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Abstract

Background: Networks whose nodes have labels can seem complex. Fortunately, many have substructures that
occur often (“motifs”). A societal example of a motif might be a household. Replacing such motifs by named
supernodes reduces the complexity of the network and can bring out insightful features. Doing so repeatedly may
give hints about higher level structures of the network. We call this recursive process Recursive Supernode Extraction.

Results: This paper describes algorithms and a tool to discover disjoint (i.e. non-overlapping) motifs in a network,
replacing those motifs by new nodes, and then recursing. We show applications in food-web and protein-protein
interaction (PPI) networks where our methods reduce the complexity of the network and yield insights.

Conclusions: SuperNoder is a web-based and standalone tool which enables the simplification of big graphs based
on the reduction of high frequency motifs. It applies various strategies for identifying disjoint motifs with the goal of
enhancing the understandability of networks.

Keywords: Motifs discovery, PPI interaction network, Food-web network, Computational complexity, Network
compression

Background
Imagine describing a road map with words alone. The
task would be difficult and unclear to most people. Net-
works provide a far better representation of any data
representing interrelationships. However, because the size
of modern networks (for example, in social science) can
extend to thousands, millions, or even billions of nodes,
networks themselves need to be abstracted for the sake of
intelligibility and insight.
As in other disciplines, a way to reduce the size of the

problem is to discover similar components and give them
a common name. Linguists do this when they categorize
parts of speech (noun, verb, adverb etc). Biologists do this
when they group animals into species and families. In net-
works, we will do this by finding connected labeled sub-
components that are isomorphic in label and topology.
Formally, this entails finding common subgraphs ormotifs
that occur with a certain frequency.
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Much research has proposed algorithms that aim at
finding frequent motifs [1–5]. The motivation is usu-
ally to gain insights about metabolic and protein-protein
interactions, ecological food-webs, social networks, col-
laboration networks, information networks of interlinked
documents and products [6–14].
Most of this work does not distinguish between motifs

that overlap and motifs that do not. However, this dis-
tinction can be critical for understandability. For example,
households are a convenient abstraction in social graphs
because they are disjoint whereas friendship motifs do
not tend to be. For networks whose motifs are not nat-
urally disjoint, identifying disjoint motifs may help to
understand network structure (e.g. cliques in friendship
networks). One work that has done this is [15] which
showed algorithms to find edge-disjoint motifs in unla-
beled networks. Our work focuses on node-disjoint motifs
(which share neither nodes nor edges) in labeled net-
works. The usefulness of labels is intuitive as we will see in
our examples and node-disjoint motifs are readily decom-
posable. We also present promising algorithms to make
this process reasonably fast even for sizeable networks.
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Once disjoint motifs of a certain size k have been iden-
tified, each such motif can be collapsed into a supernode,
which is a single node that inherits all the connections and
properties of themotifs. This procedure can be performed
recursively in order to find motifs on graphs consisting
of a combination of nodes and super-nodes. Figure 1
shows an example where motifs have been collapsed into
supernodes.
Thus, our tool SuperNoder finds disjoint motifs on a

base graph G1, reducing G1 to a new graph G2, and then
recursively repeats the procedure to find G3, G4, and so
on. SuperNoder attempts to find the most possible dis-
joint frequent motifs of a given size in a target network in
each stage of the process. We present several techniques
to achieve this goal.
Orthogonally, the SuperNoder tool can take input nodes

at different layers in a label hierarchy. For example in
phylogeny, there is a hierarchy of species, genus, family,
kingdom. Relationships that may be obscure at a low level
may be clearer at a high level (e.g. felines eat rodents).
This paper makes three contributions:

• Efficient algorithms to find disjoint supernodes in
labeled networks, including networks already
containing supernodes, yielding a recursive algorithm.

• A tool incorporating these algorithms that is free to
the community.

• Example applications to show the usefulness of the
approach.

Frequent (based on the possibly overlapping F1
measure) motifs have been shown to give insights
in regulatory [16], food-web [17–19], and social sci-
ence [20, 21] networks. Reduction methods aim at

minimizing the loss of information while maximizing
the understandability, often establishing which com-
ponents are less interesting for the behavior of net-
works. Recent studies have focused on finding high-
order clusterings [22, 23]. However, most of this research
has focused on modeling graphs without considering
node labels, despite the fact that many networks have
them.Moreover, they usually consider overlappingmotifs,
therefore, a single node can belong to several pat-
terns, making further analysis (and understandability)
difficult.
An early compression graph method was proposed

by [24] where the authors show how finding substruc-
tures and merging them in vertexes for compressing
data. Our approach builds on theirs, but their approach
does not find all substructures that occur nor does it
attempt to find the most highly repetitive subgraphs
which are the best candidates for capturing subgraph
regularities.
Our work also draws inspiration from [15] where the

authors propose two methods to find disjoint motifs
under the F2 frequency measure (where two graphs are
disjoint if they do not share a common edge). First, they
propose a method to find motifs based on a small set of
patterns, and then give methods to find non-overlapping
motifs solving the Maximum Independent Set (MIS)
problem. They invented their own method for finding fre-
quent motifs and did not choose to compare their method
with state-of-the-art motif-finding techniques [25–30].
By contrast, we have chosen to base our approach on
the motif-finding algorithm of [25] because of its sim-
ple implementation and promising results [31]. As in [15],
the second phase of our algorithm uses an overlap graph,

Fig. 1 Example of motifs collapsed into supernodes in a Protein-Protein Interaction network. a The original nodes of the network. b The new nodes
of the network after two motifs of size three have been collapsed
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and we have explored some heuristics to deal with larger
overlap graphs beyond what they used.
While we do contribute algorithms for finding disjoint

motifs given a collection of already found motifs, we do
not advance the state of the art in finding the motifs
themselves. Instead, our work builds on top of an exist-
ing overlapping motif finding algorithm which has been
compared and studied many times in literature [31].
The remainder of this paper is organized as fol-

lows. “Implementation” section describes the proposed
approach. “Results” section describes the biological
datasets we have used, shows an example application
of SuperNoder to the yeast network, and analyzes both
the performance and quality of SuperNoder on real
networks. “Conclusions” section gives perspectives on
the problem and future directions. “Availability and
requirements” section reports where the tool can be found
with its essential requirements. Finally, “Abbreviations”
section lists abbreviations we use in the paper.

Implementation
Labeled networks or graphs are formally characterized by
a triple G = (N ,E, L) where N denotes a set of nodes, E
denotes a set of edges (pairs) e = (ni, nj) ∈ N , and L is a
mapping from N to some set of labels. Edges represent an
application-dependent relationship. For instance, an edge
may connect two nodes representing people if the people
are friends.
We say that a graph is undirected if every edge from n to

n′ implies the existence of an edge from n′ to n. Otherwise
the graph is said to be directed. A subgraph is a connected
component GS = (NS,ES) such that NS ⊆ N and ES ⊆ E
if there exists a path from each ni ∈ NS to each nj ∈ NS. A
k − subgraph is a subgraph with k nodes.
Two subgraphs S1, S2 are isomorphic if (i) there exists

a bijective function f : NS1 → NS2 such that for each
pair (ni, nj) ∈ ES1 ↔ (f (ni), f (nj)) ∈ ES2 and (ii) for
all k, the label of nk . L(nk) is the same as L(f (nk)). To
count the number of occurrences of a given subgraph,
three different measures can be used [32]. The first mea-
sure, named F1, is the count of each subgraph regardless
of whether it overlaps with others. The second one, named
F2, avoids overlaps of subgraphs if they share at least
an edge (or equivalently a connected pair of nodes). The
last one, named F3, requires that two subgraphs share no
nodes. F3 is therefore, the most strict criterion of disjoint-
ness (and is the one used in this paper). We define the
frequency of a subgraph S1 in G as the number of occur-
rences of S1 in G. We call subgraphs k − motifs if they
have k nodes and occur over a threshold t using the F1
measure.
The SuperNoder pipeline consists of the following steps:

1 Solicit a size s from the user corresponding to the
number of nodes each motif should have.

2 Solicit a threshold t from the user corresponding to
the number of times that a motif should be present to
be considered. (In the future, we may add specific
shapes of motifs or specific motifs labels, as further
filters in addition to threshold.)

3 Search for all possible motifs in the input network
meeting threshold t, using the F1 measure (i.e.
allowing overlaps). Call that set M.

4 Search for the maximum number of non-overlapping
motifs from M.

5 Collapse non-overlapping motifs into supernodes.
6 Repeat steps 2 through 5 until satisfied.

In this section we provide details of our tool for accom-
plishing these tasks.

Input network andmotifs finding
SuperNoder requires two series of data as an input:

• A list of node rows, where each row represents a
node by means of a unique ID and a label separated
by a blank space.

• A list of edge rows, where each row consists of two
node IDs separated by a blank space.

SuperNoder uses the Randomized Enumeration algo-
rithm [25] for the purpose of motif finding. The result of
the algorithm is a set of all possible undirected motifs in
the network, allowing overlaps.

Motif count and thresholding
To count motifs, we implemented a function to compute
isomorphisms between subgraphs similar to the one of
Cordella and colleagues [33]. First, the algorithm takes
the labels of subgraph nodes and counts how many nodes
have the same label. Second, for each label it computes
the sum of in-degrees and the sum of out-degrees (i.e. for
each node label, it computes ln,i,o, where n is the number of
nodes with label l, i is the sum of in-degree of nodes with
label l, and o is the sum of out-degree of nodes with label l).
Finally, it sorts these labels using the lexicographic order
and computes their hash. If the number of subgraphs hav-
ing hash value h is greater than the user-given threshold
t, then all such subgraphs are checked to see how many
are in fact isomorphic. If, after the check, the number is
greater than t, then those subgraphs pass the initial filter
to be a motif and thus belong to the “frequent motif set”.
Thus the frequent motif set may contain different topolo-
gies, e.g. at least t stars of size s, at least t paths of length s,
and so on.

Finding disjoint motifs
Our methods to find disjoint motifs, given the potentially
overlapping frequent motif set, uses the concept of an
overlap graph. An overlap graph is a pair (M,E) where M
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is the set of motifs and there is an edge between motif
m1 and motif m2 if they share at least one node in the
original graph. (In the case of recursive reduction, the
original graph at reduction i is the one produced from the
graph at reduction i-1, containing both normal nodes and
supernodes.)
We briefly present an overview of our heuristics for

finding disjoint motifs here (Table 1), but the full pseudo-
code is available in the github site containing the SuperN-
oder source code as well.
H1 (Greedy Elimination). This simple but effective

heuristic finds disjoint motifs by using a Maximal Inde-
pendent Set technique. Given the frequent motif set M
and a user-given parameter n, randomly shuffle the poten-
tially overlapping motif instances from the frequent motif
set M. For each motif instance m, if the motif instance
overlaps no other motif instances of M, then output it.
Otherwise remove it and all its edges from the overlap
graph. Because this approach is naively greedy, SuperN-
oder tries n (parameter given by the user) different ran-
dom shufflings to try to obtain the greatest number of
disjoint motifs.
H2 (Ramsey) Heuristic-2 exploits both sampling and

the Ramsey method whose functions can be seen in [34].
Given the list of motif instances M and a number k,
the heuristic (i) takes disjoint subsets of size k from M
and constructs the induced subgraph of the overlap net-
work from each subset. (ii) On each subgraph, it performs
the Ramsey algorithm obtaining a MISsubgraph. (iii) Then,
it merges all MISsubgraphs into a reduced list of motif
instances which takes the role ofM. The algorithm repeats
steps (i) through (iii) until there are no more overlaps and
outputs the resulting set of motifs.
H3 (Ranked Elimination). Heuristic-3 assigns to each

(possibly overlapping) motif instance m a degree equal to
the sum of degrees of the nodes in m ignoring the edges
between nodes in m (i.e. the sum of the degrees of the
nodes inm pertaining to edges that connect to nodes out-
side m). The algorithm then orders the motif instances
in ascending order of degree so calculated, forming a

Table 1 Summary of the characteristics of the heuristics

Heuristic Overlap Order Random Sampling
ID graph Ramsey by degree approach approach

H1 - - - V -

H2 V V - - V

H3 - - V V -

H4 - - V V -

H5 V - V V V

The symbol V indicates that the heuristic exploits that characteristic, - if not. H1 =
Greedy Elimination. H2 = Ramsey. H3 = Ranked Elimination. H4 = Ranked
Replacement. H5 = Sampled Ranked Elimination

list called MotifDegree. For each node n in the origi-
nal graph, find the first motif instance in MotifDegree
and discard all other motifs in MotifDegree containing
n. This process yields a new list called PotentialSuperN-
odes. Then traverse this PotentialSuperNodes list, pre-
serving motif instances having no overlaps and deleting
motif instances that have higher degrees when there are
overlaps.
H4 (Repeated Ranked Elimination). This approach is

an improvement over H3, because H3 misses some motif
instances when one or more overlapping motif instances
are removed and the nodes of the removedmotif instances
then have no chance to be included in any other motif
instances. Given as input the list of motif instances M
found using the Randomized Enumeration method seen
above, build the MotifDegree list as in Heuristic-3. For
each node n, the motif instance m ∈ MotifDegree with
the lowest degree that contains n is copied to a list of
potential supernodes, called PotentialSuperNodes. All the
motif instances in PotentialSuperNodes with no over-
laps are considered valid. Then, for each pair {m′,m′′}
of overlapping motif instances in PotentialSupernodes,
discard the motif instance with the higher degree. Con-
tinue until there are no more motif instances. Now
consider all the nodes Norphan that are not in any dis-
joint motif instance found so far and consider motif
instances based on the F1 measure that apply to nodes
of Norphan. Repeat the above procedure to generate more
disjoint motif instances. Repeat until there are no more
nodes in Norphan.
H5 (Sampled Ranked Elimination). This heuristic uni-

fies sampling with the overlap graph approach. After the
sampling is done as for the Ramsey algorithm, the heuris-
tic constructs an overlap graph on the surviving motif
instances. The heuristic considers the motif instances in
ascending order by degree in the overlap graph. If a motif
instance has no edges, then put it in the result. If a motif
instance m1 has an edge with another motif instance m2,
then remove the motif instance with the largest degree.

Network reduction
After the non-overlapping motif instances have been
found, each one is collapsed into a supernode, preserving
the external connections of the original nodes of motifs.
The label of each supernode is the concatenation of labels
of its member nodes in alphabetical order. The new net-
work can be saved as an output using the same format as
the input network and the whole pipeline can be iterated
on it.

Results
The test networks
We demonstrate SuperNoder on three different labeled
biological networks:
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Fig. 2 An example of four supernodes built using SuperNoder with motifs of size three on the yeast network. From left to right, labels of original
nodes, labels of the fifth level hierarchy, labels of the third level hierarchy. On the third level, many proteins share the same pattern and these
patterns are often disjoint

• A food-web subnetwork of Florida bay network1 [35]
with 93 nodes and 960 edges.

• A Protein-Protein Interaction (PPI) network of yeast2
[36] with 2361 nodes and 7182 edges.

• A PPI network of Arabidopsis3 [37] with 18167 nodes
and 10928 edges.

Food-web network. The original nodes have labels that
represent animals or plants (e.g. predatory chanodichthys,
dinoflagellates, coral bryaninops, etc.). We have mapped
the network using a taxonomy4, retrieving for each node
genus, family, order, class, phylum, and kingdom. From the
original network we have removed species that did not
have higher phylogenetic categories.
Protein-Protein Interaction networks. In a Protein-

Protein Interaction (PPI) network, each node represents
a different protein. For the higher-level categorization of
PPI networks, we have employed the ontology annota-
tions available at this link5. First, we have retrieved the
Gene Ontology (GO) term that belongs to Biological Pro-
cesses (BPs) and that has the lowest (i.e. most empirically
based) evidence code for each protein. Second, we have
traversed the ontology go-basic6 starting from each GO
term in our network to the GO term which represents all
Biological Processes. Since each GO term can have more
than one parent, we have chosen the GO term with the
lowest (i.e., most conclusive) evidence code going up in

the hierarchy. More precisely, given a label of a node l, we
retrieve a GO term g with the lowest evidence code. Let
{g1, g2, ..., gn} be the parents of g, then we choose the gi
with 1 ≤ i ≤ n with the lowest evidence code, building
a hierarchy l, g, gi. Then, we repeat the same operation as
long as the GO term which represents all Biological Pro-
cesses (BPs) has not been yet reached. In doing so, we have
built a taxonomy that can enable the analysis of protein
functions.

Use case
In the analysis of biological networks, interactions often occur
between proteins of the same class [38]. SuperNoder can
find these relations when high level functional classes are
considered, highlighting frequent related processes and
simplifying their identification.
To show how SuperNoder may help to simplify net-

works, we focus on the yeast network, and explain how
higher levels of the Gene Ontology (GO) terms enable the
abstraction of protein functions allowing SuperNoder to
reduce the network complexity. The motivation is simple:
at a lower level in the hierarchy of GO terms there may be
no motifs that occur more than t times for a moderately
large t. At higher levels, there might be. In the example,
the yeast network has been mapped onto five levels of the
GO terms hierarchy. To be considered a motif, a subgraph
has to occur at least 50 times, i.e. with threshold t = 50.

Table 2 An example of a hierarchical exploration of the yeast network

th Original L5 L4 L3 L2 L1

Motifs 25 0 290 292 319 377 389

Nodes 25 2361 1781 1776 1607 1583 1333

Edges 25 7182 5234 5305 5018 5020 5322

Motifs 50 0 240 236 304 388 390

Nodes 50 2361 1841 1889 1585 1361 1581

Edges 50 7182 5339 5429 5029 5347 4990

The table reports the number of found motifs, the number of nodes and edges, when the network is mapped to different levels of the GO terms hierarchy and then reduced.
At higher levels (L1 is higher level than L2 etc) more motifs pass the threshold



Dessì et al. BMC Bioinformatics  (2018) 19:318 Page 6 of 12

Fig. 3 Figures show samples of the yeast network with 25 nodes mapped with original and GO terms labels of our yeast GO hierarchy, and where
supernodes have been found by means of SuperNoder. a Original network with 25 nodes and 83 edges. b Network reduced on low level GO terms
hierarchy (19 nodes and 67 edges). c Network reduced on high level GO terms hierarchy (11 nodes and 43 edges)

Figure 2 shows a motif of size three in each row that are
mapped on the base level (gene labels), the fifth-level (L5)
and the third-level (L3) hierarchy labels (i.e. in ascend-
ing order of abstraction). More motifs appear at higher
levels in the hierarchy (i.e. first on L5 and then on L3 lev-
els). In fact, with L5 labels the triples in row 2 and row
3 are isomorphic. When L3 labels are used, all triples are
isomorphic, thus becoming relevant motifs. Those triples
are collapsed into supernodes thus forming a new simpli-
fied network. Supernodes indicate proteins that belong to
the same class helping biologists with the analysis of basic
interactions.
As a specific case study, focus on motifs com-

posed of proteins (YNL306W, YDR175C, YBR251W ) and
(YGR156W, YKR002W, YLR115W ). Analyzing the net-
work on the base labels, there are not supernodes, since
they do not show common features in the labeled graph.
Already at lower hierarchical levels (i.e. L5), the motifs
GO terms are abstracted into functions, viz, macro-
molecule biosynthetic process and cellular macromolecule
metabolic process respectively. At hierarchical level L3,
the proteins in this example have the label GO:0071704
which indicates that their proteins are related to organic
substance metabolic process. At that level, we find out
that organic substance metabolic process (GO:0071704)
covers an important role into the yeast network, and
that is mainly composed of macromolecule biosyn-
thetic process (GO:0009059), cellular macromolecule
metabolic process (GO:0044260) and protein metabolic
process (GO:0019538). This shows an example of how

Table 3 Rows list the number of all motifs, the threshold applied
in our experiments and the number of motifs that meet that
threshold when L3 labels are considered and motifs have size 3

Network N motifs Threshold N repetitive motifs

Food-Web 20283 5 5085

Yeast 96444 50 49294

Arabidopsis 268437 100 155185

our tool can help biologists understand the behav-
ior of proteins (with frequent motifs) belonging to the
same class.
The higher the hierarchy levels, the larger the number of

relevant motifs that can be used to further reduce the cur-
rent network (an example of this behavior can be observed
in Table 2). In addition, higher level labels enable higher
thresholds, sometimes leading to the discovery of very
frequent motifs. For example, connections of proteins in
Fig. 3a do not show functionalities but those become
evident at higher hierarchical levels 3b and 3c. For exam-
ple, the frequent relation between proteins which have
GO:0044237, GO:0044237, GO:0044237 as GO terms that
are showed in Fig. 3c are only detectable at that level of
the hierarchy. Finally, images 3b and 3c show that the
reduction at a high level of abstraction enables a better
understandability of the network.

Performance
In this section, we report the time performance, the num-
ber of disjoint motifs and the reduction ability of our
heuristic algorithms. The time performance is based on
the wall clock time required for the execution of the
heuristics on all relevant motifs. The number of disjoint
motifs is the number of motifs found by each algorithm.
The reduction ability is the extent of reduction of net-
works. All experiments have been performed considering
motifs with size = 3 and size = 5 (i.e. having three nodes
in the original graph and three nodes or supernodes after
each step of the recursion). H1 has been performed with

Table 4 Rows list the number of all motifs, the threshold applied
in our experiments and the number of motifs that meet that
threshold when L3 labels are considered and motifs have size 5

Network N motifs Threshold N repetitive motifs

Food-Web 26841 5 407

Yeast 188733 50 11550

Arabidopsis 425895 100 14474
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Fig. 4 SuperNoder heuristics performance on the food-web network considering motifs of size 3 and 5 in terms of (a) the number of unique motifs
found (b) the running time

five shufflings. H2 and H5 adopted subsets of the overlap
graphs consisting of 1000 motif nodes. In our simulations,
we chose different thresholds in different networks, as
shown in Tables 3 and 4. The reason is that certain thresh-
olds make no sense for certain networks. For example, a
threshold of 100 for our food-web network is meaningless
because no motifs occur that frequently.

Food-web network
Figure 4 reports the performance of the heuristics applied
on the food-web network. In this case, heuristics H1, H2
and H5 which exploit repetitive random approaches (H1),
sampled overlap graph (H2 and H5), and H4 show bet-
ter performance than others in finding disjoint motifs.
Heuristics H3 shows a poor reduction factor on this net-
work. The reason is that there are many motifs with the
same sums of degrees, so degree-based heuristics do not

work well. Heuristic H1 is the fastest. This holds regard-
less of motif size. In fact, overall, heuristic H1 is both fast
and has a good reduction factor.

Yeast network
Figure 5 shows the performance on the yeast network. In
contrast to the food-web network, heuristics H2 and H5
based on the sampled overlap graph do not obtain the best
reduction factor. In this case, heuristic H4 enjoys a greater
reduction factor. Although heuristics H2 and H5 can find
a large number of disjoint motifs, they require excessive
time to find a solution, hence, their use on a network of
this size might be avoided. The heuristics H1 and H3 are
still the fastest.

Arabidopsis network
Experimental results on arabidopsis networks (see Fig. 6)
are similar to those on the yeast network and the same

Fig. 5 SuperNoder heuristics performance on the yeast network considering motifs of size 3 and 5 in terms of (a) the number of unique motifs
found (b) the running time
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Fig. 6 SuperNoder heuristics performance on the Arabidopsis network considering motifs of size 3 and 5 in terms of (a) the number of unique
motifs found (b) the running time

considerations hold. Note that the arabidopsis network
is a Protein-Protein Interaction network like the yeast
network but is very different in term of size.

Observations from the Experiments
Heuristic H1 achieves the best time performance and
finds a large number of disjoint motifs though not always

the maximum number. Heuristic H4 which is slower can
sometimes find more disjoint motifs so should be con-
sidered if time is available. The size of motifs and the
threshold also matter. Larger motifs entail the processing
of more data, but there are fewer repetitive motifs (i.e.
motifs that exceed the threshold) so the overall time is
sometimes less.

Fig. 7 Reduction performance on five iterations on the food-web network (a) motifs of size 3 without threshold (b) motifs of size 3 with threshold
(c) motifs of size 5 without threshold (d) motifs of size 5 with threshold
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In summary, heuristic H1 shows good performance on
all types of network since its greedy approach is fast. The
resulting reduction may not however be best. Heuristics
H2 and H5 which employ sampling are useful for those
networks whose overlap graphs are very large. The size
of samples can be chosen according to the available com-
putational resources to balance the execution time and
memory use. Heuristic H2 should show better reduction
performance than H5 when there are few distinct motifs
degree values. By contrast, H3 and H4 should be useful for
all those networks that have many distinct motifs degree
values, because motifs having less probability to overlap
are detected faster.

Reduction
Figures 7 and 8 show the extent of graph reduction on
the food-web and yeast networks respectively. Unsurpris-
ingly, lowering the threshold generates more F1 motifs,
increasing the number of F3 motifs and reducing the net-
work size. In our example networks, after a few iterations,
the networks are no longer reduced. When this plateau-
ing happens depends entirely on the data. In addition,
the threshold and the motif size both affect the reduction
factor, because a small motif has a higher probability of
occurring more often (see Tables 3 and 4). This is well

illustrated by our tests where motifs of size 3 show a
greater reduction than motifs of size 5. For an illustration
of the extent of reduction, consider Fig. 9 where (a) shows
the original food web network, (b) after one iteration and
(c) after two iterations.

Tool description
Figure 10 shows the graphical interface of SuperNoder
that users without programming skills can adopt to ana-
lyze networks. On the left, users can use a panel to
create nodes, in the center there is one panel to create
edges, and, on the right, a list of parameters the user
can set. With the first option users can choose the size
of motifs they are interested in. The minimum value is
3. The next option is related to the heuristic that should
be employed to find disjoint motifs. The user can also
choose the type of network: direct or undirect. The fourth
parameter is the threshold which represents the min-
imum value each motif should meet to be considered
over-represented (it corresponds to the threshold t of the
SuperNoder pipeline algorithm). The last required param-
eter is the number of iterations. In addition, if the user
selects the H1 heuristic, he/she can set the number of
repetitions to be executed, specific for H1. If the user
selects either the H2 or H5 heuristic, he/she can also

Fig. 8 Reduction performance on five iterations on the yeast network (a) motifs of size 3 without threshold (b) motifs of size 3 with threshold (c)
motifs of size 5 without threshold (d) motifs of size 5 with threshold
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Fig. 9 Reduction in size of the food web network mapped on the species order (e.g. kingfisher mapped on coraciiformes). a The original network.
b The network reduced after 1 iteration. c The network reduced after 2 iterations

choose the size of samples.When the Submit network but-
ton is clicked, the SuperNoder pipeline will be run and
results will be printed and shown online (but not saved
anywhere).
The output consists of two sections (nodes and edges)

for each chosen iteration using the same input format.
Supernodes are indicated by the tag #supernode.
The code has been developed in Python 3.6 using

NetworkX7 library. SuperNoder functionalities operate
on graphs using the standard NetworkX format. The web
interface is provided by a python server which runs on
a Docker8 container. Last but not least, SuperNoder is
hosted on a GitHub9 page and distributed as a Docker
file with the source code freely available under GPLv3
License.

Conclusions
SuperNoder enables the simplification and compression
of graphs based on high frequency motifs. By identifying

disjoint motifs, SuperNoder enhances understandability
as the network is reduced. This paper describes and
compares various algorithms on real networks, both to
show the benefits of the approach and to find high-
performing algorithms. SuperNoder has been developed
in Python, it can either be installed on local machines
or used through its online web interface. Future work
includes enhancing performance yet further by using
Graphical Processing Units.

Availability and requirements
Project name: SuperNoder
Project homepage: http://glab.sc.unica.it/supernoder/
Github link: https://github.com/danilo-dessi/SuperNoder
-v1.0
Operating system(s): Platform independent
Programming language: Python
Other requirements: Docker
License: GPLv3.
Any restrictions to use by non-academics: nothing.

Fig. 10 SuperNoder web application

http://glab.sc.unica.it/supernoder/
https://github.com/danilo-dessi/SuperNoder-v1.0
https://github.com/danilo-dessi/SuperNoder-v1.0
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Endnotes
1 https://snap.stanford.edu/data/Florida-bay.html
2 http://vlado.fmf.uni-lj.si/pub/networks/data/bio/

yeast/yeast.htm
3http://interactome.dfci.harvard.edu/A_thaliana/

index.php?page=download
4 https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
5 http://www.geneontology.org/page/download-

annotations
6 http://www.geneontology.org/page/download-

ontology
7 https://networkx.github.io/
8 https://www.docker.com/
9 https://github.com/danilo-dessi/SuperNoder-v1.0
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