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Abstract

Background: Hi-C data have been widely used to reconstruct chromosomal three-dimensional (3D) structures. One
of the key limitations of Hi-C is the unclear relationship between spatial distance and the number of Hi-C contacts.
Many methods used a fixed parameter when converting the number of Hi-C contacts to wish distances. However, a
single parameter cannot properly explain the relationship between wish distances and genomic distances or the
locations of topologically associating domains (TADs).

Results: We have addressed one of the key issues of using Hi-C data, that is, the unclear relationship between
spatial distances and the number of Hi-C contacts, which is crucial to understand significant biological functions,
such as the enhancer-promoter interactions. Specifically, we developed a new method to infer this converting
parameter and pairwise Euclidean distances based on the topology of the Hi-C complex network (HiCNet). The
inferred distances were modeled by clustering coefficient and multiple other types of constraints. We found that
our inferred distances between bead-pairs within the same TAD were apparently smaller than those distances
between bead-pairs from different TADs. Our inferred distances had a higher correlation with fluorescence in situ
hybridization (FISH) data, fitted the localization patterns of Xist transcripts on DNA, and better matched 156 pairs
of protein-enabled long-range chromatin interactions detected by ChIA-PET. Using the inferred distances and
another round of optimization, we further reconstructed 40 kb high-resolution 3D chromosomal structures of
mouse male ES cells. The high-resolution structures successfully illustrate TADs and DNA loops (peaks in Hi-C
contact heatmaps) that usually indicate enhancer-promoter interactions.

Conclusions: We developed a novel method to infer the wish distances between DNA bead-pairs from Hi-C
contacts. High-resolution 3D structures of chromosomes were built based on the newly-inferred wish distances.
This whole process has been implemented as a tool named HiCNet, which is publicly available at http://dna.cs.
miami.edu/HiCNet/.
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Background
The chromosome conformation capture techniques [1–4]
can detect physical interactions between a pair of genome
loci. Especially, the recent Hi-C technique [5] can identify
chromosome contacts at the whole genome level. In the past
few years, Hi-C experiments have been conducted on differ-
ent species and cell lines [5–9]; and the resolution of Hi-C
experiments keeps increasing from 1Mb to 1 kb [6, 9].
Recently, a computational method that uses deep learning
has been developed to enhance Hi-C data resolution [10].
Hi-C contact data have been widely used in different

fields, such as exploring Xist transcript mechanism [11],
predicting DNA methylation [12], and revealing struc-
tural properties of chromosomes, e.g., topologically asso-
ciating domains (TADs) [6] and peaks/loops [9].
Topologically associating domains (TADs), a segment of
a chromosome with megabase size or smaller, have been
found to be conserved between different cell lines and
across different species [6]. TADs are identified based on
the property that the Hi-C contact counts within a TAD
are apparently higher than those between two adjacent
TADs. It has also been tested that the boundary regions
of TADs are enriched with some genomic factors [6],
such as insulator binding protein CTCF. Loops are iden-
tified from local peaks in a Hi-C contact matrix: the
peak pixels have an apparent enrichment of Hi-C data,
while the pixels in their neighbourhood do not seem to
have high contact counts. A peak indicates that there
may be a loop physically residing in the peak region.
Peaks are also conserved across different cell lines and
species and can reside in topological domain boundaries
and CTCF binding sites [9]. However, it has been proved
that there are some systematic biases in raw Hi-C data
[13, 14]. Therefore, before using Hi-C data we need to
remove these biases. There are some efficient
normalization tools for eliminating the known biases
(e.g., restriction enzyme cutting sites, GC content, and
mappability) in raw Hi-C data, such as Hicpipe [13], ICE
[15], HiCNorm [16], KR [9, 17], and scHiCNorm [14].
Another important application of Hi-C data is to re-

construct chromosome 3D structures. Several methods
based on simulation and probability models have been
developed [18–24]. A widely created method is to first
convert Hi-C contacts into wish Euclidean distances
based on the assumption that wish distances follow
power law distribution with Hi-C contacts (δ = c-α, δ:
wish distance, c: Hi-C contact number, and α: a convert-
ing parameter) and then followed by an optimization
process that calculates three-dimensional coordinates
using algorithms such as metric multidimensional scal-
ing [21, 22, 24].
It has been observed that Hi-C contact probability of

mammalian chromosomes is inversely proportional to
genomic distance on each chromosome [5] (c ~ s− 1).

Meanwhile, based on previous studies of polymers the
volume scales are proportional to the chain length (d3 ~
s) (e.g. genomic distance) [25]. Therefore, Varoquaux et
al. [21] concluded that the relationship between Hi-C
contacts and spatial distances was d ~ c-1/3 (i.e., α = 1/3).
Based on this conclusion, they modeled chromosomal
3D structures at different resolutions using the same
parameter (1/3). However, this arbitrary converting be-
tween number of Hi-C contacts and wish distances has
drawbacks, especially when applied to different resolu-
tions [22], different organisms [21, 26], and different
time points during cell cycle [27]. For cases when num-
ber of Hi-C contacts are larger than 10, the converted
wish distances using δ ~ c-1/3 are very small and almost
have no difference (Additional file 1: Figure S1a), which
makes it hard to distinguish these interactions in terms
of spatial distance. For example, for the contacts be-
tween positions with 20 beads apart, (a chromosome is
evenly divided into beads; and each bead is 40 kb), in to-
day’s high-resolution Hi-C data sets > 50% of them have
the number of Hi-C contacts larger than 10 (Additional
file 1: Figure S1b). This indicates that the δ ~ c-1/3 for-
mula may not work well nowadays when the Hi-C ex-
periments can reach a high resolution by generating
significantly larger number of Hi-C reads.
Therefore, it is reasonable to assume δ ~ c-α; but α

should be bead-pair dependent instead of a fixed value
for all bead-pairs. Zhang et al. [22] designed a method to
dynamically assign values for α, which used
semi-definite embedding to infer the spatial organiza-
tions of chromosomes and then calculated Hi-C re-
versely to obtain the optimal α in which the inferred
Hi-C contacts best fitted the original ones. The whole
process was time-consuming as it needed to reconstruct
the 3D structure at the beginning. In comparison, our
method does not need to generate a 3D structure first.
Chromosome3D [24] used the Spearman correlation be-
tween Hi-C contact and inferred distances to tune the
parameter, but it still needed to generate many struc-
tures to obtain the best parameter.
In order to evaluate the reconstructed 3D structure,

the distances parsed from the reconstructed 3D struc-
ture are usually compared with fluorescence in situ
hybridization (FISH) data [6, 19, 20]. The chromosomal
interactions detected by FISH are usually considered ac-
curate, and therefore used as benchmarks. However, it is
in a small scale because usually only a couple of genomic
interactions can be detected by FISH. Therefore, we also
used the Xist localization intensity on X-chromosome
and ChIA-PET to evaluate our structures.
Engreitz et al. [11] conducted RNA Anti-sense Puri-

fication (RAP) experiments in mouse embryonic stem
(ES) cells to detect the localization intensities of
lncRNA Xist when X-chromosome was being
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inactivated. They found that Xist transcripts more in-
tensively bound at the DNA sites in spatial proximity
to the Xist locus but less intensively on the DNA
sites spatially far away from the Xist locus (Hi-C con-
tact data were used to measure spatial proximity).
They detected a significant correlation between 3D
distances to Xist locus and the Xist localization inten-
sities. If the inferred distances or inferred 3D struc-
tures make sense, the same strong correlation should
be found.
Dowen et al. [28] have applied cohesion ChIA-PET in

mouse ES cells to detect protein-enabled long-range
chromatin interactions. An unique feature of ChIA-PET
is the inclusion of chromatin immunoprecipitation
(ChIP) at the beginning to enrich the fragments bound
by a particular protein of interest [29]. Together with
the design of using two aliquots before fragment ligation,
these make ChIA-PET good at detecting protein-enabled
interactions [29]. Therefore, we can use these
ChIA-PET-confirmed interactions to evaluate our in-
ferred Euclidean distances or reconstructed 3D
structures.
In this study, we present a new method to model the

converting factor α based on the tendency of a bead to
be clustered with neighboring beads in a complex net-
work named Hi-C network (HiCNet). The optimized
converting factor α enables us to directly generate opti-
mized pairwise Euclidean distances without generating a
3D structure. The optimized distances are not only con-
sistent with the definitions of intra- and inter-TADs, but
also well fit FISH data and ChIA-PET confirmed interac-
tions. We further used the optimized distances and an-
other round of optimization to reconstruct the
chromosomal 3D structures of mouse ES cells at 40 kb
high resolution and found that compared to other exist-
ent methods our inferred 3D structures better fit a FISH
data set.

Methods
The input of our method is a normalized [13] Hi-C con-
tact matrix C at a high resolution, e.g., 40 kb. The matrix
is symmetric; and each row or column corresponds to a
fixed bead size (e.g. 40 kb). The target in this step is to
generate an optimized distance δij for each Hi-C value cij
in C. The relationship between δij and cij follows the
power law distribution as shown in Eq. 1:

δij ¼ cij
−αij if cij > 0 ð1Þ

Notice that every pair of beads has a
specifically-optimized factor αij. This is different from a
previous work [21], in which a fixed α is used for all
bead-pairs. Specifically, αij is calculated as

αij ¼ wiαi þ wjα j
� �

= wi þ wj
� � ð2Þ

in which αi and αj are the “clustering strength” of beads
i and j, a new term we define to measure a bead’s ten-
dency of being clustered with the neighboring beads on
the same chromosome. The wi and wj are the sum of
Hi-C contacts in the ith and jth rows of normalized Hi-
C matrix C, respectively. In this way, the parameter αij is
determined by the “clustering strength” of both beads i
and j but normalized by the Hi-C contacts related to
beads i and j. The heuristic is that if two beads both
have higher tendencies of being clustered with neighbor-
ing beads, their αij value should be relatively higher,
which makes their wish distances relatively smaller. Fig-
ure 1 illustrates this heuristic using two examples. The
“clustering strength” of the bead with higher Hi-C value
will have larger weight in the bead pair. The proof with
real data can be found in Results section.
To model the “clustering strength” of a bead, we intro-

duced a novel type of complex network, in which every
vertex represents a 40 kb bead; and if the Hi-C contacts
between two beads are not zero, an edge is created to

Fig. 1 a An illustration of Hi-C contacts between two beads i and j with smaller αHiCNet parameter (longer wish distance). Notice that there is always an
edge connecting nodes i and j as we only model the bead pairs that have non-zero number of Hi-C contacts. Therefore, beads i and j are immediate
neighbors of each other. b An illustration of Hi-C contacts between two beads i and j with larger αHiCNet parameters (smaller wish distance). Using node j
as an example, previously there was no edge connecting nodes 5 and i, both of which are the immediate neighbors of j. However, in b nodes 5 and i are
connected; nodes 4 and i are connected; and nodes 6 and i are connected. This results in a higher clustering coefficient for node j, similarly if observing
from the perspective of node i (nodes j and 1 are connected; and nodes j and 3 are connected, increasing the clustering coefficient of node i). Therefore,
both nodes i and j will have a higher tendency to be closer in case b compared with case a
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connect the two corresponding vertices. This is different
to our previous research [30] as it changes the meaning
of vertices from genes to beads with a higher resolution.
The clustering coefficient of a vertex in the complex net-
work is used to model the “clustering strength” of a
bead/vertex:

CCi ¼ 2ei
K i Ki−1ð Þ ð3Þ

where ei is the number of connected vertex pairs among
immediate (one edge away) neighboring vertices of the
target vertex i; and Ki is the number of immediate neigh-
boring vertices of the target vertex i [31].
However, we cannot arbitrarily set each bead’s “cluster-

ing strength” as its clustering coefficient in the complex
network because all beads form up a complex system
and the final value of every bead’s “clustering strength”
must be set in a way that the global system is optimized.
Therefore, we used clustering coefficient as the target
value and performed an optimization using the following
objective function:

argmin
Xn

i¼1
λ1 ai‐λ2CCið Þ2

þ
X

i; j;kð Þ∈PTλ3 ai‐akð Þ2 þ aj‐ak
� �2n o

ð4Þ

where the first part of the formula (before the first plus
sign) tries to assign “clustering strength” for every bead
with clustering coefficient as the target value.
The second part (after the first plus sign) in Eq. (4) is

related to a set PT, which contains all the triples consist-
ing of bead i, bead j, bead k, where

PT ¼ i; j; kð Þjpij > p0; pik > p0; pjk > p0
n o

ð5Þ

In this equation, pij is the Pearson’s correlation coeffi-
cient between the ith row and jth row in the normalized
Hi-C matrix, which are the Hi-C profiles between the
ith and jth beads with all other beads, respectively.
Therefore, a high value pij indicates that the ith and jth
beads are spatially close because these two beads have
similar Hi-C contact patterns with all other beads. In Eq.
(5), p0 is a threshold and is set to 0.95 in our research.
In this way, the second term of Eq. (4) tries to achieve
this: if any two beads in a triple have a high correlation
(e.g., > 0.95), their “clustering strength” values αi, αj, and
αk should be highly similar or the same. These triples
put important global constraints to the inferred “cluster-
ing strength” because the three beads in the triples may
not be adjacent but irregularly spread over the entire
chromosome. Multiple triples like that can improve the
accuracy of inferred distances as it adds the consider-
ation of correlations on normalized Hi-C contacts,

which have been found helpful to remove noise from
raw Hi-C contact matrices [30].
The λ values (i.e., λ1, λ2, and λ3) in Eq. (4) are weight

parameters tuned based on fluorescence in situ
hybridization (FISH) data (six pairs, three from chromo-
some 2 and the other three from chromosome 11) from
[32].
Eq. (4) is also subjected to the following two

constraints:

0≤αi≤1 i∈½1⋯n� ð6Þ
δij þ δik ≥δjk
δij þ δjk ≥δik
δik þ δjk ≥δij

j i− jj j ¼ 1; k≠i; k≠ j;
cij > 0; cik > 0; cjk > 0

8<
:

9=
; ð7Þ

The second constraint is the triangle inequality, where
δij is the inferred distance between beads i and j. It can
be found that this constraint contains a large number of
triangles consisting of triple beads (Additional file 1: Fig-
ure S1c). This tries to make the inferred distances δ be-
tween the three beads not violating triangle inequality.
These triangles have a regular pattern (i and j are adja-
cent; and k cannot be i or j) and more densely exist on
the chromosome, which is different from the triples in
Eq. (5). They both constrain the inferred distances but
from different perspectives.
Notice that by solving the above optimization problem,

we get the inferred distances δij, which is the optimized
Euclidean distances between every pair of beads. For
many studies, these optimized distances are all we need,
such as calculating the correlation between Euclidean
distances and Xist localization intensities [11]. To many
studies, the final purpose of reconstructing a 3D struc-
ture is to analyze it in a quantitative way; and the pair-
wise Euclidean distances are one of the most frequently
used structural features of a 3D structure.
We also assigned the inferred distances back to the

Hi-C complex network as the weight of edges. In this
way, the weighted Hi-C complex networks can directly
provide optimized Euclidean distance for all bead pairs
with no need to reconstruct the 3D structure.
If needed, based on the already optimized distances δij,

we still can reconstruct the 3D structure for
visualization. We applied another round of optimization
using metric multidimensional scaling (MDS):

argmin
X

cij>0

dij−δij
� �2

δij
2 þ

X
cij¼0

dij−R
� �2

R2 ð8Þ

where dij was the Euclidean distance between beads i
and j in the reconstructed 3D structure; R was used to
limit the distance between two beads when their number
of Hi-C contact equals zero (i.e, cij = 0). In this study, R
was set to the maximum wish distances in the weighted
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Hi-C complex network. The metric multidimensional
scaling algorithm tries to rearrange the 3D coordinate of
every bead to make the Euclidean distances dij close to
the optimized distances δij. Because the target distances
δij have already been optimized under multiple types of
constraints, no constraint is needed here, which makes
this process quick. The two optimization problems in
Eqs. 4 and 8 were solved by IPOPT [33].

Results
Relationships between inferred distances and Hi-C
contacts
The normalized Hi-C data were downloaded from
http://chromosome.sdsc.edu/mouse/hi-c/download.html.
Our method was performed on 20 chromosomes of
mouse embryonic stem (ES) cells at the resolution of 40
kb. The distribution of optimal α parameters for the
twenty chromosomes can be found in Additional file 1:
Figure S2.
First, we need to confirm that two beads with larger

αHiCNet parameters correspond to higher Hi-C contacts,
which result in smaller wish distances. For each chromo-
some, we extracted beads with αHiCNet parameters at top
10% and plotted the distribution of Hi-C contacts
between these beads; we did the same work for beads
with αHiCNet parameters at bottom 10%. The results
shown in Fig. 2 indicate that two beads with larger α
values (caused by higher clustering coefficients) have
more Hi-C contacts, which result in smaller wish dis-
tances. We can draw the same conclusion if we vary the
top-bottom level (for 5% see Additional file 1: Figure S3,
and 20% see Additional file 1: Figure S4). These observa-
tions explain our assumption that two beads with larger
clustering coefficients have much more enriched Hi-C
contacts than two beads with smaller clustering
coefficients.
Second, we also found that αij is positively correlated

with Hi-C contact cij (see Additional file 1: Figure S5)
when we only considered Hi-C contacts not equal to
zero and genomic distance between two beads (i.e., |i -
j|) larger than 0.1 times total number of beads on a
chromosome, which was following the same practice as
in [24].
Third, we explored the relationships between αij and

TADs. Here, TADs’ locations were called using domain-
caller [6]. We next extracted all bead pairs with the
number of Hi-C contacts in a small range [12, 12.5],
which resulted in 29,752 bead pairs. We assigned
intra-TAD or inter-TAD for each bead pair based on
whether two beads were within the same TAD. From the
definition of TADs, we expected that intra-TAD bead
pairs have larger αij values than inter-TAD pairs when
the Hi-C contacts were within the same small range, i.e.,
[12, 12.5]. Fig. 3 shows that intra-TAD bead pairs have

larger αij values that correspond to smaller wish dis-
tances, but if we have used a fixed value (i.e., α = 1/3) we
cannot distinguish the wish distance differences between
intra- and inter-TADs. Figure 3 also shows that with the
increase of genomic distances the αij values decrease; the
wish distances from HiCNet are more distinguishable
than those from α = 1/3.

Small-world properties of Hi-C complex networks
We constructed the Hi-C complex network for each
chromosome, e.g., the Hi-C network for chromosome 10
had 3164 vertices and 9492 edges; and the Hi-C network
for X-chromosome had 3651 vertices and 10,953 edges.
We explored whether Hi-C complex networks

belonged to one of the two most common types of com-
plex networks: scale-free networks and small-world
networks. As for scale-free networks, the degree distri-
bution follows a power law, indicating that a smaller
number of high-degree nodes have an important role in
the network. However, the degree distribution of Hi-C
complex networks does not follow a power law; and
most of nodes have an average number of degrees
(Fig. 4a).
A small-world network [34] is defined as having the

following properties: (1) a small average shortest path
length L; (2) a large clustering coefficient; (3) the average
path length L is proportional to the logarithm of the
number of nodes in the network. The 20 networks we
have created for mESC meet all three properties: (1) the
average path lengths of 20 chromosome networks are
within [1.5, 2.0] (Fig. 4b); (2) the average clustering coef-
ficients for the 20 chromosome networks are mostly
within [0.4, 0.6] (Fig. 4c); (3) with the increase of the
logarithm of the number of vertices in each network, the
average path length grows proportionally (Fig. 4b). There
are two chromosomes that are particularly interesting:
chromosome 19 that has the smallest path length but
has the largest average clustering coefficient and
X-chromosome that has the largest path length but
has the smallest average clustering coefficient. Future re-
search can be conducted to further study their network
topologies.

Evaluation of the inferred distances by FISH, RAP, and
ChIA-PET
First, we compared our inferred distances with FISH
data (six pairs, three from chromosome 2 and the other
three from chromosome 11) from [32] in mouse embry-
onic stem (ES) cells. Because parameters in the target
function (Eq. 4) were tuned based on this FISH data, it
was not surprising to see that our inferred distances
achieve a higher correlation with the FISH data (r =
0.81) compared to αfixed (r = 0.73). Both are better than
randomly selected α values (r = 0.59).
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Second, we used the localization intensities of a long
non-coding RNA Xist to evaluate our inferred distances.
Engreitz et al. [11] found that Xist transcripts are more
intensively bound to those DNA sites in spatial proxim-
ity to Xist locus but less intensively to the DNA sites
that were far away from Xist locus (significant correla-
tions found). We used RAP data to see whether our in-
ferred distances matched this finding. Our method
outperformed αfixed by a higher correlation with RAP
data (r = − 0.64, n = 906) than αfixed (r = − 0.59); and both
are better than random α values (r = − 0.36).
Third, we downloaded ChIA-PET dataset consisting of

23,835 protein-enabled chromatin interactions [28]. We
performed a filtering process that only kept the
long-range interactions with sequential distance larger
than or equal to 25 beads (each bead is 40 kb), resulting

in 163 pairs. After excluding the contacts for which opti-
mized distance could not be inferred because of missing
Hi-C values, we finally obtained 156 bead-pairs. The
ideal outcome would be that all the 156 ChIA-PET
interacting beads were having the same or highly similar
Hi-C inferred wish distances because these interactions
were all formed by the same biological mechanism, that
is, protein-protein interaction [28]. However, Fig. 5
shows that the Hi-C inferred distances using αfixed (i.e.,
1/3) are more scattered (spans three grids) compared to
the distances obtained by our αHiCNet, which mostly vary
within [0.5, 0.7] (Fig. 5a) and span two grids (Fig. 5b).
Additional file 1: Figure S6 shows the relationship be-
tween HiCNet-inferred distances and Hi-C contacts for
chromosome 9 with Hi-C contact <=50. These observa-
tions suggest that our inferred distances better fit the

Fig. 2 The distribution of Hi-C contacts between the beads with α parameters at top 10% and between the beads with α parameters at bottom 10%
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protein-enabled long-range interactions captured by
ChIA-PET.

Chromosomal 3D structure inference using Hi-C complex
networks
Based on the optimized distances, we reconstructed the
3D structures of all mouse ES cell chromosomes. We vi-
sualized the Hi-C contact heatmap and wish distances
heatmaps (both αfixed and αHiCNet) of a segment of
chromosome 10 (i.e., 100Mb – 112Mb), in which there
are about 12 TADs and one peak/loop (Fig. 6a). Notice
that the peak usually indicates enhancer-promoter inter-
action. The corresponding inferred distances are shown
in Fig. 6a for αfixed and αHiCNet, respectively. Both can in-
dicate TAD patterns, but the boundaries of TADs using
αHiCNet are much clearer and sharper compared to the
ones using αfixed. This indicates that our method can
better distinguish the beads in the domain boundary re-
gions. We also present the 40 kb high-resolution 3D
structure of the entire chromosome 10 (Fig. 6b),
zoomed-in chromosome 10 in part (Fig. 6c), and further

zoomed-in plot showing four TADs (Fig. 6d). Notice that
the peak highlighted in the 3D structure of Fig. 6d is corre-
sponding to the peak highlighted in the Hi-C heatmap in
Fig. 6a (the blue circle). These high-resolution structures
allow us to clearly illustrate how DNA loop is formed.
We also modeled the 3D structure of X-chromosome

with Xist transcript localization intensities (after one
hour of generating Xist transcripts) mapped onto the 3D
structure, as shown in Fig. 7. The high-resolution struc-
ture clearly shows that the X-chromosome has two
separate compartments as shown in Fig. 7b. This
matches the finding from another research [11], that is,
X-chromosome contains two mega-domains separated
by a boundary region. We also high-lighted lncRNA Xist
locus (Fig. 7c and d). Moreover, from the figure we can
observe that the regions surrounding the Xist locus are
more enriched with Xist transcripts, whereas the regions
further away from the Xist locus have less Xist transcript
localizations.
We further tested whether our inferred 3D structures

fitted Hi-C contact patterns. We generated a Hi-C

Fig. 3 a The distribution of αij values when the two beads are within the same and different TADs for bead pairs with Hi-C contacts in the range
[12, 12.5]. b The distribution of wish distances inferred from HiCNet and α = 1/3 when the two beads are within the same and different TADs for
bead pairs with Hi-C contacts in the range [12, 12.5]. c and d The distribution of αij values and wish distances for different genomic distance intervals
(i.e, [1, 5], (5, 10], (10, 15], (15, 20]) for bead pairs with Hi-C contacts in the range [12, 12.5]. Here the genomic distance means the number of beads
(each bead with 40,000 bp) away
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contact heatmap of X-chromosome at the resolution of
500 kb, which was normalized by KR method (Fig. 7e).
Plotting the heatmap for the whole chromosome at 40
kb resolution is hard to achieve. However, we did plot
40 kb resolution heatmaps for a segment of chromosome
10 (see Fig. 6). We then parsed the Euclidean distances
from the reconstructed 40 kb resolution 3D structure
and averaged them into 500 kb resolution. In this way,
we were able to draw the distance heatmap at 500 kb
resolution (Fig. 7f ). We performed the same procedure
and plotted the heatmaps of distances parsed from the

40 kb resolution 3D structures generated by PASTIS
(Additional file 1: Figure S7) and ChromSDE (Additional
file 1: Figure S8). From Fig. 7e and f, we observed that
our inferred 3D structure better matched the general
patterns in Hi-C contact heatmap.
We next compared the 3D structures we inferred with

those inferred from PASTIS (MDS) [21] and ChromSDE
[22]. We used different α values for PASTIS and
ChromSDE, but the optimal solutions were all obtained
using IPOPT [33] for direct comparison between differ-
ent 3D structures. We used the Kabsch algorithm [35]

Fig. 4 a The distribution of node degrees for chromosome 10 network; b The plot of number of nodes in each chromosome network against
the average path length; c The average clustering coefficients for the 20 chromosome networks in mESC

Fig. 5 a The distance distribution for two methods to determine α values (αfixed = 1/3 and αHiCNet) corresponding to different Hi-C contacts; b The
plot of the αfixed distances against the αHiCNet distances
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Fig. 6 a The two-dimensional heat map of Hi-C contacts of chromosome 10 in part (one peak marked with a blue circle and four topological
domains around the peak with numbers labelled); and the heat maps of αfixed inferred and αHiCNet inferred distances. b The three-dimensional
structure of chromosome 10 (resolution = 40 kb). c The three-dimensional structure of chromosome 10 in part (i.e., 100 Mb – 112Mb) corresponding to
the part in a. d The three-dimensional structure of the four topological domains highlighted in a

Fig. 7 a The 3D structure of X-chromosome with Xist transcript enrichment mapped. b The 3D structure of X-chromosome (without edges) consisting of
two compartments. c and d The interior structures of compartment 1 and compartment 2 respectively. e The normalized Hi-C heatmap of X-chromosome
at the resolution of 500 kb (the blue circle highlights the Xist locus). f The 500 kb resolution distance heatmap of X-chromosome parsed
from the reconstructed 3D structure with 40 kb resolution
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to minimize the root mean squared deviation (RMSD)
between two 3D structures. The results are shown in
Fig. 8a, indicating that the 3D structures from HiC-
Net are slightly different to those from PASTIS and
ChromSDE, which is reasonable because HiCNet as-
signs a distinct α value for each pair of beads,
whereas PASTIS and ChromSDE only use a single α
value for all bead pairs, resulting in different wish
distance distributions between HiCNet and the other
two methods. Moreover, we used another FISH data
set [36] (eight pairs of median values, four pairs from
chromosome 3, and four pairs from chromosome 11)
to determine which methods’ results are more con-
sistent with the new FISH data. Our average distances
parsed from 3D structures have a higher Pearson’s
correlation than those from PASTIS and ChromSDE
with α equal to different values (see Fig. 8b). Because
the FISH experiment was conducted at the reso-
lution of 500 kb and our 3D structures were recon-
structed at the resolution of 40 kb, here for each pair
of FISH data set (i.e., two segments on a chromo-
some, each with 500,000 bp) the average distance
parsed from 3D structures was the average value of
all parsed distances between any two beads found in
the two different segments.

Discussion
There are many studies that can reconstruct chromo-
somal 3D structures. However, the goal of reconstructing
chromosomal 3D structures is not only to visualize the
structure, but also to quantitively analyze the 3D struc-
tures. For many cases, the Euclidean distances between
all bead pairs are the only information needed for the
quantitative analysis on a 3D structure. In this type of
analysis, our optimized distances can directly be used
with no need to reconstruct a 3D structure (and then
parse the distances out from the 3D structure).
Moreover, after we assign the optimized distances as

the weights of edges back to the Hi-C complex net-
works, the topology of this type of networks has inte-
grated optimized Euclidean distances in the 3D space.
This would provide a new perspective of modeling and
studying chromosomal 3D structures. For example, it
would be interesting to cluster vertices based on net-
work topology (with weights considered) and then com-
pare the clusters in the networks with known genomic
locations of topologically associating domains. The
current definition of TADs is mostly based on 2D Hi-C
enrichment. However, the network-clustering approach
would be based on 3D structures although there is no
need to construct the 3D structure.

Fig. 8 a The Root Mean Squared Deviations between any two 3D structures from HiCNet, PASTIS, and ChromSDE when we choose different α
values for PASTIS and ChromSDE. b The Pearson’s correlation coefficients between a new FISH data set and the parsed average distances from
the 3D structures constructed by HiCNet, PASTIS and ChromSDE (with different α values)
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Furthermore, since our inferred distances are already opti-
mized, reconstructing a 3D structure from these distances
becomes faster and less complicated. Also, two rounds of
optimizations and the design of including FISH data in the
first optimization (some of Eq. 4’s parameters are tuned by
FISH data) make the reconstructed 3D structure more ac-
curate and better fits the FISH observations (this is not the
same as FISH data used to tune parameters in Eq. 4).
We notice that very limited chromosomal 3D structure

reconstruction methods are evaluated using ChIA-PET.
Therefore, we used two more measures to evaluate our in-
ferred wish distances compared with those converted from
α = 1/3. First, we found that when we only considered the
number of Hi-C contacts in the range [12, 12.5] our inferred
wish distances between beads within the same TAD are ap-
parently smaller than those from different TADs, which bet-
ter matches the property of TADs. Second, our inferred
wish distances have a higher correlation with Xist transcript
localization than those distances inferred from α = 1/3. To
evaluate the 3D structures we inferred, we used another
FISH data set; and the results show that our inferred 3D
structures are more consistent with the new FISH data set
than those generated by other two 3D-resconstruction
methods PASTIS and ChromSDE with different α values.

Conclusions
We developed a novel method to infer the wish distances
between DNA bead-pairs from Hi-C contacts. Our inferred
distances better fitted the definitions of TADs, FISH data,
and the localization patterns of Xist transcripts compared
to the distances generated by using a fixed parameter.
High-resolution 3D structures of chromosomes were built
based on the newly-inferred wish distances. The whole
process has been implemented as a tool named HiCNet.
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Additional file 1: Supplementary figures. Figure S1. (a) the converting
function (α = 1/3) from Hi-C contacts to spatial distances; (b) the Hi-C
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an illustration of triangle definition in HiCNet networks. Figure S2. The
distribution of α values for the twenty chromosomes in mES. Figure S3.
The distribution of Hi-C contacts between the beads with α parameters at
top 5% and between beads with α parameters at bottom 5%. Figure S4.
The distribution of Hi-C contacts between the beads with α parameters at
top 20% and between beads with α parameters at bottom 20%. Figure S5.
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chromosome and cij≠ 0. Figure S6. The plot of chromosome 9’s Hi-C
contacts against inferred wish distances. The blue lines indicate the inverse
relationship between Hi-C contacts (<= 50) and inferred wish distances.
Figure S7. The heatmap of the Euclidean distances parsed from the 40 kb
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to 0.35. The heatmap is in 500 kb, i.e., we average the distances of 40 kb
beads into 500 kb. Figure S8. The heatmap of the Euclidean distances
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