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Abstract

Background: The development of a disease is a complex process that may result from joint effects of multiple genes.
In this article, we propose the overlapping group screening (OGS) approach to determining active genes and
gene-gene interactions incorporating prior pathway information. The OGS method is developed to overcome
the challenges in genome-wide data analysis that the number of the genes and gene-gene interactions is far
greater than the sample size, and the pathways generally overlap with one another. The OGS method is further
proposed for patients’ survival prediction based on gene expression data.

Results: Simulation studies demonstrate that the performance of the OGS approach in identifying the true main and
interaction effects is good and the survival prediction accuracy of OGS with the Lasso penalty is better than
the ordinary Lasso method. In real data analysis, we identify several significant genes and/or epistasis interactions that
are associated with clinical survival outcomes of diffuse large B-cell lymphoma (DLBCL) and non-small-cell lung cancer
(NSCLC) by utilizing prior pathway information from the KEGG pathway and the GO biological process databases,
respectively.

Conclusions: The OGS approach is useful for selecting important genes and epistasis interactions in the ultra-
high dimensional feature space. The prediction ability of OGS with the Lasso penalty is better than existing methods.
The OGS approach is generally applicable to various types of outcome data (quantitative, qualitative, censored event
time data) and regression models (e.g. linear, logistic, and Cox’s regression models).
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Background
Discovering important pathways, genes, and gene-gene
interactions that account for the phenotype of interest
has continued to be a key challenge in genome-wide ex-
pression analysis [1]. Under this high-dimensional data
setting, single and multiple biomarker (e.g. gene) tests
commonly used usually have limited power to detect
causal biomarkers associated with the clinical pheno-
types. To improve the power, analyses incorporating ex-
ternal biological information have been proposed. For
example, gene-based analyses group the single-nucleo-
tide polymorphisms (SNPs) under study into genes, and
pathway-based analyses group the genes under study
into some biologically meaningful pathways; both types

of multiple biomarker analyses have shown to be effect-
ive in detecting causal association signals and become
increasingly popular. The analyses incorporating external
biological information are particularly useful for detect-
ing interaction effects among biomarkers, since the
number of interaction effects grows quickly with the
number of biomarkers and hence traditional statistical
tests lose power.
To identify causal interaction effects of single-nucleotide

polymorphisms (SNPs) on a quantitative or disease trait,
Fang et al. [2] develop a two-stage grouped sure independ-
ence screening (TS-GSIS) procedure using gene-based SNP
sets. Simulation studies demonstrate that the performance
of TS-GSIS is better than some existing approaches, includ-
ing the extended SVM [3] and the TS-SIS method [4] with-
out incorporating gene set information. A potential
drawback for the TS-GSIS method is that, it is developed in
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the setting where the groups (gene sets) are non-overlap-
ping and does not pay attention to settings with overlap-
ping groups, which would be encountered in
pathway-based analyses where different pathways may in-
volve some common genes. Besides, TS-GSIS is focused
specifically on the quantitative/qualitative outcome mod-
eled by linear/logistic regression, and its application to the
survival outcome has not been examined.
In this work, we propose the overlapping group

screening (OGS) method, which is an extension and
improvement of TS-GSIS to accommodate overlap-
ping group structures. Following the latent effect
approach of Jacob et al. [5], we decompose the original
biomarker effects into a sum of group-specific latent
effects, so that the original overlapping group struc-
ture can be transformed into a new non-overlapping
group structure. The latent effect approach has also
been applied by Zeng and Breheny [6], Zhang et al. [7]
and Tang et al. [8] to joint selection of genes and gen-
etic pathways.
In addition, to perform association analyses with gen-

eral types of traits including survival endpoints, OGS
employs the sequence kernel association test (SKAT)
proposed by Chen et al. [9] as the group screening cri-
terion. SKAT is a supervised, flexible, and computation-
ally efficient regression method to test for association
between genetic variants/gene expressions in a region
and a quantitative/qualitative/survival trait [10]. In par-
ticular, SKAT can quickly compute p-values analytically
by fitting the null model only once, and hence can be
conveniently applied to genome-wide data. Further, we
utilize a data-driven thresholding strategy of Fan et al.
[11] for screening candidate biomarkers/features, where
we permute randomly the original biomarker data
among subjects to decouple the association between the
biomarker and outcome data, such that the permuted
data follow the null distribution, from which a cut-off
value for the SKAT p-value to determine significance
can be determined. After screening candidate bio-
markers by the SKAT p-values, we apply the Ridge or
Lasso penalized regression method [12] to build the pre-
diction model in OGS. The Lasso penalty, in particular,
allows for automatic variable selection, which are com-
monly employed in high-dimensional data such as
genome-wide data analysis.
We note that OGS maintains the advantages of

TS-GSIS, namely: (i) it can mitigate the issue of
co-linearity in regression analyses owing to correlations
among biomarkers in the same gene/pathway, and (ii) it
can substantially reduce the search space for interaction
effects by utilizing the feature grouping structure.
The other objective of this article is to predict survival

outcomes based on gene expression profiles, a topic
which has received much attention in the recent decade

([13–15] and so on). Zhang et al. [16] indicate that one
of the main shortcomings of the past studies is the fail-
ure to incorporate prior biological information into the
prediction model, which may in turn lead to inaccurate
prognosis and prediction. The survival prediction based
on OGS addresses this problem. Simulation studies
demonstrate that the OGS approach not only identifies
correctly the causal biological pathways and epistasis,
but also improves survival prediction compared with the
alternative analyses that ignore the pathway information.
In the real data application, we utilize OGS to select

several causal genes and epistasis that are associated
with clinical survival outcomes of diffuse large B-cell
lymphoma (DLBCL) and non-small-cell lung cancer
(NSCLC) patients. In these applications, we combine
gene expression profile data with prior pathway informa-
tion from the KEGG pathway database (for DLBCL) and
the Gene Ontology (GO) biological process database (for
NSCLC), which are popular public databases providing
information on discovered pathways and their involved
genes [17]. We use the pathway information available
from these two databases to assign genes into groups
based on the specific pathways in which they are in-
volved, and conduct survival prediction based on the se-
lected genes and gene-gene interactions.

Motivation
Suppose that there are q genes assigned to G possibly
overlapping pathways, namely, a given gene may belong
to more than one pathway. The schematic plot in Fig. 1
displays the natural hierarchal structure of genes related
to pathways and shows the overlapping pathway struc-
ture present in the gene expression data. Each gene can
belong to one or multiple pathways. It is of interest to
identify genes, as well as their interactions, that are asso-
ciated with the clinical survival outcome.

Survival model
Let X denote the N × q dimensional covariate matrix of the

gene expression profiles with X ¼ ðx1; L; xNÞ= ¼

x11 ⋯ x1q
⋮ ⋱ ⋮

xN1 ⋯ xNq

0
@

1
A

N�q

, where xij denotes the expression

level of the j-th gene of the i-th subject. Assume the sur-
vival outcome Ti is related to the gene expression covariates
xi through a Cox’s regression model. In the Cox’s regression
framework, the hazard function at time t for subject i‘s sur-
vival given the covariates is modeled as

λ tjxið Þ ¼ λ0 tð Þ exp x=i β
� �

;

where λ0(t) is a non-negative deterministic baseline
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hazard function and β = (β1,⋯, βq)
/ is the logarithm of

the risk ratio. Based on the Cox’s model, the survival
function of subject i given his/her expression profile xi is
given by PðTi > tjxiÞ ¼ SðtjxiÞ ¼ S0ðtÞ expðx=i βÞ with S0ðtÞ
¼ exp½− R t

0 λ0ðsÞds� the baseline survival. Usually the
survival outcome is subject to censoring, and we use t�i
to denote the observed survival time of subject i, and δ�i
is the indicator of whether the survival time of subject i
is censored.
In practice, we can check the Cox’s model assump-

tion by existing approaches, such as statistical tests
and graphical diagnostics based on the Schoenfeld re-
siduals [18].

Latent effect approach
Incorporating the grouping (pathway) information
into the modeling process has the potential to im-
prove the interpretability and the accuracy of the
model. When the groups overlap one another, special
techniques are required to adequately account for the
overlapping grouping information. According to Jacob
et al. [5], we decompose the original coefficient vector
into a sum of group-specific latent effects, namely,

β ¼ PG
j¼1

γ j , where γ j ¼ ðγ j
1; L; γ

j
qÞ

=
is the latent coeffi-

cient vector for group j. Here is a simple example for
illustration [6]. Suppose that there are four genes that
are involved in the four pathways, P1 = {g1, g2},
P2 = {g2, g3}, P3 = {g1, g3} and P4 = {g3, g4},
the original coefficient β can be decomposed as
β = [β1, β2, β3, β4]

/

¼
γ11
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¼ Sγ:

Based on the coefficient decomposition, the original
regression model can be transformed into a new model,
i.e. XN�qβq�1 ¼ XN�qSq�uγu�1 ¼ ~XN�uγu�1 . Equiva-
lently, this new model can be constructed by duplicating
the columns of overlapped variables in the raw design
matrix. For the new transformed model, the hazard
function for subject i in the Cox’s regression model is
re-expressed as

λ tj~xið Þ ¼ λ0 tð Þ exp ~x=i γ
� �

:

Method (OGS)
We propose the OGS method and apply it to the gene ex-
pression profile data with clinical survival trait to detect
causal genes and epistasis interactions by incorporating
prior pathway information. We standardized all the

Fig. 1 The natural hierarchal structure of genes related to pathways with the clinical outcome
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predictors before performing the OGS approach. The
steps of the OGS algorithm are described as follows.
Step1: Based on the latent effect approach, we utilize

the overlapping group Cox’s regression model to identify
the causal pathways, which can be computed by the R
package “grpregOverlap” [6]. We define M̂main as the se-
lected set of causal pathways, and A ¼ jM̂mainj as the
size of M̂main.
Step 2: Consider gene-gene interaction pairs between

gene pairs from one causal pathway or two different
causal pathways in M̂main , as well as gene pairs between
one pathway in M̂main and one non-causal pathway out-
side M̂main . The interaction between two pathways is
also termed “cross-talk” of pathways [19]. For groups of
gene-gene interaction pairs from each of the candidate
pathways or from each two cross-talk pathways, apply
the SKAT test to obtain the group-specific significance.
Detail about the group-specific SKAT test is given in the
next section.
Step 3: We randomly permute the original genotype

matrix xi to form the permuted data {Yi, xπ(i)} following
the null model, where {π(1),⋯, π(N)} is a random per-
mutation of the index. Then apply again the SKAT test
for each of the pathway interaction groups with the per-
muted data to obtain the group screening measures
(p-values) fp�1;⋯; p�Bg. We adopt Cint ¼ minfp�1;⋯; p�Bg
as a cutoff point to select candidate pathway interac-
tions, i.e.

M̂int ¼ b : pb < Cint; b ¼ 1;⋯;Bf g;

is our selected set of pathway interactions.
Step 4: Apply the penalized Cox’s regression with the

Ridge, or Lasso penalty to build the final prediction
model based on genes in M̂main and gene-pair interac-
tions in M̂int. Note that when applying the Lasso penalty,
some of the genes/gene pairs in M̂main /M̂int may be re-
moved since the Lasso penalty can set some of the coef-
ficients exactly to 0, while when applying the Ridge
penalty, all of the candidate genes and gene pairs are
retained. The penalized Cox’s model with the Ridge and
Lasso penalties can be obtained by the R package
“glmnet” [12].

Group-specific test (SKAT)
Following Chen et al. [9], the group-specific SKAT statis-
tic under the Cox’s regression model is given as

Q kð Þ ¼ m=R kð ÞW kð ÞW kð ÞR
=
kð Þm; k ¼ 1;⋯;B

Here, B ¼ Aþ CA
2 þ ðG−AÞ � A is the total number of

groups of pathway interaction, m is the vector of

martingale residuals estimated from the null model with-
out considering the gene expression data, R(k) = [r(k)ij]N × l,
where l is the number of gene-gene interaction pairs

in the pathway interaction group k, r(k)ij is the j-th
gene-gene interaction pair of i-th subject in the pathway
interaction group k, and W(k) is a diagonal weight matrix
that contains the weights of the l interaction pairs in the
pathway interaction group k. Suitable weights can im-
prove the testing power [10]. We utilize the penalized
Cox’s partial likelihood approach with the Ridge penalty
to estimate effect sizes for gene-gene interaction pairs in
each pathway interaction group, and take the square
root of the absolute estimated coefficients as our
weights, i.e.,

W kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~β kð Þ1
��� ���

r
0

⋱

0

ffiffiffiffiffiffiffiffiffiffiffiffi
~β kð Þl
��� ���

r

0
BBB@

1
CCCA

l�l

;

Based on null model without gene covariates, let V =
diag (e1,…, eN) −PP/, where P is an N × v matrix with
element pijthe baseline hazard for individual i at ordered
failure time t�ð jÞ; j ¼ 1;⋯; v , and ei the cumulative hazard

for individual i at observed time t�i . Let ΣðkÞ ¼ WðkÞR
=
ðkÞ

VRðkÞWðkÞ be the covariance matrix of the vector WðkÞR
=
ðkÞ

m under the null hypothesis of all gene-gene interaction
pairs in the pathway interaction group k having null effects.
Under the null hypothesis, the SKAT statistic follows a mix-
ture chi-square distribution:

Q kð Þ �
Xl

j¼1

λ kð Þ jχ21; j;

where λ(k)j, j = 1, ⋯, l are the eigenvalues of Σ(k), and χ21; j

‘s are independent 1-df central chi-square random

variables.
We use the Davies method [20] to approximate the tail

probability (p-value) of the mixture chi-square distribu-
tions, which can be computed by R package “Comp-
QuadForm” [21]. In general, the Davies method is
accurate [22]. The p-values {p1,⋯, pB} for the pathway
interaction groups serve as our group screening mea-
sures; a smaller p-value corresponds to higher signifi-
cance of the group and hence leads to higher priority to
be selected.

Results
In the following simulations, we investigate the perfor-
mances of the proposed OGS approach in variable selec-
tion, estimation, and prediction, and compared them
with those from the “Oracle”, “Univariate Selection”,
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“Ordinary Lasso”, and “TS-GSIS Lasso” methods. The
“Oracle” method is based on the underlying true model,
which is known in simulations but unknown in real ap-
plications. The “Univariate Selection” method selects the
genes and gene-pairs one by one via univariate regres-
sion, with controlled false discovery rate (< 0.05), and
the selected variables are included in a multivariate
Cox’s regression model to form the final prediction
model. The “Ordinary Lasso” method is the penalized
Cox’s regression model with the covariates of gene ex-
pressions from all genes and gene-pair interactions and
with the Lasso penalty. The “TS-GSIS Lasso” method is
essentially proposed by Fang et al. [2], except that we
apply the SKAT test to obtain the group-specific
significance.
For performance comparison, we obtain the root mean

squared error (RMSE) to measure estimation accuracy,
defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

XS
j¼1

β j−β̂ j

� �2

vuut ;

where S is full model size including all main and inter-
action covariates. Over 500 simulations, we report the
median value RMSE.M of RMSE over simulations. We
also report the following proportions in 500 simulations
as performance measures for variable selection:
T.model is the proportion where the selected model in-
cludes the underlying effective variables, including both
the main and interaction terms; Tint.model is the pro-
portion where the selected model includes the under-
lying effective gene-gene interaction terms; Sen. is the
sensitivity, i.e., the proportion of the underlying effect-
ive variables being selected; Spe. is the specificity, i.e.,
the proportion of the underlying ineffective variables
not being selected. We also report the median size
S.model of the selected model over 500 simulations.
For assessing the performance in survival prediction,
we report two measures of prediction accuracy: the de-
viance and c-index proposed by Harrell et al. [23] and
smaller deviance/larger c-index corresponds to better
prediction accuracy. The median values of deviance and
c-index over 500 simulations are reported.

Also, let β̂ be an estimator of the (penalized) Cox’s re-
gression parameter in a prediction model obtained from
the training dataset and ðt�i ; δ�i ; x�i Þ the survival and co-

variate data of subject i in the test data. Define x�i β̂ as
the prognosis index (PI) value for subject i. The predic-
tion accuracy measure of Cox-test is defined as the
p-value of PI when PI is used as the covariate in the uni-
variate Cox model for the survival outcome in the test
data. A smaller value of Cox-test (p-value) would sug-
gest better prediction accuracy. Similarly, the prediction

accuracy measure of LR-test is the p-value of the
log-rank test for the null hypothesis of equality of the
survival between the “poor” and “good” prognosis
groups in the test data, which are formed according to
whether the PI value is higher or lower than the median
PI value. A smaller LR-test value corresponds to better
prediction power.
We consider survival data with a cohort size 500 as

the training set, where each subject’s survival time fol-
lows the Cox’s proportional hazards model

λ0 tjxð Þ ¼ 0:1 � exp x=β
� �

;

with β measuring the log-relative risk with respect to
the covariates and the covariates x jointly following a
multivariate standard normal distribution with correl-
ation corr(x⋅j, x⋅k) = 0.5|j − k|. The censoring time distribu-
tion follows a uniform U(0, 1) distribution. We then
generate survival data, independent of the training data,
with a cohort of size 100 as the test data to assess the
prediction accuracy for different methods.

Simulation setting 1
In this simulation study, the design matrix consists of 5
groups with each group having different group sizes.
The group size (number of genes in each pathway) and
the overlapping structure (number of genes shared by
two overlapping pathways) are shown in Table 1.
For example, pathways 1 and 2 contain 7 and 14 genes,

respectively. The two groups contain 18 unique genes,
and 3 genes are shared by the two groups. As a result,
there are 81 genes (q = 81) and 105 latent effects in this
example. Fig. 2 shows the gene indices of the pathways.
Pathways 2 and 4 are effective, and genes in each of them
have constant latent effects of 4.5 and − 3, respectively.
Three types of gene-gene interactions are considered: (1)
gene-gene interactions (x⋅8 × x⋅9, x⋅10 × x⋅11, x⋅12 × x⋅13)
within pathway 2 with effects(6, 6, 6), (2) gene-gene inter-
action (x⋅36 × x⋅66, x⋅38 × x⋅68, x⋅40 × x⋅70) across pathways 4
and 5 with effects(−6, −6, −6), and (3) coexistence of inter-
actions (1) and (2). The number of effective genes and
gene-pair interactions is 45 or 48 among the total 3321
genes and gene-pairs. We examine performances of differ-
ent methods under a censoring rate of 50% or 65%.

Simulation setting 2
In this simulation study, the design matrix consists of 24
groups with each group having different group sizes,

Table 1 Data structure in Simulation 1

Pathway 1 2 3 4 5

Gene Size 7 14 21 28 35

Overlapping 3 5 7 9
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ranging from 3 to 60 (genes). The group size and the
overlapping structure are shown in Table 2.
For example, pathway 4 contains 6 genes, as group 5

does, and the two groups contain 10 unique genes, and
2 genes are shared by the two groups. As a result, there
are 462 genes (q = 462) and 594 latent effects in this ex-
ample. Fig. 3 shows the gene indices of the pathways.
Pathways 1, 7, 13, and 19 are effective, and genes in each
of them have constant latent effects of 4.5, − 3, − 3, and
1.5, respectively. As above, three types of gene-gene in-
teractions are considered: (1) gene-gene interactions
(x⋅22 × x⋅23, x⋅24 × x⋅25, x⋅26 × x⋅27) within pathway 7 with
effects(4, 4, 4), (2) gene-gene interaction (x⋅81 × x⋅101,
x⋅82 × x⋅102, x⋅83 × x⋅103) across pathways 13 and 14 with
effects(−4, −4, −4), and (3) coexistence of interactions (1)
and (2). The number of effective genes and gene-pair in-
teractions is 84 or 87 among the total 106,953 genes and
gene-pairs. We examine different methods under a cen-
soring rate of 50% or 65%.

Summary of simulation results
From the simulation results shown in Tables 3, 4, 5, 6, 7,
and 8, the OGS method using the Lasso penalty outper-
forms the OGS method using the Ridge penalty. Also,
compared to the existing methods, OGS with the Lasso
penalty performs substantially better than the Univariate
Selection and the TS-GSIS with the Lasso penalty
methods in variable selection (T.model, Tint.model,
Sen., Spe.), estimation (RMSE.M), and prediction (Devi-
ance, c-index). When the number of groups (pathways)
and the group size (number of genes) are smaller (Set-
ting 1) and the censoring rate is relatively lower (50%),
the ordinary Lasso also performs well in variable selec-
tion and survival prediction; while in other cases, the or-
dinary Lasso is less competitive than the proposed OGS
method with the Lasso penalty in variable selection, esti-
mation, and survival prediction. Comparing Tables 3, 4,
and 5, or Tables 6, 7, and 8, we see that the pattern of
interactions, namely whether the gene-gene interactions
occur within the same pathway or not, does not affect
much the performance of the proposed OGS method, in
particular for survival prediction.

The DLBCL analysis
The DLBCL data [24] contain two sets of gene expres-
sion data, CHOP and R-CHOP. The CHOP dataset is
under a combination chemotherapy with cyclophospha-
mide, doxorubicin, vincristine and prednisone; R-CHOP
is under the current golden standard treatment, the
rituxima immunotherapy in addition to the chemather-
apy in CHOP. The CHOP and R-CHOP datasets consist
of censored survival outcomes from 181 and 233 pa-
tients, respectively, with gene expression data from the
same 3833 genes after the filtering process. The censor-
ing rates are 42% and 74% in the CHOP and R-CHOP
datasets, respectively. These two microarray datasets can
be downloaded from the R package “bujar” [25]. In our
analysis, we divide randomly the patients into 207:207
training/test datasets from the pool of R-CHOP and
CHOP datasets. There were no significant differences in
clinical survival outcome between subjects in the two
datasets.
We apply the proposed OGS approach to the DLBCL

data with the prior pathway information obtained from
the KEGG pathway database. The following analysis is
based on the 451 genes mapped into 165 pathways in
the DLBCL data, which result in 101,926 main and
two-way interaction covariates.
In Steps 1–3 of the OGS approach, we identify 6 sig-

nificant pathways and 2 significant cross-talk pathway
interactions. In Step 4 of the OGS method, the Cox’s
model with the Ridge or Lasso penalty is applied to the
training data to establish the final prediction model. In
particular, the OGS method with the Lasso penalty leads
to a prediction model with 5 main and 10 two-way inter-
action covariates. The “Univariate Selection” and “Or-
dinary Lasso” methods are applied directly to the whole
101,926 covariates in the training data to build the pre-
diction models. The “Overlap Lasso” method is obtained
by applying the R package “grpregOverlap” [6], which
performs group selection among overlapping groups
with the Lasso penalty but without considering interac-
tions among features.

Table 2 Data structure in Simulation 2

Pathway 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Gene Size 3 3 3 6 6 6 9 9 9 15 15 15 24 24 24 36 36 36 45 45 45 60 60 60

Overlapping 1 1 2 2 3 3 5 5 8 8 12 12 15 15 20 20

Fig. 3 The gene indices of the pathways considered in Simulation 2

Fig. 2 The gene indices of the pathways considered in Simulation 1
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Table 3 Results of Simulation 1 (1): The performances of OGS compared with other approaches under gene-gene interactions
within one pathway

Oracle Uni. Sel. Ordinary Lasso TS-GSIS Lasso OGS Ridge OGS Lasso

censoring rate = 50%

RMSE.M 0.422 0.425 0.355 0.340 0.435 0.325

T.model 1 0 1 0.625 0.650 0.650

Tint.model 1 0.075 1 0.625 0.650 0.650

Sen. 1 0.783 1 0.974 0.977 0.976

Spe. 1 0.999 0.954 0.964 0.775 0.970

S.model 45 37.895 197.165 160.375 781.805 142.245

Deviance − 128.514 − 108.289 − 281.603 − 282.783 − 50.658 − 294.313

c-index 0.925 0.891 0.984 0.983 0.855 0.985

censoring rate = 65%

RMSE.M 0.421 0.424 0.375 0.364 0.436 0.348

T.model 1 0 1 0.805 0.815 0.815

Tint.model 1 0.070 1 0.805 0.815 0.815

Sen. 1 0.764 1 0.986 0.988 0.987

Spe. 1 0.999 0.962 0.965 0.686 0.968

S.model 45 37.855 170.655 157.450 1072.52 148.745

Deviance −123.803 −102.527 −231.398 − 240.500 − 45.181 −250.026

c-index 0.928 0.898 0.983 0.984 0.849 0.986

Table 4 Results of Simulation 1 (2): The performances of OGS compared with other approaches under gene-gene interactions
across two pathways

Oracle Uni. Sel. Ordinary
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

censoring rate = 50%

RMSE.M 0.418 0.424 0.382 0.361 0.436 0.349

T.model 1 0 1 0.905 0.915 0.915

Tint.model 1 0.035 1 0.905 0.915 0.915

Sen. 1 0.746 1 0.992 0.994 0.994

Spe. 1 0.999 0.963 0.965 0.666 0.966

S.model 45 36.480 165.850 158.610 1139.54 155.235

Deviance − 133.967 −102.900 − 219.334 − 241.541 − 42.702 − 252.120

c-index 0.944 0.899 0.980 0.984 0.842 0.986

censoring rate = 65%

RMSE.M 0.414 0.422 0.398 0.390 0.436 0.382

T.model 1 0 0.974 0.909 0.909 0.909

Tint.model 1 0.035 1 0.909 0.909 0.909

Sen. 1 0.729 0.999 0.992 0.994 0.992

Spe. 1 0.999 0.968 0.970 0.558 0.971

S.model 45 36.970 150.597 141.459 1494.17 140.481

Deviance − 127.447 −92.867 − 169.725 − 182.585 −39.018 − 191.849

c-index 0.949 0.903 0.974 0.979 0.829 0.981
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Table 5 Results of Simulation 1 (3): The performances of OGS compared with other approaches under coexistence of within- and
between-pathway gene-gene interactions

Oracle Uni. Sel. Ordinary
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

censoring rate = 50%

RMSE.M 0.457 0.463 0.400 0.430 0.471 0.393

T.model 1 0 1 0.500 0.525 0.525

Tint.model 1 0 1 0.500 0.525 0.525

Sen. 1 0.708 1 0.959 0.966 0.963

Spe. 1 0.999 0.956 0.968 0.672 0.969

S.model 48 36.970 191.050 151.135 1119.675 146.475

Deviance −127.602 −95.760 − 266.727 − 206.468 −46.208 − 254.344

c-index 0.924 0.871 0.983 0.961 0.826 0.978

censoring rate = 65%

RMSE.M 0.455 0.461 0.418 0.412 0.471 0.401

T.model 1 0 1 0.675 0.715 0.715

Tint.model 1 0 1 0.675 0.715 0.715

Sen. 1 0.694 1 0.973 0.980 0.977

Spe. 1 0.999 0.963 0.968 0.614 0.969

S.model 48 37.070 168.335 150.420 1308.87 147.785

Deviance − 126.277 −92.721 − 220.297 − 223.262 −43.936 −235.996

c-index 0.929 0.878 0.979 0.978 0.831 0.982

Table 6 Results of Simulation 2 (1): The performances of OGS compared with other approaches under gene-gene interactions
within one pathway

Oracle Uni. Sel. Ordinary
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

censoring rate = 50%

RMSE.M 0.065 0.067 0.067 0.067 0.069 0.066

T.model 1 0 0 0.005 0.435 0

Tint.model 1 0 0.545 0.360 0.435 0.415

Sen. 1 0.213 0.592 0.660 0.980 0.722

Spe. 1 1 0.999 0.999 0.760 0.999

S.model 84 19.275 152.135 151.280 25,704 159.140

Deviance − 136.422 −44.754 −73.930 −88.464 −4.454 −100.153

c-index 0.917 0.766 0.853 0.868 0.583 0.885

censoring rate = 65%

RMSE.M 0.064 0.067 0.067 0.067 0.069 0.067

T.model 1 0 0 0 0.560 0.005

Tint.model 1 0 0.420 0.410 0.560 0.505

Sen. 1 0.204 0.511 0.600 0.984 0.660

Spe. 1 1 0.999 0.999 0.761 0.999

S.model 84 19.095 141.940 141.745 25,586 149.070

Deviance −128.513 −39.108 −59.558 −74.966 − 12.148 −85.540

c-index 0.925 0.769 0.842 0.860 0.605 0.877
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Table 8 Results of Simulation 2 (3): The performances of OGS compared with other approaches under coexistence of within- and
between-pathway gene-gene interactions

Oracle Uni. Sel. Ordinary
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

censoring rate = 50%

RMSE.M 0.068 0.071 0.071 0.070 0.072 0,070

T.model 1 0 0 0 0.045 0

Tint.model 1 0 0.085 0.030 0.045 0.035

Sen. 1 0.185 0.533 0.575 0.955 0.632

Spe. 1 1 0.999 0.999 0.763 0.999

S.model 87 17.625 147.060 137.595 25,425 146.765

Deviance −135.986 −38.636 −65.861 −73.924 −5.523 −83.062

c-index 0.916 0.751 0.839 0.845 0.587 0.859

censoring rate = 65%

RMSE.M 0.067 0.071 0.071 0.071 0.072 0.070

T.model 1 0 0 0 0.104 0

Tint.model 1 0 0.010 0.035 0.104 0.050

Sen. 1 0.177 0.464 0.518 0.961 0.582

Spe. 1 1 0.999 0.999 0.759 0.999

S.model 87 17.094 134.752 133.153 25,793 139.218

Deviance −128.426 −33.808 −52.046 −60.786 −7.674 −70.564

c-index 0.925 0.752 0.826 0.837 0.601 0.855

Table 7 Results of Simulation 2 (3): The performances of OGS compared with other approaches under gene-gene interactions
across two pathways

Oracle Uni. Sel. Ordinary
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

censoring rate = 50%

RMSE.M 0.064 0.067 0.067 0.067 0.069 0.067

T.model 1 0 0 0 0.172 0

Tint.model 1 0 0.098 0.064 0.172 0.078

Sen. 1 0.200 0.504 0.586 0.977 0.659

Spe. 1 1 0.999 0.999 0.767 0.999

S.model 84 18.529 137.623 140.039 24,970 145.250

Deviance −136.378 −38.797 −57.657 −71.756 −11.113 −83.105

c-index 0.928 0.765 0.838 0.856 0.600 0.875

censoring rate = 65%

RMSE.M 0.063 0.067 0.068 0.067 0.069 0.067

T.model 1 0 0 0 0.279 0

Tint.model 1 0 0.051 0.051 0.279 0.084

Sen. 1 0.180 0.435 0.519 0.982 0.573

Spe. 1 1 0.999 0.999 0.756 0.999

S.model 84 17.284 127.991 130.405 26,132 137.153

Deviance − 124.043 −30.843 −44.032 −55.482 −5.697 −62.328

c-index 0.936 0.761 0.822 0.845 0.598 0.860
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Table 9 displays several survival prediction accuracy
measures for different approaches in the test data. We
see that the OGS method with the Lasso penalty has
better performances compared to existing methods in
the test data. Fig. 4 displays the Kaplan-Meier survival
curves for the “good” (blue) and “poor” (red) progno-
sis groups in the test data, which are formed according
to whether the prognosis index (PI) value is lower or
higher than the median PI value (see the Results sec-
tion for detail). It is seen that that the two survival
curves are better separated by the OGS approach than
by the existing methods.
In DLBCL data, we discard 3382 genes that are not

mapped into any pathways in the KEGG pathway data-
base based on the latent effect approach. We also per-
form the other OGS analysis putting the 3382
ungrouped genes together as an additional group. The
results from such an analysis are similar to those pre-
sented here.

The NSCLC analysis
The NSCLC data of Chen et al. [14] is available from
NCBI with accession number GSE4882. The data con-
tain censored survival outcomes from 125 lung cancer
patients and their gene expression profiles for 672 genes.
The censoring rate is 65%. Following Emura et al. [13],
we consider the subset consisting of 485 genes, and, fol-
lowing Chen et al. [14], we divide the patients into 63:62
training/test datasets.
Based on the GO biological process database, prior

pathway information for 251 genes mapped into 344
pathways are utilized, which lead to a total number of
31,626 main and two-way interaction covariates. Using
the OGS approach, we identify 2 significant pathways
but no significant pathway interaction, and the final pre-
diction model obtained by the Lasso method includes
main effects from two genes, DUSP6 and LCK. Indeed,
the two genes are also included in the five-gene signa-
ture by Chen et al. [14], and are found to be strongly as-
sociated with lung cancer in other literatures ([26–28]
and so on).
Table 10 shows the prediction accuracy measures

for patients’ survival in the test sample of the NSCLC

data, where the measure LR-test_3 is the p-value of
the log-rank test for equality of survival distributions
among the three prognosis groups divided by the ter-
tiles of the PI values in the test sample. Fig. 5 dis-
plays the three Kaplan-Meier survival curves for three
prognosis groups (“good”, “medium”, “poor” groups
according tertiles of the PI values) in the test sample
of the NSCLC data (in this case the LR-test for the
two prognosis groups divided by the median PI is less
significant. Fig. 6 displays the two Kaplan-Meier sur-
vival curves for the two prognosis groups). In all
these measures, the OGS method with the Lasso pen-
alty performs better than the Ordinary Lasso.
Besides, we also apply the 10-fold cross-validation

method to evaluate the performance of the OGS
method for survival prediction in the NSCLC data. In
the 10-fold cross-validation process, most of the time
the OGS still identifies the same prediction model
containing the main effects of DUSP6 and LCK genes.
Table 11 shows the performances of the OGS method
in the NSCLC data with the performance evaluation
based on the 10-fold cross-validation, i.e., the average
of the results among 10 folds. We see that the per-
formance patterns are similar to those in Table 10,
and the OGS with the Lasso penalty still outperforms
the other methods.
In NSCLC data, we discard 234 genes that are not

mapped into any pathways in the GO biological process
database based on the latent effect approach. The OGS
approach for putting the 234 ungrouped genes together
as an additional group results in the same prediction
model as the one presented above.

Discussion
The OGS procedure can further adjust for confounding
covariates (e.g. environmental factors) when all the
models involved, including the null model without using
gene expression covariate data, further adjust for the
confounding variables; see [9, 10] for the SKAT statistics
with confounding covariates for quantitative, qualitative
and survival traits.
In this article, we consider two-way and multiplicative

interactions as a simple way to implement interaction
assessments. Examination of higher-order and general
forms of interaction is challenging and deserves further
research. Besides, the OGS method employs the latent
effect approach to deal with the overlapping structure
among pathways. This approach requires the gene
grouping (pathway) structure to be pre-specified and is
restricted to genes that can be assigned to at least one
group (pathway). It is interesting to study how these re-
strictions can be relaxed to improve the performances of
gene selection and survival prediction. Yu and Liu [29]
propose a procedure for sparse regression incorporating

Table 9 Results of prediction accuracies of different methods
based on DLBCL data

Uni.
Sel.

Ordinary
Lasso

Overlap
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

Cox-test 0.8173 0.4487 0.0087 0.1102 0.3828 0.0007

LR-test 0.5854 0.2220 0.0152 0.4029 0.1945 0.0085

Deviance 183.1428 −0.4282 −6.4363 −1.9859 2.3566 −10.6504

c-index 0.5136 0.5367 0.5842 0.5468 0.5568 0.6001
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a comprehensive graphical structure (SRIG) among pre-
dictors, and we would like to extend the current pro-
posal by employing the SRIG approach.
The idea of group screening procedure we propose can

also be applied to detect gene-environment interactions.
In the first step, we still apply the overlapping group
method to identify the causal pathways M̂main . In the sec-
ond step, we apply the SKAT test to obtain the group-

specific significance, where each of the groups are formed
by the interactions between one gene from each of the
causal pathways in M̂main and one environment factor in
Z, where Z is the set of environment covariates whose in-
teractions with genes are of interest. In step 3, we select
significant gene-environment interactions, where the per-
mutation procedure and the cutoff determination are the
same as those in the original OGS, except that now the

Table 10 Results of prediction accuracies of different methods based on NSCLC data (using the training and test sets as in Chen et
al. [14])

Uni.
Sel.

Ordinary
Lasso

Overlap
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

Cox-test 0.8381 0.6215 0.3441 0.8467 0.2372 0.2484

LR-test 0.3205 0.7046 0.3921 0.6216 0.3254 0.3254

Deviance 40.1323 0.4820 −0.3605 3.9135 −1.3311 −1.0551

c-index 0.4485 0.5565 0.5775 0.5394 0.5966 0.5966

LR-test_3 0.3205 0.5369 0.2351 0.8505 0.0818 0.0818

Fig. 4 Kaplan-Meier curves for the 207 subjects in the DLBCL with the testing data. Good (blue) and poor (red) groups are identified by the
median of the PI’s in the testing dataset
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permeation is applied to the covariate matrix consist-
ing of both gene and environmental covariates. Fi-
nally, the penalized regression with the Ridge or
Lasso penalty is still applied to build the final predic-
tion model based on the genes in M̂main , the environ-
mental covariates, and the selected gene-environment
interactions. We plan to study extensions of the OGS
method, including the extension to gene-environment
interactions, in our future research.
In this work we focus on survival prediction based

on the Cox’s proportional hazards model. In the case
where the proportional hazards assumption is not ap-
propriate, an alternative model, such as the propor-
tional odds model, that proves to be appropriate can
be used instead in the OGS procedure proposed. The
required modification with models alternative to the
proportional hazards is quite straightforward. For ex-
ample, the SKAT statistic involved in OGS can be
simply modified by using residuals from the alterna-
tive model considered.

Conclusions
It has been a long-lasting interest in the bioinformatics
field for detecting the pairwise gene-gene interactions.
In this paper we propose an overlapping group screening
procedure to identify causal genes and gene-gene inter-
actions efficiently by incorporating prior pathway infor-
mation, where the pathways involved are allowed to
overlap one another. Specifically, we utilize the gene
pathway information via the latent effect approach
which formally accounts for the possibly overlapping
grouping structure. In addition, we utilize the SKAT
testing approach to perform powerful screening of main
and interaction effects. Simulation and real data studies
demonstrate that the new proposal can substantially im-
prove the accuracy of gene and gene-gene interaction se-
lection and hence lead to more accurate survival
prediction compared with the common analyses that ig-
nore the pathway information. We provide an R package
“OGS” to perform Steps 1–3 of the proposed OGS
method, together with the reference manual describing

Fig. 5 Kaplan-Meier curves for the 62 subjects in the NSCLC testing data. Good (blue), medium (red) and poor (green) groups are identified by
the tertile of the PI’s in the test dataset
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how to perform “OGS” and the code used in our simula-
tion. Please see Additional Files 2 and 3 for detail.
The OGS approach is general in that they can accom-

modate various types of clinical outcomes and regression
models, such as quantitative, qualitative, and survival
outcomes modeled by linear, logistic, and Cox’s regres-
sion models, respectively. In the paper the OGS ap-
proach based on the Cox’s model for gene selection,
effect estimation, and survival outcome prediction has

been examined. The OGS methods for continuous and
binary outcomes based respectively on the linear and lo-
gistic regression models are discussed in Additional File 1.
The extension of OGS to more flexible models, such as
those based on the kernel methods [30], deserves further
research and will be studied in our future work.
The importance of gene-gene interactions have been

discussed widely in literature. For example, Cordell [31]
discussed the need of considering gene-gene interactions
in genetic studies of complex diseases. Fang et al. [2]
identified and confirmed important gene-gene interac-
tions related to rheumatoid arthritis. We believe that the
proposed overlapping group screening (OGS) approach
provides an useful tool to this important task in delin-
eating the underlying disease etiology.

Additional files

Additional file 1: The full detail and performances of the OGS approach
for survival, continuous and binary outcomes, and settings where some
of genes are shared by three groups (pathways). (DOC 317 kb)

Fig. 6 Kaplan-Meier curves for the 62 subjects in the NSCLC testing data. Good (blue) and poor (red) groups are identified by the median of the
PI’s in the test dataset

Table 11 Results of prediction accuracies of different methods
based on NSCLC data with 10-fold cross-validation procedure

Uni.
Sel.

Ordinary
Lasso

Overlap
Lasso

TS-GSIS
Lasso

OGS
Ridge

OGS
Lasso

Cox-test 0.1688 0.7781 0.1734 0.4678 0.1435 0.1426

LR-test 0.6795 0.5696 0.1120 0.5337 0.8289 0.4356

Deviance 22.4633 1.5506 −0.1409 −0.5405 −1.0941 −1.4853

c-index 0.7273 0.3333 0.6970 0.6061 0.6235 0.7576

LR-test_3 0.1997 0.1990 0.1194 0.1053 0.1150 0.1085
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Additional file 2: An R package “OGS”, which is a Windows binaries zip
file. (ZIP 29 kb)

Additional file 3: A reference manual for the “OGS” package. (PDF 77 kb)
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