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Abstract

simulate metabolite production.

Background: Constraint-based metabolic flux analysis of knockout strategies is an efficient method to simulate the
production of useful metabolites in microbes. Owing to the recent development of technologies for artificial DNA
synthesis, it may become important in the near future to mathematically design minimum metabolic networks to

Results: We have developed a computational method where parsimonious metabolic flux distribution is computed
for designated constraints on growth and production rates which are represented by grids. When the growth rate of
this obtained parsimonious metabolic network is maximized, higher production rates compared to those noted using

strategies that the existing methods could not identify.

existing methods are observed for many target metabolites. The set of reactions used in this parsimonious flux
distribution consists of reactions included in the original genome scale model iAF1260. The computational
experiments show that the grid size affects the obtained production rates. Under the conditions that the growth rate
is maximized and the minimum cases of flux variability analysis are considered, the developed method produced
more than 90% of metabolites, while the existing methods produced less than 50%. Mathematical explanations using
examples are provided to demonstrate potential reasons for the ability of the proposed algorithm to identify design

Conclusion: We developed an efficient method for computing the design of minimum metabolic networks by using
constraint-based flux balance analysis to simulate the production of useful metabolites. The source code is freely
available, and is implemented in MATLAB and COBRA toolbox.

Keywords: Flux balance analysis, Linear programming, Algorithm, Design of metabolic network, Constraint-based
model, Growth rate, Production rate, Smaller reaction network

Background
Finding knockout strategies with minimum sets of genes
for the production of valuable metabolites is an important
problem in computational biology. Because a significant
amount of time and effort is required for knocking out
several genes, a smaller number of knockouts is preferred
in knockout strategies.

However, the technologies for DNA synthesis are being
improved [1]. Although the ability to read DNA is still
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better than the ability to write DNA, designing synthetic
DNA may become important in the near future for the
production of metabolites instead of knocking out genes
in the original genome. In this case, shorter DNA is prefer-
able. Furthermore, it is more reasonable to design DNA by
utilizing already existing genes than to create new genes
on a nucleotide level. One to one control relation between
each gene and reaction may become possible by modify-
ing existing genes. In contrast to knockout strategies, the
number of genes included in the design of synthetic DNA
should be as small as possible owing to the requirement of
significant experimental effort and time.
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Flux balance analysis (FBA) is a widely used method
for estimating metabolic flux. In FBA, a pseudo-steady
sate is assumed where the sum of incoming fluxes is
equal to the sum of outgoing fluxes for each internal
metabolite [2]. Computationally, FBA is formalized as
linear programming (LP) that maximizes biomass pro-
duction flux, the value of which is called the growth rate
(GR). The production rate (PR) of each metabolite is esti-
mated under the condition that the GR is maximized.
Since LP is polynomial-time solvable and there are many
efficient solvers, FBA is applicable for use in genome-
scale metabolic models. The fluxes calculated by FBA are
known to be correspond with experimentally obtained
fluxes [3].

Therefore, many computational methods have been
developed to identify optimal knockout strategies in
genome-scale models using FBA. For example, OptKnock
identifies global optimal reaction knockouts with a bi-
level linear optimization using mixed integer linear pro-
gramming (MILP) [4]. The inner problem performs the
flux allocation based on the optimization of a particu-
lar cellular objective (e.g., maximization of biomass yield,
minimization of metabolic adjustment (MOMA [5])).
The outer problem then maximizes the target produc-
tion based on gene/reaction knockouts. RobustKnock
maximizes the minimum value of the outer problem
[6]. OptOrf and genetic design through multi-objective
optimization (GDMO) find gene deletion strategies by
MILP with regulatory models and Pareto-optimal solu-
tions, respectively [7, 8]. Dynamic Strain Scanning Opti-
mization (DySScO) integrates the dynamic flux balance
analysis (dFBA) method with other strain algorithms
[9]. OptStrain and SimOptStrain can identify non-native
reactions for target production [10, 11]. In addition
to knockouts, OptReg considers flux upregulation and
downregulation [12].

Many of the above algorithms are formalized as MILP,
which is an NP-hard problem and is computationally
very expensive [13]. For example, OptKnock takes around
10 h to find a triple knockout for acetate production
in E.coli [14]. To improve runtime performance, dif-
ferent approaches have been developed. OptGene and
Genetic Design through Local Search (GDLS) find gene
deletion strategies using a genetic algorithm (GA) and
local search with multiple search paths, respectively
[14, 15]. EMILio and Redirector use iterative linear pro-
grams [16, 17]. Genetic Design through Branch and
Bound (GDBB) uses a truncated branch and branch
algorithm for bi-level optimization [18]. Fast algorithm
of knockout screening for target production based on
shadow price analysis (FastPros) is an iterative screening
approach to discover reaction knockout strategies [19].

Recently, Gu et al. [20] developed IdealkKnock, which
can identify knockout strategies that achieve a higher
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target production rate for many metabolites compared
to the existing methods. The computational time for
IdealKnock is within a few minutes for each target
metabolite, and the number of knockouts is not explicitly
limited before searching. On the other hand, parsimo-
nious enzyme usage FBA (pFBA) [21] finds a subset of
genes and proteins that contribute to the most efficient
metabolic network topology under the given growth con-
ditions. Owing to recent development of technologies
for artificial DNA synthesis, it may become important in
the near future to design minimum metabolic networks
that can achieve the overproduction of useful metabolites
by selecting a set of reactions or genes from a genome-
scale model.

In IdealKnock, ideal-type flux distribution (ITF) and the
ideal point=(GR, PR) are important concepts. Since the
lower GR tends to result in a higher PR in many cases,
IdealKnock uses the minimum “Px TMGR” as the lower
bound of the GR and maximizes the PR to find the ITF,
where 0 < P < 1 and TMGR stands for Theoretical Max-
imum Growth Rate. Reactions carrying no flux in ITF are
treated as candidates for knockout. Although IdealKnock
calculates ITF by optimizing the PR with a minimum GR,
this method may fail to find the optimal (GR, PR) that
achieves a higher PR of target metabolites as discussed in
“Discussion” section.

Results

Test for the production of 82 metabolites by exchange
reactions

In the first computational experiment, the PRs of the
GridProd design strategies were compared to those of the
knockout strategies of IdealKnock and FastPros using 82
native metabolites produced by the exchange reactions of
iAF1260. For IdealKnock and FastPros, we referred to the
results shown in [20].

In the experiments in [20], FastPros took around 3 h
to obtain a strategy for each target metabolite with ten
reactions. Therefore, the number of reaction knockouts
in that experiments was limited to ten in the experi-
ment of [20]. On the other hand, IdealKnock took 0.3 h
to obtain a strategy for each target metabolite and the
knockout number was not limited. All procedures for Ide-
alKnock and FastPros were implemented on a personal
computer with 3.40 GHz Intel(R) Core(TM) i7-2600k and
16.0 GB RAM [20].

All procedures for GridProd were implemented on a
personal computer with Gurobi, COBRA Toolbox [22]
and MATLAB on a Windows machine with Intel(R)
Xeon(R) CPU E502630 v2 2.60GHz processors. Although
the computers used in the experiments for GridProd and
the controls were different, the purpose of this study is
not to compare the exact computational times, but rather
the reaction network design each method can find. The
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results of FastPros may be improved if a larger number of
reaction knockouts were allowed.

In the computational experiments described in this
study, if the PR was more than or equal to 1072, then the
target metabolite was treated as producible. The produc-
tion ability of each method corresponding to the max-
imum and minimum PRs calculated by flux variability
analysis (FVA) is shown in Table 1. For the maximum
case, GridProd produced 75 of the 82 metabolites, while
FastPros and IdealKnock produced 45 and 55 metabolites,
respectively. For the minimum case, GridProd produced
74 of the 82 metabolites, while FastPros and IdealKnock
produced 26 and 40 metabolites, respectively.

The maximum and minimum numbers of reactions
used by GridProd for the producible cases were 452 and
406, respectively, for both the maximum and minimum
cases from FVA. The average number of reactions used
for the producible cases by GridProd were 417.91 and
417.84 for the maximum and minimum cases from FVA,
respectively.

The eight target metabolites that were not producible
by the GridProd strategies in the minimum cases from
FVA are listed in Table 2. The production ability of the
eight target metabolites by the FastPros and IdealKnock
strategies are also represented in the table. Since Ideal-
Knock could produce seven of the eight target metabolites
even for the minimum case from FVA, 81 of the 82 tar-
get metabolites were producible by either the GridProd
or IdealKnock strategies even for the minimum cases
from FVA.

In the second computational experiment, the PRs by
the GridProd and IdealKnock strategies were compared
for the 82 target metabolites under the condition that the
GRs were maximized. As shown in Table 3, for the min-
imum case from FVA, the PRs of GridProd were higher
than those of IdealKnock for 57 of the 82 target metabo-
lites, while the PRs of IdealKnock were higher than those
of GridProd for 19 of the 82 target metabolites. The PRs
were the same for six target metabolites. As for the max-
imum case from FVA, the PRs of GridProd were higher
than those of IdealKnock for 46 of the 82 target metabo-
lites, while the PRs of IdealKnock were higher than those
of GridProd for 35 of the 82 target metabolites. The values
were the same for one target metabolite.

Table 1 The amount of the 82 iAF1260 target metabolites
produced by GridProd, FastPros and IdealKnock strategies

FastPros IdealKnock GridProd
Min 26 40 74
Max 45 55 75

“min”and “max" represent the minimum cases and maximum cases from FVA,
respectively
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Table 2 The production ability of each method for the eight
target metabolites that were not producible by GridProd in the
minimum case from FVA. FP, IK, and GP represent FastPros,
IdealKnock and GridProd, respectively

Metabolites ~ FPmin  FPmax [Kmin  IKmax GPmin GP max
DM_OXAM Fail Fail Success  Success  Fail Fail
EX_anhgm(e) Fail Fail Success  Success  Fail Fail
EX_colipa(e)  Success Sucess Success Success Fail Fail
EX_etha(e) Fail Fail Fail Fail Fail Fail
EX_glcn(e) Fail Fail Success  Success  Fail Fail
EX_glyc3p(e) Success Sucess Success Success Fail Fail
EX_phe_L(e) Success Sucess Success Success Fail Fail
EX_urea(e) Success Sucess  Success Success  Fail Success

“min” and “max” represent the minimum and the maximum cases from FVA,
respectively

In the third computational experiment, another
comparison was conducted between the PRs of GridProd
and FastPros under the same condition. The results are
shown in Table 4.

In the fourth computational experiment, various val-
ues for P were examined for GridProd. Table 5 shows
how many of the 82 target metabolites were produced by
the strategies of GridProd for different values of P, where
0 < P < 1. When P! was less than five, the number
of producible metabolites was significantly increased as
P~1 became larger. When P~1 < 25 held, the number of
producible metabolites was almost monotone increase for
both the minimum and maximum cases from FVA. When
P~! = 25 was applied, the numbers of producible metabo-
lites were 74 and 75 for the minimum and maximum cases
of FVA, respectively, and this was the best case among the
experiments. The average elapsed time for the P~! = 25
case was 115.82s.

Figure 1 shows a heatmap that represents the produc-
tion ability of each method. The horizontal axis repre-
sents the 82 target metabolites, and each row represents
PR/TMPR for the minimum cases of FVA by each method.

All FastPros, IdealKnock and GridProd could produce
17 of the 82 target metabolites. Table 6 shows the 17
metabolites, the number of knocked out (not used) reac-
tions for each metabolite by each method, and the com-
mon knocked out reactions. In average, for the 17 target
metabolites, FastPros knocked out 4.29 reactions while

Table 3 Comparison of the PRs by the GridProd and IdealKnock
strategies under the condition that the GRs were maximized

GridProd is better

IdealKnock is better Same

Min of FVA 57 19 6
Max of FVA 46 35 1

The minimum and maximum cases from FVA were compared, respectively
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Table 4 The comparison of the PRs by the strategies of GridProd
and FastPros under the condition that the GRs were maximized

GridProd is better FastPros is better Same
min of FVA 64 11 7
max of FVA 59 21 2

The minimum and maximum cases by FVA were compared, respectively

only 1.29 reactions were common for all GridProd, Ideal-
Knock and FastPros.

Table 7 represents PR/(the number of knockouts) for the
17 common target metabolites by each method.

Test for production of 625 metabolites by transport
reactions
In the fifth computational experiment, the PRs by the Grid
and FastPros strategies were compared for the 625 tar-
get metabolites used in [19]. According to [19], FastPros
produced 472 of the 625 metabolites when the number
of reaction knockouts was limited to 25, and the aver-
age computation time was between 2.6 h and 11.4 h with
GNU Linear Programming Kit (GLPK) and MATLAB on
a Windows machine with Intel Xeon 2.66 GHz processors.
However, GridProd produced 528 and 535 metabolites
for the minimum and maximum cases from FVA, respec-
tively, with P~! = 25 as shown in Table 8. Note that the
PRs more than or equal to 107> are treated as producible.
The PRs of GridProd were better than those of FastPros
for 530 of the 625 target metabolites, while FastPros was
better than GridProd for 94 target metabolites. They were
the same for one metabolite.

Table 5 The number of producible metabolites by the GridProd
strategies in the minimum and maximum cases from FVA for
various values of P~

p-! Min Max avg elapsed time (s)
1 1 1 7.72

2 33 35 897

3 47 53 9.82

4 58 59 11.22

5 64 64 12.09

6 65 66 14.07

7 65 66 17.09

8 64 64 17.55

9 68 69 21.34
10 71 71 22.92
15 70 71 4257
20 72 72 77.95
25 74 75 115.82
30 72 72 164.78
100 69 71 1481.84
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For both the minimum and maximum cases from FVA,
the maximum, and minimum numbers of reactions used
by GridProd for the producible cases were 442 and
404, respectively. The average numbers of reactions used
by GridProd for the producible cases were 414.64 and
414.65 for the maximum and minimum cases from FVA,
respectively.

Discussion

FastPros is a shadow price-based iterative knockout
screening method. The shadow price in an LP problem
is defined as the small change in the objective func-
tion associated with the strengthening or relaxing of a
particular constraint [19]. Since the knockout candidate
is calculated one by one in FastPros, the computational
time increases with an increase in the number of knock-
outs. Therefore, the number of knockouts was limited to
less than or equal to 25 in [19]. FastPros showed bet-
ter performance than OptGene and GDLS for the 625
target metabolites of iAF1260 in the computational exper-
iment described in [19]. When FastPros is combined with
OptKnock, improved PRs are observed.

On comparison of the reaction knockout strategies by
FastPros and IdealKnock using 82 metabolites based on
the computational experiments in [20], IdealKnock exhib-
ited a relatively better performance [20]. FastPros could
uniquely predict the overproduction of seven metabolites,
while IdealKnock could uniquely predict the production
strategies of another 17 metabolites.

While IdealKnock maximizes the PRs with fixed GRs
values to find an ideal flux, GridProd imposes the follow-
ing two constraints

TMGR x P x i <GR < TMGR x P x (i + 1)
TMPR x Pxj <PR< TMPR x P x (j+ 1)

for all integers 1 < i,j < P~1 and then minimizes the sum
of absolute values of all fluxes.

IdealKnock sets the GR to P x TMGR for various val-
ues of P, and then maximizes the PRs to obtain the ideal
fluxes. All reactions carrying no fluxes in the ideal flux are
directly removed. The best results were obtained when P
was set to 0.05 in [20]. IdealKnock can identify strategies
within a few minutes while the number of knockouts is
not explicitly limited. For most cases, the sizes of reaction
knockout sets were less than 60.

The core idea of GridProd is explained using the follow-
ing examples. Suppose that a toy model of the metabolic
network as shown in Fig. 2 is given. {R1,...,R8} and
{C1,C2,C3} are sets of reactions and metabolites, respec-
tively. R1 is a source exchange reaction such as glucose
or oxygen uptake. R2 is a constant reaction such as
ATPM. R7 is the biomass objective function, and R6 is the
exchange reaction of the target metabolite. [4, b] indicates
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FastPros

IdealKnock

GridProd

represents PR/TMPR for the minimum cases of FVA by each method

Target metabolite

Fig. 1 A Heatmap that represents the production ability of each method. The horizontal axis represents the 82 target metabolites, and each row

that  and b are the lower and upper bounds of the flux for
the corresponding reaction. Suppose that the necessary
minimum GR is 1 in this example.

In the original state, if GR is maximized, GR becomes
10 by (R1,R2,R3,R7) = (5,5,10,10). However, PR becomes
0 since the sum of upper bounds of R1 and R2 is 10, and
all flow from R1 and R2 goes to R7. If PR is maximized,
R6 becomes 8 since R4=5 and R5=3 are the bottle necks.

Table 6 The 17 target metabolites that were producible by all
FastPros, IdealkKnock and GridProd

Target FastPros Idealknock GridProd Common reactions

12ppd_R c 3 42 1967 PFL

5dglen_c 9 14 1960 AKGDH,IDOND/
IDOND2,THD2pp

ala__D ¢ 1 5 1953 DALARpp

cgly_c 5 6 1961 GLYAT, GLYCL

cytd_c 3 25 1966 None

glyc_c 5 18 1971 ALCD2x,EDD,
F6PAMGSA

gthrd_c 4 7 1962 GART,GLYAT,
GLYCL,GTHRDHpp

gua_c 8 94 1964 GUADNTD10/
NTD11/NTD4/NTD7

his__L_c 5 41 1970 NTD1/NTD5

indole_c 8 14 1964 FE6PA, MGSA, PYK

kdo2lipid4_c 1 2 1974 RPI

lac_D_c 3 29 1972 None

pyr_c 3 14 1962 None

succ_c 3 21 1970 None

thymd_c 4 36 1965 None

tyr_L c 3 22 1962 None

uri_c 5 39 1965 None

The number of knocked out (not used) reactions for each metabolite by each
method and the common knocked out reactions are represented. “A/B"” means that
A or B is necessary to be knocked out

Therefore, TMGR and TMPR are 10 and 8, respectively.
If PR is maximized for a fixed GR as in IdealKnock, PR
becomes max(10-GR,8).

The optimal design strategy in this network to obtain
the maximum PR under the condition that GR is maxi-
mized is to knockout R3 where R5 is optional. In this case,
(GR,PR)=(1,4) is obtained. Note that the minimum nec-
essary GR is set to 1 in this example. If R3 is not knocked
out, (GR,PR)=(10,0) is always obtained.

Suppose we adopt the strategy where a set of reactions
not included in the initially obtained flux is knocked out.
If GR > 1 is fixed and PR is maximized, R3 must be used
since the upper bound of R8 is 1. Therefore, R3 is not
knocked out, and then (GR,PR)=(10,0) is obtained when

Table 7 PR/(the number of knockouts) of each method for the
17 common producible target metabolites is shown as the
knockout efficiency

Target FastPros IdealKnock GridProd
12ppd__R_c 24480 02718 0.0049
5dglen_c 0.5648 0.2666 0.0038
ala_D_c 0.0055 0.0011 0.0013
cgly_c 0.1381 0.0059 0.0003
cytd_c 0.0515 0.0967 0.0011
glyc_c 1.9623 0.5536 0.0037
gthrd_c 0.0108 0.0050 0.0002
gua_c 0.1148 0.0019 0.0001
his_L_c 0.0260 0.0523 0.0002
indole_c 0.3023 0.1698 0.0011
kdo2lipid4_c 0.1673 0.1183 0.0001
lac_D_c 3.3006 0.6336 0.0093
pyr_c 34759 1.1838 0.0087
succ_c 3.8455 0.6540 0.0071
thymd_c 0.0808 0.0059 0.0005
tyr__L_c 0.0761 0.1143 0.0012
uri_c 0.0309 0.0744 0.0017
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Table 8 The number of the 625 target metabolites that were
producible by the FastPros and GridProd strategies

Method Success Fail Success ratio
FastPros [19] 472 153 75.5%
GridProd (P~ = 25, min of FVA) 528 97 84.5%
GridProd (P~ = 25, max of FVA) 535 90 85.6%

GR is maximized. Next, suppose that GR < 1 is fixed and
PR is maximized. Note that setting GR < 1 is possible
for the first LP, although the necessary minimum GR is 1
for the second LP. Then, (R3,R5)=(3+GR,5) is obtained,
and PR is 8. Since R3 is not knocked out in this case,
(GR,PR)=(10,0) is obtained when GR is maximized. Thus,
the ideal flow-based approach that maximizes PR for the
fixed values of GR cannot identify the strategy of knocking
out R3 and does not obtain PR=4.

To address this, GridProd applies P to both GR and
PR. However, there may be multiple flows that satisfy
the given constraints for GR and PR. For example, if
(GR,PR)=(1,4) is given as the constraints, there are mul-
tiple flows satisfying these constraints. However, R4 must
be used in any flow since the upper bound of R5 is 3. If
R4 is 5, then R8 is 1 and R3=R5=0 holds. If R3 and R5
are knocked out, (GR,PR)=(1,4) is achieved. However, if
R4< 5 holds, then R3 and R8 must be used and R5 is
optional. Then (GR,PR)=(10,0) is obtained. Since Grid-
Prod minimizes the total sum of absolute values of fluxes,
(GR,PR)=(1,4) is obtained by knocking out R3.

To discuss the effects of the size of each grid, we ana-
lyze each case where GRe {0,1,2} and PRe {3,4,5}
are given in the following. Suppose that (GR,PR)=(1,5)
or (GR,PR)=(2,4) is given. Then, R4 must be used since
the upper bound of R5 is 3. In addition to R4, R3 also
must be used since R1 + R2 = 6 must hold. R5 and
R8 are optional. In every case, the consequent reaction
knockout results in (GR,PR)=(10,0). Note that the neces-
sary minimum growth is assumed as 1 in this example,
however, GR is allowed to be less than 1 if GR> 1 is sat-
isfied in the consequent strategies. When (GR,PR)=(0,5)
is given, R4 must be used since the upper bound of R5

21[05]

\ R7
source COV' R3 [0,3]é| 01]
-, 155 Nyr P RS
2
[

[0.,10] biomass

constant
(ATPM)

Fig. 2 A toy example of the metabolic network, in which GridProd
can identify the optimal strategy but IdealkKnock cannot under the
condition that GR is maximized
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is 3. R3 is optional. If R3 is used, then R5 must be used,
and R8 is optional. If {R3,R5,R8} is knocked out, then GR
becomes 0 and minGrowth cannot be satisfied. If only R8
is knocked out, then (GR,PR)=(10,0) is obtained. When
(GR,PR)=(2,3) is given, there are multiple flows. If R4
is not used, then R3 and R5 must be 5 and 3, respec-
tively. Consequently, R4 and R8 are knocked out, and
then (GR,PR)=(10,0) is obtained. If R4 is used, R3 must
be used since the upper bound of R8 is 1. R5 and R8
are optional. Then, (GR,PR)=(10,0) is obtained. When
(GR,PR)=(2,5) is given, R4 must be used since the upper
bound of R5 is 3. Since the upper bound of R8 is 1, R3 must
be used. R5 and R8 are optional. Then, (GR,PR)=(10,0)
is obtained. If (GR,PR) is (0,3), (1,3), or (0,4), then
there is no flux satisfying the condition since the lower
bound of R2 is 5.

Therefore, when GRe {0,1,2} and PRe {3,4,5} are
given for the first LP, the consequent (GR,PR) obtained by
the second LP is represented in Table 9. Although (GR,PR)
is given as exact values in the above example for sim-
plicity, they are given as constraints represented by the
inequalities in GridProd. Suppose that the size of each grid
is relatively large, and the corresponding constraints are
0 < GR < 2 and 3 < PR < 5. Then, one of the possible
obtained flow by the first LP is (R1,...,R8)=(0,5,0,5,0,0,0,0)
since the sum of absolute values of fluxes are minimized
in the first LP of GridProd. Consequently, R3, R5, and
R8 are knockedout. Then the second LP is not feasible.
However, if the size of each grid is small and the cor-
responding constraints are 1 — € < GR < 1 + € and
4 — € < PR < 4 + € where € is a small positive con-
stant , then (GR,PR)=(1,4) is achieved in the second LP.
Therefore, the size of each grid affects the resulting PR of
the target metabolites. Table 5 shows that as P~! becomes
larger, the production ability improves when Pl < 25
However, when P! > 25 holds, the production ability
does not improve as P! becomes larger. This indicates
that the necessary minimum size of € in the above example
is related to the necessary minimum size of P~1.

Table 1 shows that GridProd could find the strategies for
producing at least 20 target metabolites that IdealKnock
could not identify. Potential reasons for this improvement
include the effects of the parsimonious-based approach
and the grid-based approach as explained above. Since
74 of the 82 target metabolites were producible via the

Table 9 Values of (GR,PR) obtained by the second LP of GridProd
when GRe {0, 1,2} and PRe {3,4, 5} are given as the constraints
for the first LP

GR=2 (10,0) (10,0) (10,0)
GR=1 NA (1,4) (10,0)
GR=0 NA NA (10,0)

PR=3 PR=4 PR=5
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GridProd strategies even for the minimum cases from
FVA, there are eight target metabolites that may not be
producible by the GridProd strategies. Table 2 shows that
FastPros and IdealKnock produced many of these eight
target metabolites. Since IdealKnock could produce all
target metabolites but "Ex_etha(e)’ even for the minimum
cases from FVA, 81 of the 82 target metabolites were pro-
ducible either by FastPros, IdealKnock or GridProd. The
reason as to why none of the methods could identify a
strategy to produce 'Ex_etha(e)’ requires further investi-
gation. Table 7 shows that the knockout efficiencies of
FastPros and IdealKnock are much better than GridProd,
while GridProd is good for the design of smaller reaction
networks.

Since finding an optimal subnetwork that achieves the
maximum PR is NP-hard problem, it is almost impossi-
ble to find it for genome-scale models in realistic time.
Threfore, GridProd does not ensure to find the opti-
mal subnetwork. However, it succeeds to find a bet-
ter subnetwork than other methods for many target
metabolites.

GridProd computes the design of chemical reaction net-
works by choosing reactions used in the first LP. Because
many reactions in iAF1260 are not associated with genes,
it is not directly possible to extend the idea of GridProd
for the selection of a set of genes.

Conclusion

In this study, we introduce a novel method of calculating
parsimonious metabolic networks for producing metabo-
lites (GridProd) by extending the idea of IdealKnock and
pFBA. In contrast to IdealKnock, in the calculation of the
ideal points, GridProd applies “P” to PR as well as GR. Fur-
thermore, GridProd divides the solution space of FBA into
P~2 small grids, and conducts LP twice for each grid. The
area size of each grid is (P x TMGR) x (P x TMPR). TMPR
stands for theoretical maximum production rate. The first
LP obtains reactions included in the designed DNA, and
the second LP calculates the PR of the target metabolite
under the condition that the GR is maximized for each
grid. The design strategy of the grid whose PR is the best
is then adopted as the GridProd solution.

Computational experiments were conducted to inspect
the efficiency of GridProd using a genome-scale model,
iAF1260. The production ability of GridProd strategies
was compared to those of IdealKnock and FastPros strate-
gies. GridProd achieves higher PR than IdealKnock for
many target metabolites. The average computation time
for GridProd is within a few minutes for each tar-
get metabolite. The effects of the grid sizes were also
inspected. When the solution space was divided into
625 small grids, the obtained PRs were the optimal in
the computational experiments, which corresponds to
Pl =25
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Methods
The pseudo-code of GridProd is as follows.
Procedure GridProd(target, P)
TMGR =max Vgyouth
st. ¥ S;;-vi=0
LB,’ < Vj < L[B/'
Vglc_uptake = —GUR
Vo2_uptake = —OUR
Vatp_main = NGAM
TMPR =max Vigyget
st. ¥ S;;-vi=0
LBj <v; < UB;
Vglc_uptake = —GUR
Vo2_uptake = —OUR
Vatp_main = N GAM
Verowth = Vg"i)r;vth
fori=1toPdo
biomassLB = TMGR x P x (i — 1)
biomassUB = TMGR x P x i
forj=1toPdo
targetLB = TMPR x P x (j — 1)
targetUB = TMPR x P x j
% The first LP for (i, )).
Rio(i,)) is such that
min ¥
s.t. X S;-v;=0
LB; <v; < UB;
—tj <v < tj
Vglc_uptake > —GUR
Vo2_uptake = —OUR
Vatp_main = NGAM
biomassLB < Vgou, < biomassUB
targetLB < Vigrger < targetUB
Rnotﬁused = {V/'|Vj < 10_5}
if the first LP is not feasible
Rnot_used(i»j) = ¢
% The second LP for (i, ).
Vtarger is such that
max Verowth
st. ¥ S;;-vi=0
LB/ =V = UBj for {]|V] ¢ Rnatﬁused(i’]’)}
vi=0 for Ulvi € Ruot_used(ir )}
Vglc_uptake = —GUR
Vo2_uptake = —OUR
Vatp_main > NGAM
if Vgrowth = Vg’,g;th
PR(i,)) = Vtarget
else
PR(i,j) =0
(i,)) = argmax(PR(i, )))
return Ryo; yseq (i, ), PR, j), FEVAmin(i, j), FVAmax(i, j)

In the above pseudo-code, the TMGR and TMPR are
calculated first. S;; is the stoichiometric matrix. LB; and
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UB; are the lower and upper bounds of v;, respectively,
that represents the flux of the jth reaction.

Vgle_uptakes Vo2_uptakes A0d Vaty_main are the lower bounds
for the uptake rate of glucose (GUR), the oxygen uptake
rate (OUR), and the non-growth-associated APR main-
tenance requirement (NGAM), respectively. Vg%y . 1s the
minimum cell growth rate.

In each grid, LP is conducted twice. “biomassLB” and
“biomassUB” represent the lower and upper bounds of
GR, respectively. Similarly, “targetLB” and “targetUB” rep-
resent the lower and upper bounds of PR, respectively,
which are used as the constraints in the first LP. Each
grid is represented by the two constraints, “biomassLB <
Vgrowsh < biomassUB” and “targetLB < Vigyger =<
targetUB”. TMPR x P and TMGR x P represent the hori-
zontal and vertical lengths of the grids, respectively.

In the solution of the first LP, a set of reactions whose
fluxes are almost 0 (less than 107°) are represented as
Ryot used» which is used as a set of unused reactions in
the second LP. In the second LP, none of the “biomassLB’,
“biomassUB", “targetLB’, and “targetUB” are used, but the
fluxes of the reactions included in R, yseq Were forced to
be 0. If the obtained PR is more than or equal to Vgé’;m
in the solution of the second LP, the value of PR is stored
to PR(i,j). Otherwise 0 is stored. Finally, the (i,j) that
yields the maximum value in PR(i,j) is searched, and the
corresponding Ryo¢ ysed(i,j) and PR(i, j) are obtained. The
minimum and maximum PRs from FVA for R,o; e (i)
are also calculated. V(ZZZ]’N . 18 set to 0.05 in GridProd as in [19].

Genome-scale metabolic model of Escherichia coli

iAF1260 is a genome-scale reconstruction of the
metabolic network in Escherichia coli K-12 MG1655
and includes 1260 open reading frames and more than
2000 transport and intracellular reactions [23]. We used
iAF1260 as an original mathematical model of metabolic
networks. To simulate the production potential for each
target metabolite in this model, we added a transport
reaction for the target metabolite if it were absent in the
original model, which was assumed to be a diffusion
transport as in [19].

In our computational experiments, glucose was the sole
carbon source, and the GUR was set to 10 mmol/gDW/h,
the OUR was set to 5 mmol/gDW/h, the NGAM was set to
8.39, and the minimum cell growth rate (ng;’;, () Was set to
0.05, as in [19]. These conditions correspond to microaer-
obic conditions, where the oxygen uptake is insufficient
to oxidize all NADH produced in glycolysis and the
tricarboxylic acid cycle in the electron transfer system.
This relatively low OUR was chosen because higher pro-
duction yields of target metabolites can be obtained under
such conditions compared with under the higher OUR
when carbon is mainly used to generate biomass and COy
[19]. Other external metabolites such as COy and NHj
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were allowed to be freely transported through the cell
membrane in accordance with [23]. Although it is not real-
istic to assume that large molecules diffuse out of E. coli,
it may become important in the near future to compute
the design of parsimonious chemical reaction networks to
produce various metabolites.

For constraint-based analysis using GSMs, simplified
models are often considered to reduce computational time
[24, 25]; such models provide identical flux estimation
and screening results as the original model [26]. How-
ever, in this study, we used the original iAF1260 model as
opposed to such simplified models because it takes only
a few minutes for GridProd to obtain a solution for each
target metabolite in most cases.

Additional file

Additional file 1: All source codes and the solutions obtained by
GridProd in the computational experiments described in this manuscript
are included. (ZIP 2373 kb)
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