that more sophisticated, potentially dependent,
branch length priors would improve cluster inference
overall. Priors based on models for epidemiological trans-
mission trees, e.g. a birth-death model, might also be
helpful. Given the often high recovery rates observed in
the simulations, we are confident that the simplification
was not overly detrimental. Improvements to the code
should also make it possible to apply DM-PhyClus to
much larger datasets, such as those collected for major
HIV-1 genotyping programs. Right now, the main com-
putational bottleneck is in the likelihood evaluations,
with time complexity linear in the number of sites and
sequences [30].

Conclusion
We contend DM-PhyClus is a worthwhile addition to
existing methods used to detect transmission clusters.
Understanding clustering in epidemics is crucial: in the
case of HIV-1 among men who have sex with men for
example, transmission clusters have been found to con-
tribute overwhelmingly to incidence [3, 6]. Investigations
into the reasons behind the existence of those clus-
ters are likely to help in reducing transmission rates,
and those studies will need to rely on methods based
on cluster definitions that reflect clinical insight, like
DM-PhyClus.

Appendix 1 - Algorithm description
The notation between brackets is used in Fig. 2.
Input:

1 The data (y1, . . . , yn): A sample of aligned DNA
sequences,

2 Topology (τ , fixed): Can be, for example, the
maximum likelihood topology,

3 Nucleotide transition rate matrix (Q, fixed): Can
be an empirical estimate, like the one in [41], or
alternatively, one derived from the sample itself, with
the help of RAxML or MrBayes for example,

4 Gamma shape parameter for among-sites
mutation rate variation (r, fixed): Assumed equal to
the scale parameter, can be obtained in the same way
as the nucleotide transition rate matrix. In the
simulations, we use an estimate from [41],

5 Number of among-sites rate variation categories
(nr , fixed).

6 Cluster membership indices (c1, . . . , cn) prior:
Follows a Dirichlet-multinomial distribution,
combined with a Poisson-distributed weight with a

pre-determined rate parameter (λ, fixed), e.g. the
number of clusters resulting from a conventional
bootstrap-maximum likelihood phylogenetic
clustering analysis,

7 Poisson rate for the assumed number of clusters
(λ, fixed),

8 Concentration parameter (α) prior: Assumed
gamma-distributed with user-specified shape (η,
fixed) and scale parameters (β , fixed),

9 Shape (η, fixed) and scale (β, fixed) parameter
values for the concentration parameter prior: We
set the scale parameter equal to 0.1 in all analyses,
and changed the shape parameter to vary the
distributional mean,

10 Transition kernel for the concentration
parameter (α): A uniform distribution with radius
0.5 centered at the current parameter value,

11 Transition kernel for the cluster membership
indices (c1, . . . , cn): A uniform distribution over all
configurations reachable from the current state. A
configuration is reachable if it can be obtained by
splitting in two a cluster of size 2 or more, or
merging two neighbouring clusters. Two clusters are
considered neighbours if their respective most recent
common ancestors (MRCA) are siblings. Clusters are
obtained by partitioning the sample into disjoint
clades. It follows that each cluster can be
represented, alternatively, by its MRCA. When a
cluster is split in two, the MRCAs of the new clusters
are the children nodes of the original cluster’s
MRCA. When two neighbouring clusters are
merged, the new cluster’s MRCA is the parent node
of the selected two clusters’ MRCAs.

12 Prior for branch lengths in the within-cluster
phylogenies

(
l(w)
1 , . . . , l(w)

n(w)

)
: Assumed to follow the

exponential distribution (δ),
13 Prior for branch lengths in the between-cluster

phylogeny
(
l(b)1 , . . . , l(w)

k(k+1)/2

)
: Assumed to follow a

log-normal distribution with equal mean (Mean) and
standard deviation (SD, fixed), which implies a
coefficient of variation of 1,

14 Prior for the transition probabilities along
branches in the within-cluster phylogenies:
Represented by an array of 4 × 4matrices. Each row
of the array corresponds to a different assumed mean
branch length, while each column corresponds to a
different rate variation category,

15 Prior for the transition probabilities along
branches in the between-cluster phylogeny: Same
as before,

16 Starting value for the cluster membership indices
(c1, . . . , cn): Must be a partition of the sample into
clades found in the input topology,
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17 Starting value for the Dirichlet-multinomial
concentration parameter (α),

18 Starting values for the between-cluster and
within-cluster transition probabilities,

19 Number of iterations,
20 Burn-in size,
21 Thinning ratio.

Algorithm output:

1 Values sampled from the posterior distribution of the
cluster membership indices (c1, . . . , cn),

2 Values sampled from the posterior distribution of the
concentration parameter (α),

3 A non-standardized joint log-posterior probability
value for the parameter values at the end of each
iteration.

A standard run
Obtaining the topology
In each simulation run, we start by obtaining an estimate
of the maximum likelihood topology from RAxML. We
assume that genetic distances follow the GTR+�(5)model
and use a subtype C outgroup (http://www.hiv.lanl.gov/,
accession number: AB254141). We then produce 500
bootstrap estimates of the tree, resulting in the usual clade
support estimates. RAxML stores the best scoring tree
in a file with the “bestTree” mention. More details on
RAxML’s tree optimization and scoring methods can be
found in [48].

Starting values for the cluster membership indices
We then use the topology to obtain initial cluster esti-
mates. More specifically, we look for a partition of the
sample into clades for which,

1 Maximum patristic distance between any pair of
elements within a clade is bounded above by an
arbitrary value, e.g. 0.05 nt/bp,

2 Bootstrap support for any clade is above a certain
value, e.g. 70%.

We find such a partition by traversing the tree starting
at the root. At the beginning, all sequences are assumed
to be in one cluster. If the (trivial) clade supported by
the root node meets the requirements above, no further
move is required. If not, we move down to the two chil-
dren nodes, and update the cluster membership vector to
account for the creation of a new cluster after the split
of the original cluster into two non-overlapping clusters.
At each child, we repeat the checks performed at the
root, moving down and splitting clusters until a set that
meets the clustering criteria is encountered, or until we
reach a tip.

In the analyses, we impose a confidence requirement of
70%, and find cluster configurations for maximum genetic
distance requirements between 0.03 nt/bp and 0.12 nt/bp.
For each distance requirement, we have a potentially dif-
ferent set of clusters, and for each of them, we calculate
the Dunn index [42], deriving the distance matrix from
the phylogenetic estimate. Finally, we pick the set that
maximizes that index as the starting value for the cluster
membership indices.

Estimates of transition probabilities
Once we have an estimate of cluster membership indices,
we use it to set up priors for transition probabilities along
branches in the within-cluster and between-cluster phylo-
genies. In the within-cluster phylogenies, branch lengths
have an exponential prior. We pick a range of values for
the mean parameter by,

1 Computing the average branch length across all
within-cluster phylogenies obtained from the starting
partition,

2 Finding 20 equidistant points in a radius equal to 8%
of the value computed previously.

For each point in the range, we simulate 100, 000 val-
ues from the corresponding exponential distribution. We
then obtain the required transition probability matrices by
computing,

P(r) =
1e5∑

i=1
exp(Qdilr)/1e5, r = 1, 2, 3,

where r indexes the rate variation category, di denotes
a value generated previously, Q, a transition rate matrix
estimate, and lr , a distance scaling factor. We use a
similar strategy to derive a prior distribution for transi-
tion probabilities along branches in the between-cluster
phylogeny.

Running the chain and obtaining point estimates for cluster
membership indices
Each iteration in the chain involves successiveMetropolis-
Hastings updates of the cluster membership indices, the
between and within-cluster transition probabilities, and
the concentration parameter. The algorithm produces a
joint posterior probability value at the end of each itera-
tion, which we use to identify theMAP estimate. To obtain
the linkage-xx estimates, we compute an adjacency matrix
from each sampled cluster membership vector, under the
assumption that all sets of co-clustering sequences form
fully-connected graphs, all disjoint from each other. We
then average all adjacency matrices, and apply the xx
threshold to the resulting matrix, rounding up to 1 all
values in the matrix above the threshold, and down to

http://www.hiv.lanl.gov/
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0 the other values. We then run the walktrap algorithm
[40], using chains of 10 steps to detect disjoint sets, which
correspond to the cluster membership indices estimate.

Appendix 2 - Tuning parameters used in the
simulations
Simulating datasets

• Sample size: 200,
• Rate parameter for Poisson-distributed number of

clusters: 50,
• Mean value for normally-distributed concentration

parameter: 10,
• Standard deviation for normally-distributed

concentration parameter: 2,
• Number of rate variation categories: 5,
• Shape and scale parameters for gamma-distributed

rate variation: 0.7589,
• Number of datasets: 100,
• Root sequence: HXB2 sequence (http://www.hiv.lanl.

gov/), sites 10-297 of the protease region (PR), and
112-741 of the reverse transcriptase (RT) region, of
the pol gene.

• Limiting probabilities:
(A = 0.39,T = 0.22,C = 0.17,G = 0.22)

• Rate matrix Q:

⎡

⎢⎢⎢⎣

−0.83708096 0.04319486 0.12127074 0.67261536
0.07657272 −0.82554421 0.66140131 0.08757018
0.27820934 0.85593111 −1.18569748 0.05155703
1.19236359 0.08757018 0.03983952 −1.31977330

⎤

⎥⎥⎥⎦

• Mean parameter for exponentially-distributed branch
lengths in within-cluster phylogenies: 0.003,

• Mean and standard deviation parameters for
log-normal-distributed branch lengths in
between-cluster phylogenies: 0.008.

Chain parameters
• Number of discrete states for the within-cluster and

between-cluster transition probability matrices: 20,
• Number of samples used to obtain transition

probability matrices: 100, 000,
• Radius around mean within-cluster and

between-cluster branch length estimates: 8%,
• Bootstrap confidence requirement for initial cluster

estimate: 70%,
• Limiting probabilities: (A = 0.4298969,T =

0.2227602,C = 0.1459,G = 0.2014428),
• Rate matrix Q:

⎡

⎢⎢⎢⎣

−0.79633415 0.04560603 0.10852696 0.64220116
0.08801344 −0.76352160 0.59189771 0.08361045
0.31977658 0.90370975 −1.27271206 0.04922573
1.37051455 0.09245841 0.03565297 −1.49862593

⎤

⎥⎥⎥⎦

• Shape parameter for concentration parameter prior:
1000, 100, 10,

• Scale parameter for concentration parameter prior:
0.1,

• Poisson rate for weight applied to the cluster
membership vector prior: 50,

• Number of iterations: 55, 000.

Appendix 3 - Tuning parameters used in the real
data analysis
Bootstrap analysis

• Number of discrete states for the within-cluster and
between-cluster transition probability matrices: 20,

• Number of samples used to obtain transition
probability matrices: 100, 000,

• Radius around mean within-cluster and
between-cluster branch length estimates: 8%,

• Discrete gamma distribution parameter: 0.7589,
• Bootstrap confidence requirement for initial cluster

estimate: 70%,
• Limiting probabilities:

(A = 0.39,T = 0.22,C = 0.17,G = 0.22),
• Rate matrix Q:

⎡

⎢⎢⎢⎣

−0.83708096 0.04319486 0.12127074 0.67261536
0.07657272 −0.82554421 0.66140131 0.08757018
0.27820934 0.85593111 −1.18569748 0.05155703
1.19236359 0.08757018 0.03983952 −1.31977330

⎤

⎥⎥⎥⎦

• Shape parameter for concentration parameter prior:
1000,

• Scale parameter for concentration parameter prior:
0.1,

• Poisson rate for weight applied to the cluster
membership vector prior: 32,

• Number of iterations: 55, 000.

Approximation of the fully Bayesian analysis
• Number of discrete states for the within-cluster and

between-cluster transition probability matrices: 20,
• Number of samples used to obtain transition

probability matrices: 100, 000,
• Radius around mean within-cluster and

between-cluster branch length estimates: 8%,
• Discrete gamma distribution parameter: 0.4394492,
• Limiting probabilities: (A = 0.4032267,T =

0.2147781,C = 0.1625374,G = 0.2194578),
• Rate matrix Q:

⎡

⎢⎢⎢⎣

−0.8411512 0.05921394 0.11223579 0.66970147
0.1111689 −0.80528701 0.62140549 0.07271263
0.2784372 0.82112972 −1.17182113 0.07225417
1.2304940 0.07116212 0.05351373 −1.35516988

⎤

⎥⎥⎥⎦

• Shape parameter for concentration parameter prior:
1000,

http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/
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• Scale parameter for concentration parameter prior:
0.1,

• Poisson rate for weight applied to the cluster
membership vector prior: 32,

• Number of iterations: 55, 000.

Main run
• Number of discrete states for the within-cluster and

between-cluster transition probability matrices: 20,
• Number of samples used to obtain transition

probability matrices: 100, 000,
• Radius around mean within-cluster and

between-cluster branch length estimates: 8%,
• Discrete gamma distribution parameter: 0.7589,
• Bootstrap confidence requirement for initial cluster

estimate: 70%,
• Limiting probabilities:

(A = 0.39,T = 0.22,C = 0.17,G = 0.22),
• Rate matrix Q:

⎡

⎢⎢⎢⎣

−0.83708096 0.04319486 0.12127074 0.67261536
0.07657272 −0.82554421 0.66140131 0.08757018
0.27820934 0.85593111 −1.18569748 0.05155703
1.19236359 0.08757018 0.03983952 −1.31977330

⎤

⎥⎥⎥⎦

• Shape parameter for concentration parameter prior:
1000,

• Scale parameter for concentration parameter prior:
0.1,

• Poisson rate for weight applied to the cluster
membership vector prior: 32,

• Number of iterations: 220, 000.

Appendix 4 - Notes on the software
We implemented DM-PhyClus mostly in R, with C++
modules to handle log-likelihood evaluations. In R, we
use classes and functions defined in the ape and phang-
orn packages [43] to represent and manipulate phyloge-
nies. The interface between R and C++ relies on features
offered by the Rcpp and RcppArmadillo packages [45, 46].
Unsurprisingly, the C++ modules make extensive use of

containers in the Standard Template Library (STL) and
functionalities implemented in the C++11 standard. For
now, the code still relies on the GNU Scientific Library
(GSL) for random number generation, but we intend to
change that in future versions in order to improve porta-
bility. Phylogenies are represented by a custom binary tree
class, consisting of objects instanced from an input node
class, representing the tips of the tree, and from an inter-
nal node class. Both classes inherit from an abstract class,
standing in for a generic tree node.
We use Felsenstein’s tree-pruning algorithm [38] to per-

form likelihood evaluations. Our implementation of the
latter algorithm makes use of containers, functions, and
operators defined in the Armadillo library [49]. To reduce

the algorithm’s memory footprint and improve perfor-
mance, all intermediate solutions are saved in a map
container, and the tree node objects store merely a pointer
to the corresponding map elements. To ensure pointer
validity, we opted for an ordered map. We use functions
in the boost package in the generation of keys for map ele-
ments. The keys are obtained recursively by combining,
among other things, keys computed for children nodes.
The size of the map tends to increase quickly for

even moderately-sized datasets, eventually saturating the
memory on most standard machines, and so, the software
wipes the map periodically. That strategy is also beneficial
from a computational standpoint: by eliminating configu-
rations rarely visited by the algorithm, mean lookup time
is reduced. Moreover, allowing very large maps is detri-
mental from a computational standpoint: once a map
reaches a certain size, re-computing solutions turns out to
be on average faster than doing a lookup.
We obtained a great boost in performance after defining

a persistent pointer to the object used to represent the tree
structure. Indeed, profiling had revealed that the software
was being weighed down considerably by the memory
allocation operations involved in building the tree struc-
ture, hence the vast improvement resulting from keeping
the object in memory and updating it when required.
More specifically, we implemented that strategy by
passing a so-called external pointer to R, implemented by
the XPtr class template in the Rcpp library. By trading
the pointer between R and C++, we effectively prevent
garbage collection of the tree object until the pointer goes
out of scope.
Wewrote a vignette that explains how the R package can

be used to cluster an arbitrary dataset.

Appendix 5 - Log-posterior probability graph
See Fig. 4.

Fig. 4 Log-posterior probability graph for the thinned chain obtained
from one of the simulated samples
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Additional files

Additional file 1: This file contains an R object giving the results for the
scenario in the simulation study where the concentration parameter prior
is assumed to have mean 100 and we use the MAP topology. The file is
compressed in gzip format. (GZ 8234 kb)

Additional file 2: This file contains an R object giving the results for the
scenario in the simulation study where the concentration parameter prior
is assumed to have mean 100 and we use the ML topology. The file is
compressed in gzip format. (GZ 7658 kb)

Additional file 3: This file contains an R object giving the results for the
scenario in the simulation study where the concentration parameter prior
is assumed to have mean 10 and we use the MAP topology. The file is
compressed in gzip format. (GZ 8365 kb)

Additional file 4: This file contains an R object giving the results for the
scenario in the simulation study where the concentration parameter prior
is assumed to have mean 10 and we use the ML topology. The file is
compressed in gzip format. (GZ 8151 kb)

Additional file 5: This file contains an R object giving the results for the
scenario in the simulation study where the concentration parameter prior
is assumed to have mean 1 and we use the MAP topology. The file is
compressed in gzip format. (GZ 8412 kb)

Additional file 6: This file contains an R object giving the results for the
scenario in the simulation study where the concentration parameter prior
is assumed to have mean 1 and we use the ML topology. The file is
compressed in gzip format. (GZ 8293 kb)
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