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Abstract

Background: RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data
can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses
of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis,
differential expression, and pathway analysis.

Results: iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor

packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species.
The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we
analyzed an RNA-Seq dataset of lung fibroblasts with Hoxal knockdown and revealed the possible roles of SP1 and

E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis
shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its
downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In
wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of
MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and
the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we
validated known molecular pathways and generated novel, testable hypotheses.

Conclusions: Combining comprehensive analytic functionalities with massive annotation databases, iDEP
(http//ge-lab.org/idep/) enables biologists to easily translate transcriptomic and proteomic data into actionable insights.
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Background

RNA sequencing (RNA-Seq) [1] has become a routine
technique for genome-wide expression analysis. At
increasingly reduced cost, library construction and se-
quencing can often be carried out following standard
protocols. For many researchers, especially those with-
out bioinformatics experience, the bottleneck to fully
leverage the power of the technique is how to translate
expression profiles into actionable insights. A typical
analytic workflow involves many steps, each requiring
different tools. It can be time-consuming to learn, tune
and connect these tools correctly. Another hurdle is the
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scattered annotation databases with diverse types of gene
IDs. To mitigate these issues, we aim to develop an ap-
plication that can greatly reduce the time and effort re-
quired for researchers to analyze RNA-Seq data.

RNA-Seq data analysis often starts with quality control,
pre-processing, mapping and summarizing of raw sequen-
cing reads. We assume these steps were completed, using
either the traditional Tuxedo Suite [2, 3] or alternatives
such as the faster, alignment-free quantification methods
[4, 5]. These tools can be used in stand-alone mood or
through platforms like GenePattern [6], Galaxy [7], and
CyVerse [8].

After read mapping, we often obtain a matrix of
gene-level read counts or normalized expression levels
(Fragments Per Kilobase Million, or FPKM). For such
tabular data, like DNA microarray data, R is a powerful
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tool for visualization and statistical analysis. In addition,
many dedicated R and Bioconductor [9] packages have
been developed to identify differentially expressed genes
(DEGs) and altered pathways. Some of the packages,
such as DESeq2 [10], are developed specifically for the
statistical modeling of read counts, and are widely used.
But these packages can be time-consuming, or even out
of reach for researchers without coding experience.

Several web applications have been developed to
analyze summarized expression data (Table 1). START
App (Shiny Transcriptome Analysis Resource Tool) is a
Shiny app that performs hierarchical clustering, principal
component analysis (PCA), gene-level boxplots, and dif-
ferential gene expression [11]. Another similar tool, De-
gust [12] can perform differential expression analysis
using EdgeR [13] or limma-voom [14] and interactively
plot the results. Other tools include Sleuth [15] and Shi-
nyNGS [16]. Non-Shiny applications were also devel-
oped to take advantage of the R code base. This includes
DEIVA [17] and VisRseq [18]. Beyond differential ex-
pression, several tools incorporate some capacity of
pathway analysis. For quantified expression data, ASAP
(Automated Single-cell Analysis Pipeline) [19] can carry
out normalization, filtering, clustering, and enrichment
analysis based on Gene Ontology (GO) [20] and KEGG
[21] databases. With EXPath Tool [22], users can per-
form pathway search, GO enrichment and co-expression
analysis. Several other Shiny-based tools, such as IRIS
[23], are also being developed. The development of these
tools in the last few years facilitated the interpretation of
RNA-Seq data.

In this study, we seek to develop a web application
with substantially enhanced functionality with (1) auto-
matic gene ID conversion with broad coverage, (2) com-
prehensive gene annotation and pathway database for
both plant and animals, (3) several methods for in-depth

Table 1 Comparison of applications for analyzing RNA-Seq
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EDA and pathway analysis, (4) access to web services
such as KEGG [21] and STRING-db [24] via application
programming interface (API), and (5) improved reprodu-
cibility by generating R scripts for stand-alone analysis.

We used iDEP to analyze two example datasets and gen-
erate all the figures and tables in this paper except Table 1
and Fig. 1. We first extensively analyzed a simple RNA-Seq
dataset involving small interfering RNA (siRNA)-mediated
Hoxal knockdown in human lung fibroblasts [3]. We iden-
tified the down-regulation of cell-cycle genes, in agreement
with previous studies. Our analyses also reveal the possible
roles of E2F1 and its target genes, including microRNAs, in
blocking G;/S transition, and the upregulation of genes
related to cytokines, lysosome, and neuronal parts. The sec-
ond dataset was derived from an experiment with a factor-
ial design to study the effect of ionizing radiation (IR) on
mouse B cells with and without functional p53 [25]. In
addition to correctly identifying p53 pathway and the en-
richment of p53 target genes, we also found the
p53-independent effects, including the regulation of ribo-
some biogenesis and non-coding RNA metabolism, and ac-
tivation of c-MYC. These examples show that users can
gain insights into both molecular pathways and gene regu-
latory mechanisms.

Results

We developed an easy-to-use web application for in-depth
analysis of gene expression data. iDEP (integrated Differ-
ential Expression and Pathway analysis) encompasses
many useful R and Bioconductor packages, vast annota-
tion databases, and related web services. The input is a
gene-level expression matrix obtained from RNA-seq,
DNA microarray, or other platforms. Main functionalities
include (1) pre-processing, (2) exploratory data analysis
(EDA), (3) differential expression, and (4) pathway analysis
and visualization.

START App Degust ShinyNGS DEIVA VisRseq ASAP EXPath Tool IRIS iDEP
Heatmap O O O O O O
PCA/MDS 0 ¢) ) o] ) ¢) ¢)
Clustering of genes 0 o] 0 0
Volcano/MA Plot O 0] @) @) 0 0
Single gene plot @) 0 0 @)
Diff. gene expression 0 0 0 (@) @) 0] @)
Co-expression O O
Stand-alone R code @) @) @) @)
Pathway analysis KEGG KEGG human& mouse O O
Gene ID conversion )
API to KEGG, STRING-db ¢)
Complex models O 0]

Note: “O” indicates the functionality is included in a tool.
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Fig. 1 iDEP workflow and functional modules

Leveraging many existing R packages (see Fig. 1) and
the power of the Shiny framework, we developed iDEP
to enable users to easily formulate new hypotheses from
transcriptomic datasets. We also batch downloaded a
massive amount of gene annotation information for 220
species (See Additional file 1: Table S1) from Ensembl
[26, 27] Ensembl Plants [28], and Ensembl Metazoa. In
addition, comprehensive pathway databases for human
(Table 2), mouse [29], and arabidopsis [30] were also
compiled from many sources to support in-depth path-
way analyses.

Our goal was to develop an intuitive, graphical, and
robust tool so that researchers without bioinformatics
experience can routinely and quickly translate expres-
sion data into novel hypotheses. We also wanted to
make an open system where users can download inter-
mediate results so that other tools can be used. Also,
users can upload custom pathway databases for unanno-
tated species. For experienced bioinformaticians, it can
serve as a tool for preliminary analysis as it circumcises
the need for many tedious tasks such as converting gene
IDs and downloading software packages and annota-
tions. These users can also download customized R
scripts and related data files so that the analysis can be
reproduced and extended.

Use case 1: A simple experiment on Hoxa1l knockdown
We first analyzed a simple dataset studying the effect of
Hoxal knockdown by siRNA in human lung fibroblasts
[3]. With 3 replicates for each of the two biological sam-
ples, this RNA-Seq dataset was used as example data for
the Cuffdiff2 paper [3]. Available as Additional file 2, the
read count data was previously used in a tutorial for
pathway analysis [31]. A flowchart for the analysis can
be found in Additional file 3: Figure S1.

Pre-processing and EDA

After uploading the read count data, iDEP correctly recog-
nized Homo sapiens as the likely species, based on the
number of matched genes IDs. After ID conversion and
the default filter (0.5 counts per million, or CPM, in at
least one sample), 13,819 genes left. A bar plot of total
read counts per library is generated (Fig. 2a), showing
some small variation in library sizes. We chose the regu-
larized log (rlog) transformation implemented in the
DESeq?2 package, as it effectively reduces mean-dependent
variance (Additional file 3: Figure S2). Distribution of the
transformed data is shown in Fig. 2b-c. Variation among
replicates is small (Fig. 2d).

iDEP also enables users to examine the expression
level of one or more genes. Using “Hoxa” as a keyword,
we obtained Fig. 3a, which shows that Hoxal expression
level is reduced, but not abolished, in response to
siRNA-mediated knockdown of Hoxal. Noticeably, ex-
pression of other family members, especially Hoxa2, 4,
and 5, also decrease. As these genes have similar mRNA
sequences, it is unclear whether this is caused by
off-target effects of the siRNA or ambiguous mapping of
RNA-Seq reads. Figure 3b, obtained by using “E2F” as a
keyword, shows the down-regulation of E2F1.

We rank genes by their standard deviation across all sam-
ples and use the top 1000 genes in hierarchical clustering.
The result in Fig. 4a suggests that Hoxal knockdown in lung
fibroblast cells induce a drastic change in the expression of
hundreds of genes. Variations among technical replicates are
minimal. These observations can also be confirmed by the
correlation matrix (Additional file 3: Figure S3) and k-means
clustering (Additional file 3: Figure S4).

PCA plot using the first and second principal compo-
nents is shown in Fig. 4b. There is a clear difference be-
tween the Hoxal knockdown and the control samples,
along the first principal component that explains 93% of



Ge et al. BMC Bioinformatics

(2018) 19:534

Page 4 of 24

Table 2 Gene set databases collected for enrichment analysis in human. The last column gives the version of the database,
secondary source, or the date of access

Type Subtype/Database name Ref. # Gene Sets Source & Version
Gene Ontology Biological Process (BP) [100] 15,796 Ensembl 92
Cellular Component (CQ) 1916 Ensembl 92
Molecular Function (MF) 4605 Ensembl 92
KEGG KEGG [101] 327 Release 86.1
Curated Biocarta [102] 249 Whichgenes 1.5 [103]
EHMN [104] 55 GeneSetDB [89]
Panther [105] 168 1.04
HumanCyc [106] 240 Pathway Commons V9 [107]
INOH [108] 576 Pathway Commons V9
NetPath [109] 27 Pathway Commons V9
PID [110] 223 Pathway Commons V9
PSP [111] 327 Pathway Commons V9
Recon X [112] 2339 Pathway Commons V9
Reactome [113] 2010 V64
WikiPathways [114] 457 June 10, 2018
TF.Target CircuitsDB [115] 829 V2012
ENCODE [116] 181 V70.0
Marbach2016 [117] 628 V1.0
RegNetwork [118] 1400 July 1, 2017
TFacts [119] 428 Feb. 2012
ITFP [120] 1926 tftargets May,2017
Neph2012 [121] 16,476 tftargets May,2017
TRED [122] 131 tftargets May,2017
TRRUST [123] 793 V2
miRNA.Targets CircuitsDB [115] 140 V. 2012
MicroCosm [124] 44 GeneSetDB
miRDB [125] 2588 V50
miRTarBase [126] 2599 V7.0
RegNetwork [118] 618 V. 2015
TargetScan [127] 219 V7.2
MSigDB.Computational Computational gene set [128] 858 MSigDB 6.1
MSigDB.Curated Literature [86] 3465 MSigDB 6.1
MSigDB.Hallmark hallmark [39] 50 MSigDB 6.1
MSigDB.Immune Immune system [129] 4872 MSigDB 6.1
MSigDB.Location Cytogenetic band [86] 326 MSigDB 6.1
MSigDB.Motif TF and miRNA Motifs [49] 836 MSigDB 6.1
MSigDB.Oncogenic Oncogenic signatures [86] 189 MSigDB 6.1
PPI BioGRID [130] 15,542 34.160
CORUM [131] 2178 Feb. 17,2017
BIND [132] 3807 Pathway Commons V9
DIP [133] 2630 Pathway Commons V9
HPRD [134] 7141 Pathway Commons V9
IntAct [135] 11,991 Pathway Commons V9
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Table 2 Gene set databases collected for enrichment analysis in human. The last column gives the version of the database,
secondary source, or the date of access (Continued)

Type Subtype/Database name Ref. # Gene Sets Source & Version
Drug MATADOR [136] 266 GeneSetDB
SIDER [1371 473 GeneSetDB
STITCH [138] 4616 GeneSetDB
T3DB [139] 846 GeneSetDB
SMPDB [140] 699 Pathway Commons V9
CTD [141] 8758 Pathway Commons V9
Drugbank [142] 2563 Pathway Commons V9
Other CancerGenes [143] 23 GeneSetDB
MethCancerDB [144] 21 GeneSetDB
MethyCancer [145] 54 GeneSetDB
MPO [146] 3134 GeneSetDB
HPO [147] 6785 May, 2018
Total: 140,438
p
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the variance. Plot using multidimensional scaling (MDS),
and t-SNE [32] also show a similar distribution of the
samples (Additional file 3: Figure S5). We can choose to
conduct pathway analysis using PGSEA [33, 34] by treat-
ing the loadings of the principal components as expres-
sion values. As suggested by Additional file 3: Figure S6,
the first two components are related to cell cycle
regulation.

Differentially expressed genes (DEGs)
With the DESeq2 package, we identified 907 upregulated
and 1097 downregulated genes (see Additional file 1:

Table S3) using a threshold of false discovery rate (FDR)
< 0.1 and fold-change > 2. The volcano plot (Fig. 5a) and
the MA plot (Fig. 5b) show that Hoxal knockdown leads
to a massive transcriptomic response. Plotly-based inter-
active versions of these plots are also available, where
users can zoom in and mouse over to see individual
genes (Fig. 5¢). A quick scan at the top genes ranked by
the absolute values of fold-change (FCs) tells us that
Hoxal knockdown induces cytokines (IL1B, IL24).

The up and down-regulated genes are then subjected
to enrichment analysis based on the hypergeometric dis-
tribution. Many different types of genes sets listed in
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Fig. 4 Hierarchical clustering (a) and PCA analyses (b) indicate the substantial difference in thousands of genes induced by Hoxal knockdown.
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Table 2 can be used to test various hypotheses. The GO
Biological Process terms enriched in DEGs are shown in
Table 3. Upregulated genes are related to regulation of cell
proliferation, locomotion, and response to endogenous stim-
uli. This is perhaps the cell’s response to injected siRNAs.
The downregulated genes are significantly enriched with cell
cycle-related genes (FDR < 2.6 x 10~ *"). The effect of Hoxal
knockdown on cell cycle was reported and experimentally
confirmed in the original study [3]. Cell cycle analysis re-
vealed that loss of Hoxal leads to a block in G; phase [3].

As many GO terms are related or redundant (i.e, cell cycle
and cell cycle process), we provide two plots to summarize
such correlation [35]. We first measure the distance among
the terms by the percentage of overlapped genes. Then this
distance is used to construct a hierarchical clustering tree
(Fig. 6a) and a network of GO terms (Fig. 6b). Both plots
show that the enriched terms are distinct in the two gene
lists. The down-regulated genes are overwhelmingly in-
volved in cell cycle. The upregulated genes are related to 4
related themes: cell proliferation, signaling, response to or-
ganic substance, and cell migration, possibly in reaction to
the injected siRNAs.

Choosing GO cellular component, we find that Hoxal
knockdown suppresses genes that code for the spindle,
cytoskeleton and chromosomal parts (Additional file 3:
Figure S7). As Hoxal knockdown blocks G;/S transition
[3], a smaller number of cells are in the S (synthesis)
phase, leading to the reduction of proteins related to the
spindle and chromosomal parts. Hoxal knockdown also
induces genes related to plasma membrane, neurons and
synapses (Additional file 3: Figure S7). This unexpected
result is consistent with Hoxal’s role in neuronal differ-
entiation [36, 37]. Polymorphisms of this gene are asso-
ciated with cerebellar volume in humans [38]. Hoxal
may have different functions in various organs across de-
velopmental stages.

Choosing KEGG pathway, we confirm the overrepre-
sentation of cell cycle-related genes in downregulated

genes (Additional file 3: Figure S8). For up-regulated
genes, we detect cytokine-cytokine receptor interaction
(CCRI) pathway (FDR< 1.3 x 107'%). “MSigDB.Curated”
gene sets contain pathways from various databases as
well as published lists of DEGs from previous expression
studies [39]. As shown in Additional file 3: Figure S9,
the most significant are oligodendrocyte differentiation
and several cell-cycle related gene sets. As suggested by
a meta-analysis of published gene lists [40], cell-cycle re-
lated expression signature is frequently triggered by diverse
cellular perturbations [41]. We uncovered similarity of our
expression signature with previously published ones.

Using the STRINGdb package, iDEP can analyze the lists
of DEGs via the STRING API [24] for enrichment analysis
and the retrieval of PPI networks. The enrichment analysis
led to similar results (Additional file 1: Table S4) to those
obtained using the internal iDEP gene sets. In addition,
STRING detected that the Helix-loop-helix DNA-binding
domain is overrepresented in proteins coded by the 907 up-
regulated genes, while the Tubulin/FtsZ family, GTPase do-
main is enriched in the 1097 down-regulated genes
(Additional file 1: Table S5). Figure 7 is the network of PPIs
among the top 20 upregulated genes. The highly connected
network includes chemokine ligands 1 and 3 (CXCL1 and
CXCL3), as well as interleukin 24 (IL24), suggesting the im-
mune response caused by injected siRNA. A link to an
interactive, richly annotated version of this network on the
STRING website is also available.

iDEP can also reveal gene regulatory mechanisms.
Using the transcription factor (TF) target gene sets in
enrichment analyses, we can obtain Table 4, which sug-
gest that target genes of SP1 (FDR<9.80 x 10~ **) and
E2F factors (FDR<1.1x 10" '®) are overrepresented in
down-regulated genes. E2F factors are regulators of cell
cycle [42]. E2F1 promotes G;/S transition [43] by regula-
tion many genes, including itself. SP1 binding sites were
identified in cell-cycle related genes such as Cyclin D1
(CCD1) [44]. SP1 is a G1 phase specific TF [45]. The
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Table 3 Enriched GO terms in up and down-regulated genes
Direction Pathways nGenes adj.Pval
Down Cell cycle 259 4.50E-46
Regulated Cell cycle process 207 1.70E-42
Mitotic cell cycle 169 5.60E-38
Chromosome segregation 92 2.80E-35
Mitotic cell cycle process 145 2.00E-33
Sister chromatid segregation 72 5.20E-33
Cell division 118 5.20E-33
Nuclear chromosome segregation 80 2.20E-30
Nuclear division 86 5.60E-26
Organelle organization 350 1.20E-24
Mitotic nuclear division 65 3.50E-24
Organelle fission 88 5.80E-24
Cytoskeleton organization 159 1.70E-23
Cell cycle phase transition 98 2.60E-21
Mitotic sister chromatid segregation 45 4.00E-21
Up Cell surface receptor signaling pathway 258 3.40E-25
Regulated Regulation of cell proliferation 171 8.20E-23
Cell proliferation 195 740E-22
Regulation of signaling 265 3.80E-21
Response to organic substance 259 1.20E-20
Regulation of cell communication 260 1.20E-20
Locomotion 165 1.20E-19
Regulation of signal transduction 239 1.30E-19
System development 332 1.00E-18
Regulation of cellular component movement 100 3.70E-17
Regulation of response to stimulus 291 8.20E-17
Response to endogenous stimulus 143 1.20E-16
Response to chemical 319 1.70E-16
Cellular response to organic substance 211 1.80E-16
Cell migration 131 2.10E-16

interaction of E2F1 and SP1 proteins mediate cell cycle
regulation [46]. The upregulated genes are enriched with
target genes of NF-kB (FDR<4.9x 10" ") and FOXO3
(FDR <4.9 x 10" %), known regulators of the immune re-
sponse [47, 48].

The Motif gene sets from MSigDB are derived from [49]
and contain sets of genes sharing TF binding motifs in gene
promoters and microRNA target motifs in 3" untranslated
regions (UTRs). Using this gene set, we again detect the en-
richment of E2F motifs in promoters of downregulated
genes (Additional file 1: Table S16). We also detected over-
representation of a “GCACTTT” motif in 3’ UTRs of upreg-
ulated genes. This motif is targeted by several microRNAs,
namely miR-17-5P, miR-20a, miR-106a. Cloonan et al
showed that miR-17-5P targets more than 20 genes involved
in the Gy/S transition [30]. Trompeter et al. provided

evidence that miR-17, miR-20a, and miR-106b enhance the
activities of E2F factors to influence G;/S transition [50].
miR-106b resides in the intron of Mcm7 along the sense
direction. Mcm?7 is an E2F1 target gene that is also down-
regulated by Hoxal knockdown (see Fig. 8a). Petrocca et al.
showed that E2F1 regulates miR-106b, which can conversely
control E2F1 expression [51]. Thus, it is possible that Hoxal
knockdown reduces E2F1 expression (see Fig. 3b) and its
target genes, including Mcm?7, which hosts miR-106b. We
can speculate that downregulated miR-106b, in turn, causes
the increases in the expression of its target genes. Leveraging
the comprehensive pathway databases, iDEP enables re-
searchers to develop new hypotheses that could be further
investigated.

For many species, predicted TF target genes are not
available. We downloaded 300 bp and 600 bp promoter
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sequences from ENSEMBL and scanned them with a
large collection of TF binding motifs [52]. As shown in
Table 5, the promoters of DEGs are overrepresented
with many G-rich motifs bound by E2F and other factors
such as TCFL5 and SP2. We compared the best possible
scores for each TF and promoter pair and run t-tests to
compare these scores. Further study is needed to valid-
ate this approach.

For human (Table 2), mouse [29] and Arabidopsis
[53], we also include predicted target genes for many

miRNAs from multiple sources. Using these gene sets,
we detected significant enrichment (Table 6) of
miRNA-193b, miR-192, and miR-215 target genes
among the down-regulated genes. miR-193b was shown
to suppress cell proliferation and down-regulate CCND1
[54]. Proposed as biomarkers of several cancers,
miR-192 also inhibit proliferation and can cause cell
cycle arrest when overexpressed [55]. miR-215 shares
many target genes with miR-192 and are also downregu-
lated in cancer tissues [56]. These miRNAs may play a
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STRING website
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Table 4 Enriched transcription factor (TF) binding motifs

Direction Pathways nGenes adj.Pval
Down Tftargets:TF Target SP1 475 9.80E-23
Regulated i qetsTF Target £2F-4 65 9.80E-23
TFactS E2F1 43 1.10E-16
TRRUST:TF Target E2F1 37 9.70E-15
RegNetwork:TF Target E2F4 127 1.20E-14
RegNetworkTF Target E2F1 208 1.00E-13
TFactS E2F4 20 1.30E-12
RegNetwork:TF Target NFYA 154 4.60E-09
TFactS E2F3 15 1.80E-08
Tftargets:TF Target TEAD1 33 1.90E-08
Tftargets:TF Target AP1 74 2.30E-08
TFactS E2F2 14 2.60E-08
Tftargets:TF Target TGIF1 34 3.30E-08
Tftargets:TF Target ZNF219 60 4.50E-08
Tftargets:TF Target HF1H3B 101 5.00E-08
Up Tftargets:TF Target NFKB 54 4.90E-09
Regulated 1, s Foxo3 21 4.90E-09
Tftargets:TF Target NFKB1 34 7.30E-09
TRRUST:TF Target NFKB1 42 7.30E-09
TFactS CTNNB1 40 4.40E-08
Tftargets:TF Target FOXJ1 22 2.00E-07
Tftargets:TF Target POU3F2 35 4.00E-07
TRRUST:TF Target RELA 38 4.20E-07
Tftargets:TF Target FOXO3 28 4.80E-07
TRRUST:TF Target SP1 50 4.80E-07
TRRUST:TF Target JUN 25 5.20E-07
TRRUST:TF Target EGR1 19 6.10E-07
Tftargets:TF Target SP1 39 1.20E-06
Tftargets:TF Target FOXJ3 25 1.20E-06
Tftargets:TF Target FOXL1 24 1.20E-06

role in the regulation of cell
knockdown.

cycle upon Hoxal

Pathway analysis

Instead of using selected DEGs that are sensitive to arbi-
trary cutoffs, pathway analysis can use fold-change
values of all genes to identify coherently altered path-
ways. We used the GAGE (generally applicable gene set
enrichment) [57] as a method and KEGG as gene sets.
The results (Additional file 1: Table S6) is similar to
those from a previous analysis by Turner in an online
tutorial [31] and also agrees with our enrichment ana-
lysis based on DEGs. For each of the significant KEGG
pathways, we can view the fold-changes of related genes
on a pathway diagram using the Pathview Bioconductor
package [58]. Many cell cycle genes are marked as green in
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Fig. 8, indicating reduced expression in Hoxal-knockdown
samples. We also detected upregulation of genes related to
CCRI, arthritis, and lysosome. Many CCRI related genes
are up-regulated (Additional file 3: Figure S10). Not de-
tected using DEGs, lysosome-related genes are mostly up-
regulated (Additional file 3: Figure S11). Injected siRNAs
might be degraded in the lysosome.

By changing the gene sets database for pathway ana-
lysis, we can gain further insights. Using MSigDB.Motif
gene sets, we can verify the enrichment of E2F binding
motifs (Additional file 1: Table S7). For non-KEGG gene
sets, heatmaps are created to show the expression of
genes in significant gene sets. Figure 9a shows part of
such a plot, highlighting genes that share the
“SGCGSSAAA” motif bound by E2F1. Note that E2F1
gene itself is included in the figure, as it binds to its own
promoter and forms a positive feedback loop [43]. The
downloaded expression data indicate that E2F1 is down-
regulated by more than 3-fold in Hoxal knockdown
samples (see Fig. 3b). Upon Hoxal knockdown, down-
regulation of E2F1 and downstream genes, including
microRNAs, may be part of the transcription program
that blocks G;/S transition.

Users can use many combinations of methods and
gene sets to conduct pathway analysis. For example,
using PGSEA on KEGG pathways yielded Fig. 9a and b,
again confirming previous results on suppressed cell
cycle genes and induced lysosome and CCRI related
genes. Using the MSigDB.Motif gene sets, we can also
confirm the E2F1 binding motifs (Fig. 9). The most
highly activated gene sets are related to miR-17-5p,
miR-20a, miR106a,b and so on (Fig. 9c), which agrees
with enrichment analysis using just gene lists.

Some pathways can be attenuated by upregulating
some of its associated genes while downregulating
others. To detect such pathways, we can use the ab-
solute values of fold changes in pathway analysis. This
is achieved by checking the box labeled “Use absolute
values of fold changes for GSEA and GAGE.” Instead
of detecting up or down-regulated pathways, the re-
sults show which pathways are more regulated. As
shown in Additional file 1: Table S8, while the ex-
pression of ribosome related genes is less variable
upon Hoxal knockdown, genes related to CCRI are
highly regulated.

The expression of neighboring genes can be correlated
due to mechanisms such as super-enhancers [59], 3D chro-
matin structure [60], or genomic gain or loss in cancer. To
help users detect such correlation, we use ggplot2 [61] and
Plotly to interactively visualize fold-changes on all the chro-
mosomes (Fig. 10a). Based on regression analysis, the
PREDA package [62] can detect statistically significant
chromosomal regions with coherent expression change
among neighboring genes. Figure 10b shows many such
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regions in response to Hoxal knockdown. Detailed infor-
mation obtained from downloaded files (Additional file 1:
Table S9) suggests, for example, a 4.3 Mbps region on
Chr.1q31 contains 6 upregulated genes (PRG4, TPR,
Clorf27, PTGS2, PLA2G4A, and BRINP3).

To further validate our parameterization of PREDA,
we analyzed DNA microarray data (Additional file 4) of
thymus tissues from patients with Down syndrome [63].
We detected large, upregulated regions on chromosome
21 (Additional file 3: Figure S12), as expected. Even
though PREDA analysis is slow and has low-resolution
due to the use of gene-level expression score, it might be
useful in cancer studies where localized expression
change on the chromosome can happen.

To improve reproducibility, iDEP generates custom R
code and R Markdown code based on user data and
choices of parameters (Additional files 5, 6 and 7). Users
with some R coding experience should be able to re-run

most analyses by downloading the related annotation and
gene sets used by iDEP. An example is shown here [64].

Use case 2: p53’s role in response to ionizing radiation
Tonelli et al. [25] used RNA-Seq to study the effect of
whole-body ionizing radiation (IR) on the mouse with or
without p53. B cells and non-B cells were isolated from
mouse spleen after treatment. We analyzed the B cell data
involving two genotypes (p53 wildtype and p53 null) with
mock or IR treatment, a typical 2 x 2 factorial design. The
read count and experimental design files are available as
Additional files 8 and 9. A converted, filtered version of
this dataset is incorporated into iDEP as a demo data.
With this dataset, we demonstrate how users can eas-
ily generate hypothesis on molecular pathways and gene
regulatory mechanisms through three steps: (1) enrich-
ment analysis of k-means clusters, (2) enrichment
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Table 5 TF motifs enriched in gene promoters (300 bp) of up- or
down-regulated genes

List Motif TF TF family FDR
Down GGCGGGAA E2F4  EOF 340E-14
Regulated - rceac MBD2  MBD 7.70E-14
CACGTG TCFLS  bHLH 230E-11
GGGGGCGGGGE P2 CH2ZF  3A40E-11
GGGCGGGAA E2F6  E2F 8.60E-10
GTGGGCGTGGC SP6 CH2ZF  2.10E-09
TGCGGG ZBTB1  C2H2ZF  220E-08
GGGCGTG KLF7  C2H2ZF  290E-08
ATGCGTGGGCGG EGR4  C2H2ZF  150E-07
CACAGCGGGGGGTC  ZIC4 CH2ZF  1.80E-07
Up GGGGGCGGGGE sP2 CH2ZF  220E-06
Regulated - saaaaGGCC PATZI  C2H2ZF  240E-06
TGCGGG ZBTB1  C2H2ZF  260E-06
GGGGGGT ZC5 CH2ZF  1.40E-04
GGCCGGAG MBD2  MBD 1.50E-04
CACGTG TCFL5  bHLH 1.50E-04
CACAGCGGGGGGTC  ZIC4 C2H2ZF  1.10E-03
GGGGCCCAAGGGGG  PLAG!  C2H2ZF  1.10E-03
GTGGGCGTGG sP8 CH2ZF  140E-03
GTGGGCGTGGC sP6 CoH2ZF  230E-03

Table 6 Enriched miRNA target gene sets
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analysis of the lists of DEGs, and (3) pathway analysis
using fold-changes values of all genes.

Pre-process and EDA of p53 dataset

We noticed reduced total reads for wildtype samples
treated with IR (Fig. 11a). While this may be caused by
biology, but biased sequencing depth presents a confound-
ing factor, that has not been discussed widely. To quantify
such biases, iDEP routinely performs ANOVA analysis of
total read counts across sample groups. For this example,
uneven read counts are detected (P =0.047) and a warn-
ing is produced.

EDA shows that IR treatment led to the changes in
thousands of genes. Based on the distribution of vari-
ances (Fig. 11b), we choose the top 2500 genes for clus-
tering analysis. Hierarchical clustering (Additional file 3:
Figure S13) shows the substantial differences between
treated and untreated samples. It also shows the patterns
of different groups of genes and the variations among
some replicates of treated wild-type cells (wt_IR).

We then used k-means clustering to divide the top
2500 genes into groups. Based on the within-group sum
of squares plot (Additional file 3: Figure S14) as a refer-
ence, we chose a slightly larger k =9. Figure 12 shows
the 9 gene clusters and the enriched GO terms. Details
are available in Additional file 1: Tables S10 and S11.

Direction adj.Pval nGenes Pathways

Down 340E-45 162 MiRTarBase:miRNA Target hsa-miR-193b-3p

Regulated 150E-41 170 MiRTarBase:miRNA Target hsa-miR-192-5p
4.20E-41 145 MiRTarBase:miRNA Target hsa-miR-215-5p
6.20E-18 162 MiRTarBase:miRNA Target hsa-miR-124-3p
3.30E-08 82 MiRTarBase:miRNA Target hsa-miR-34a-5p
9.40E-07 66 MiRTarBase:miRNA Target hsa-miR-7-5p
940E-07 58 MiRTarBase:miRNA Target hsa-miR-375
3.00E-06 85 MiRTarBase:miRNA Target hsa-miR-24-3p
4.60E-06 89 MiRTarBase:miRNA Target hsa-miR-1-3p
6.80E-05 84 MiRTarBase:miRNA Target hsa-miR-155-5p

Up 6.00E-16 206 MiRTarBase:miRNA Target hsa-miR-335-5p

Regulated 2.30E-12 99 RegNetwork:miRNA Target hsa-miR-144
1.50E-10 81 RegNetwork:miRNA Target hsa-miR-29c
3.30E-10 81 RegNetwork:miRNA Target hsa-miR-29b
3.30E-10 100 RegNetworkmiRNA Target hsa-miR-93
3.90E-09 72 RegNetwork:miRNA Target hsa-miR-29a
6.20E-09 94 RegNetwork:miRNA Target hsa-miR-30e
6.20E-09 101 RegNetwork:miRNA Target hsa-miR-340
6.20E-09 67 RegNetwork:miRNA Target hsa-miR-519d
5.70E-08 46 RegNetwork:miRNA Target hsa-miR-17-5p
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Genes in clusters B and I show similar responses to
IR across genotypes. Strongly enriched in genes re-
lated to the immune system (FDR<3.65x 10" 18y
cluster B are downregulated by IR in both cell types.
The immune-suppressive effects of radiation [65] are
clearly p53-independent. Induced by IR in both wild-
type and Trp53~'~ cells, cluster I genes are enriched
in ribosome biogenesis but with much lower level of
significance (FDR <2.25 x 10~ °).

On the other hand, genes in clusters A, C, and D are
specific to the wild-type cells. Cluster A contains 13 genes
that code for histone proteins and are involved in nucleo-
some assembly (FDR < 1.66 x 10~ ™). Genes in Clusters C
and D are induced by IR only in B cells with p53, but the
former is more strongly upregulated. As expected, cluster
C is related to the p53 pathway (FDR < 1.38 x 10~ '°) and
apoptosis (FDR <3.59 x 10™°). It is enriched with 15 p53
target genes like Mdm2 (FDR < 3.53 x 10" '®). Cluster D
genes are related to the regulation of cell proliferation and
cell cycle arrest, representing further downstream of the
transcriptional cascade of p53 signaling.

Genes in cluster H are more highly upregulated in
Trp537~ B cells than wildtype cells. It is overrepresented
with non-coding RNA (ncRNA) processing (FDR < 3.25 x
10~%), ribosome biogenesis (FDR < 5.53 x 10~ *%), and pro-
tein folding (FDR < 2.23 x 10™'¢). Many of these genes code
for proteins in the nucleus and mitochondrion. Signifi-
cant enrichment of 7 c-Myc target genes is observed
(FDR < 5.09 x 10" 7). Many of these enrichment results
will be further validated in enrichment analysis of
DEGs and pathway analysis. Enrichment analysis of the
k-Means clusters provides an opportunity to gain
insight into the molecular pathways underlying differ-
ent patterns of gene expression.

Identifying DEGs in the p53 dataset

To identify genes induced by IR in both cell types, users
can use pair-wise comparisons among the 4 sample
groups. Alternatively, we can construct linear models
through the GUI Here we use the following model:

Expression ~ p53 + Treatment + p53:Treatment,

where the last term represents the interaction between
genotype and treatment, capturing the additional effects
of p53 in IR response. It is important to set the reference
levels for factors in a model. Here we set the null
(Trp537"") as a reference level for the factor “p53” and
mock for the factor “Treatment”. More details about
statistical models is available [66].

With FDR <0.01 and fold-change >2 as cutoffs, we
used DESeq2 to identify DEGs (Fig. 13a and b). Without
treatment, the two cell types have similar transcription
profiles, with few DEGs. But even in Trp53~"" cells, IR
caused the upregulation of 1570 genes, 469 of which is
also upregulated in p53 wildtype B cells (see Venn dia-
gram in Fig. 13c). PPI networks for the top up- and
down-regulated genes in wildtype cells are shown in
Additional file 3: Figures S15 and S16, respectively.

To further understand the molecular pathways, we
perform enrichment analysis of the 10 gene lists
(Additional file 1: Table S12) associated with 5 compari-
sons. We focus on two comparisons (1) “IR-mock”
representing the baseline response of IR in mutant cells
without p53, and (2) “I:p53_wt-Treatment_IR”, the inter-
action term capturing the additional effect of p53 com-
pared to the baseline response.

For the first comparison, Additional file 3: Figure S17
shows IR induced DEGs in mutant cells. The 1570
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upregulated genes are related to non-coding RNA (ncRNA)
metabolic process (FDR < 1.33 x 10~ ”°), ribosome biogenesis
(FDR <254 x 10”%), and translation (FDR < 3.03 x 10™%?).
This enrichment profile is similar to cluster H derived from
the k-Means clustering, as the two lists capture the same
group of genes. The upregulated genes are surprisingly co-
herent in function. For example, 219 (14%) can be found in
the nucleus, 286 (18%) is related to the mitochondrion, and,
most significantly, 407 (26%) is RNA-binding (FDR < 3.54 x
10 3¥). The 1570 upregulated genes contain 7 MYC target
genes (FDR<4.22x1077), consistent with the fact that
MYC is a direct regulator of ribosome biogenesis [67]. This
agrees with reports of the involvement of MYC in radiation
treatment [68, 69], suggesting MYC may trigger proliferation
pathways upon genotoxic stress, in the absence of p53.

Genes downregulated by IR in Trp537~ B cells are related
to immune system (FDR<4.22x10 %), GTPase activity
(FDR<3.75x107%), and actin cytoskeleton (FDR < 2.06 x
10~ °). As shown in Additional file 1: Table S13, we can also
detect the enrichment of the target genes of miR-124
(FDR < 4.56 x 10™*?), an important modulator of immunity
[70]. Others associated miRNAs, including miR-6931-5p,
Mir-4321, and miR-576-5p, may also be involved.

For the second comparison, the expression profiles of
DEGs associated with the interaction term is shown in
Fig. 14. This is the p53 mediated IR response, compared
to the baseline response without p53. The 676 genes
that are upregulated in wild-type B cells following IR,
but not in Trp53~'~ B cells. As expected, these genes
are enriched in p53-mediated response to DNA damage
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(FDR<1.43 x 10™°), and apoptosis (FDR<9.72 x 10~ ).
As shown in Additional file 1: Table S13, these genes
are overrepresented with 25 target genes of p53
(FDR<1.34x 10" '®) and 76 target genes of miR-92a
(FDR<2.79 x 10" ). Part of the miR-17/92 cluster,

miR-92a is related to tumorigenesis and is regulated
by p53 [71, 72]. Another miRNA with overrepresented
target genes is miR-504 (FDR < 3.25x 10~®), which has
been shown to binds to 3" UTR of Trp53 and negatively
regulate its expression [73]. Located in the introns of the
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fibroblast growth factor 13 (FGF13) gene, miR-504 is tran-
scriptionally suppressed by p53, forming a negative feed-
back loop [74]. Following radiation, the expression of both
miR-92a and miR-504 in wild-type B cells may be reduced,
leading to the upregulation of their target genes. Further
study is needed to verify this hypothesis.

As shown in Fig. 14, the 584 genes downregulated ac-
cording to the interaction term are those that are in-
duced in the Trp53~/~ B cells, but not in wild-type B
cells. These genes are overrepresented with ncRNA pro-
cessing, ribosome biogenesis, cell cycle, and RNA trans-
port (Additional file 1: Table S14). Most (411) of the 584
genes are included in the genes upregulated by IR in
Trp53~'~ B cells, as suggested by the Venn diagram in
Additional file 3: Figure S18. MYC target genes are also
downregulated by p53 upon IR. In wildtype B cells, p53
suppresses the MYC oncogenic pathway compared to
Trp53~'~ B cells. The most significant shared TF binding
motif is E2F1 (FDR < 7.73 x 10~ '!). This agrees with the
role of p53 in cell cycle arrest through p21-mediated
control of E2F factors [75].

Pathway analysis of p53 data
Many of the above observations can be confirmed by
using pathway analysis based on the fold-change values

of all genes. The results of GSEA on the interaction term
can be found in Additional file 1: Table S15. The PGSEA
package offers a convenient way to visualize the activities of
pathways across all samples. Additional file 3: Figure S19
clearly shows that p53 signaling pathway, apoptosis, and
positive regulation of cell cycle arrest are uniquely activated
by IR in wild-type B cells. This is again confirmed by TF
target genes (Fig. 15). In addition, the p53-independent up-
regulation of MYC target genes can also be observed in
Fig. 15. Several ETS transcription factors, including SFPII,
SPI1, and ETSI, are suppressed by IR in both cell types.
These factors may underlie the suppression of immune
response as suggested [76]. Applying PGSEA on miRNA
target genes highlights miRNA-30a (Additional file 3:
Figure S20), whose target genes are specifically activated by
IR in wild-type B cells. miRNA-30a was shown to be in-
volved in response to IR [77] and mutually regulate p53
[78]. Thus, the complex p53 signaling pathways are un-
veiled with remarkable accuracy.

The upregulated p53 target genes can be seen in the
KEGG pathway diagram (Additional file 3: Figure S21).
This pathway map shows multifaceted roles of p53 in
the regulation of apoptosis, cell cycle, DNA damage
repair, and growth arrest. Many of these functions were
re-discovered in our analyses above. This shows the
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Fig. 14 Additional effect of p53 in IR response. a Expression patterns of selected DEGs. b Upregulated genes are enriched with genes related to
p53 mediated response to DNA damage, especially apoptosis, and negative regulation of cell cycle. These genes are only induced by IR in cells
with wildtype p53. One the other hand, p53 caused the relative downregulation of genes related to ribosome biogenesis, tRNA and rRNA
processing, DNA replication, and protein folding. These genes are only upregulated by IR in Trp53—/—

power of comprehensive pathway databases coupled
with broad analytic functionalities accessible via an in-
tuitive user interface. Without iDEP, it can take days or
weeks to write code and collect data to conduct all the
analyses above. With iDEP, biologists can complete such
analyses in as little as 20 min.

Discussions

Taking advantage of the Shiny platform, we were able to
pack many useful functionalities into iDEP, including
high-quality graphics based on ggplot2 and interactive plots
using Plotly. Compared with traditional web applications,
Shiny has its drawbacks and limitations. The interface is not
as flexible as those developed using JavaScript. Nevertheless,
we believe an integrated web application like iDEP is a valu-
able tool to both bench scientists and bioinformaticians.

As an example, we extensively analyzed an RNA-Seq data-
set involving Hoxal knockdown by siRNA in lung fibro-
blasts, and identified the down-regulation of cell-cycle genes,
in agreement with previous analyses and experimental con-
firmation. Our analyses also show E2F and SP1 binding mo-
tifs are enriched in the promoters of downregulated genes,
mediating the cell cycle arrest. Furthermore, we also find evi-
dence that microRNAs (miR-17-5P, miR-20a, miR-106a,

miR-192, miRNA-193b, and miR-215) might work with E2F
factors to block the G;/S transition in response to reduced
Hoxal expression. Interestingly, miR-106a is located in the
intron of Mcm7, an E2F1 target gene. DEGs are also
enriched with genes related to neuron parts, synapse, as well
as neurodegenerative diseases. This is consistent with reports
of Hoxal’s role in neuron differentiation [36—38]. Hoxal
knockdown induces expression of genes associated with the
cytokine-cytokine interaction, lysosome, and cell migration,
probably in response to the injected siRNAs. These genes are
overrepresented with target genes of NF-kB, known to be in-
volved in immune response. By combining both annotation
dataset and analytic functionality, iDEP help biologists to
quickly analyze their data to form new hypotheses (Fig. 16a).

In the second example, our analysis shows that in B cell
without p53, radiation treatment upregulates MYC onco-
genic pathway, triggering downstream genes with highly
coherent functions such as cell proliferation, ribosome bio-
genesis, and ncRNA metabolism. Enriched with target genes
of miR-124 and ETS domain transcription factors, genes
downregulated by IR in p53 null B cells are associated with
immune response, GTPase activity and actin cytoskeleton.
In wildtype B cells, a p53-dependent transcriptional re-
sponse to IR is evidently related to p53-mediated apoptosis
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Fig. 16 Bioinformatics analysis using iDEP generates many hypotheses
regarding the molecular pathways underlying (a) Hoxal knockdown,
and (b) lonizing radiation

and DNA repair, as expected. The target genes of MYC and
E2F1 are suppressed by p53, leading to growth and cell cycle
arrest (Fig. 16b). iDEP helps unveil the multifaceted func-
tions of p53, and also highlight the potential involvement of
several miRNAs (miR-92a, miR-504, and miR-30a).

Users should be cautious when interpreting results
from pathway analysis, which can be obtained through
the many combinations of methods and gene set data-
bases. The biomedical literature is large and heteroge-
neous [79], making it easy to rationalize and make a
story out of any gene. True pathways, like the effect of
Hoxal knockdown on cell cycle, should be robustly
identified across different methods and databases. Also,
as demonstrated in the two examples, for each enrich-
ment or pathway analysis, we tried to focus on the most
significant gene sets.

Conclusions

By integrating many Bioconductor packages with com-
prehensive annotation databases, iDEP enables users to
conduct in-depth bioinformatics analysis of transcrip-
tomic data through a GUI The two use cases demon-
strated that it can help pinpoint molecular pathways
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from large genomic datasets, thus eliminating some bar-
riers for modern biologists.

Besides RNA-Seq and DNA microarray data, users can
also use iDEP to analyze fold-change and FDR values calcu-
lated by other methods such as cuffdiff [80]. For unanno-
tated genomes, iDEP can be used for EDA and differential
expression analysis. For single-cell RNA-Seq data [81], only
smaller, pre-processed datasets with hundreds of cells can
be analyzed, as iDEP is mostly designed to handle transcrip-
tomic data derived from bulk tissues.

In addition to updating the annotation database from
Ensembl every year, we plan to continue to compile path-
way databases for model organisms, similar to MSigDB
and GSKB. For unsupported species, we will consider
ways to incorporate user-submitted gene annotation.
Based on user request and feedback, we will also add more
functions by including additional Bioconductor packages.

Methods

Figure 1 outlines the iDEP workflow. Expression matrix
is first filtered, transformed and converted to Ensemble
gene IDs, which are used internally to identify genes.
The pre-processed data is then used for EDA, with
methods such as K-means clustering, hierarchical clus-
tering, principal component analysis (PCA), and t-SNE
[32]. Gene clusters identified by K-means are analyzed
by enrichment analysis based on a large gene annotation
and pathway database. The identification of DEGs is
done with either the limma [82] or DESeq2 [10] pack-
ages. This is also followed by enrichment analysis on the
DEGs. The fold-change values are then used in pathway
analysis using several methods.

To enable gene ID conversion, we downloaded all
available gene ID mappings for 220 species from
Ensembl [26, 27] (Additional file 1: Table S1), including
98 from Ensembl (vertebrates, release 91), 53 from
Ensembl Plants (release 37) [28], and 69 from Ensembl
Metazoa (release 37). The final mapping table for the
current iDEP v0.72 release consists of 135,832,098 rows,
mapping various gene IDs (Additional file 1: Table S2)
into Ensembl. For example, 67 types of human gene IDs
can be converted to Ensembl gene IDs. Besides common
ID like gene symbol, Entrez, Refseq, UCSC, UniGene,
and Interpro IDs, the 67 kinds of human gene IDs also
include probe IDs for popular DNA microarray plat-
forms, making it possible to re-analyze thousands of
microarray datasets available at public repositories.

When multiple gene IDs are mapped to the same
ENSEMBL gene, only the one with largest standard devi-
ation is kept. Gene IDs not recognized by iDEP will be
kept in the data using original gene IDs. Users can also
avoid gene ID conversion by checking the “Do not con-
vert gene IDs to Ensembl” checkbox in the “Pre-Process”
page. This is useful when the user’s data is already
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Ensembl gene IDs, or the user just wants to conduct
EDA and identify differentially expressed genes (DEGs).

In the pre-processing stage, gene IDs are first com-
pared to all gene IDs in the database for 220 organisms.
This enables automatic ID conversion and species iden-
tification. Genes expressed at very low levels are re-
moved and data are transformed as needed using one of
several methods. iDEP enforces log-transformation when
a highly skewed distribution is detected. This type of
mechanisms can help avoid issues in downstream ana-
lyses. The pre-processing stage also generates diagnostic
and summary plots to guide users to make their choices.

EDA enables the users to explore variations and pat-
terns in the dataset as a whole [83]. The main methods
include hierarchical clustering with heatmap, k-means
clustering, and PCA. Enrichment analysis of genes de-
rived from k-means clustering is conducted to gain in-
sights into the functions of co-expressed genes. Initial
attempts of pathway analysis are carried out using the
PCA loadings on each gene. This can tell us the bio-
logical processes underlying each direction of expression
change defined by the principal components.

Differential expression analysis relies on two Bioconduc-
tor packages, limma [82] and DESeq2 [10]. These pack-
ages can meet the needs for most studies, including those
involving multiple biological samples and factorial design.
See [84] for detailed review of other methods and consid-
eration of sample size and variance. Normalized expres-
sion data is analyzed using /imma. Read counts data can
be analyzed using three methods, namely limma-trend
[14], limma-voom [14, 85], and DESeq2. Other methods
such as edgeR [13] may be incorporated in the future.

For simple study designs, iDEP runs differential gene
expression analysis on all pairs of sample groups, which
are defined by parsing sample names. For complex stud-
ies, users can upload a file with experiment design infor-
mation and then build statistical models that can involve
up to 6 factors. This also enables users to control for
batch effects or dealing with paired samples.

Fold-change values for all genes returned by limma or
DESeq2 are used in pathway analysis using GSEA [86],
PAGE [33, 34], GAGE [57] or ReactomePA [87]. Taking
advantage of centralized annotation databases for 98
species at Ensembl (release 92), 53 in Ensembl Plants
(release 40), and 69 in Ensembl Metazoa (release 40), we
downloaded not only GO functional categorizations, but
also promoter sequences for defining transcription factor
(TF) binding motifs for most species. Metabolic path-
ways were downloaded directly from KEGG [21] for 131
species (Additional file 1: Table S1). Also, we incorpo-
rated Pathview package [58] to show gene expression on
KEGG pathway diagrams downloaded via APL In
addition, we also included many species-specific pathway
knowledgebases, such as Reactome [87, 88], GeneSetDB
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[89] and MSigDB [39] for human, GSKB for mouse [29],
and araPath for Arabidopsis [53]. These databases con-
tain diverse types of gene sets, ranging from TF and
microRNA target genes, protein-protein interactions, to
manually curated lists of published DEGs. For the hu-
man genome, we collected 140, 438 gene sets (Table 2).
Such large, diverse databases enable in-depth analysis of
expression data from different perspectives. Table 2 con-
tains databases that we deemed useful. For human path-
ways, many other databases and tools exists [90-92].

The PGSEA package [33] implements the Parametric
Analysis of Gene Set Enrichment (PAGE) algorithm [34]
to display the activities of pathways in individual samples
in terms of Z scores, which characterize how much the
mean of the fold-changes for genes in a certain pathway
deviates from the mean observed in all the genes. We
modified the PGSEA code by adding an analysis of vari-
ance (ANOVA) on the Z scores across sample groups.
Also, after cutoff with FDR, pathways are ranked by the
standard deviation. This modification yields meaningful,
intuitive display of differentially regulated pathways
across sample groups.

PCA enables us to project samples into two-dimensional
space. We also treated the PCA loadings onto each of the
genes as expression data to run pathway analysis with the
PGSEA package. For each pathway, this runs the PAGE
algorithm which performs one-sample t-test on each gene
set.The adjusted P-values are used to rank the pathways for
each of the first 5 principal components. The pathways are
labeled with FDR first, followed by the principal components
(PC1, PC2 and so on). Only 5 pathways for each principal
component are shown, but duplicated ones are skipped.

iDEP also enables users to retrieve protein-protein inter-
action (PPI) networks among top DEGs via an API access
to STRING [24]. These networks can be rendered both as
static images and as richly annotated, interactive graphs
on the STRING website. The API access also provides en-
richment analysis (GO, KEGG, and protein domains) for
115 archaeal, 1678 bacterial, and 238 eukaryotic species,
thus greatly expanding the species coverage of iDEP.

Based on their chromosomal location obtained from
Ensembl, we visualize fold-changes of genes on all the chro-
mosomes as an interactive graph based on Plotly. iDEP can
also use the PREDA package [62] to detect chromosomal
regions overrepresented with up- or down-regulated genes.
This is useful for studies such as cancer that might involve
chromosomal deletion or amplification.

For larger datasets, users can use bi-clustering algorithms
to identify genes with correlated expression among a subset
of samples, using the 8 methods implemented in 3 Biocon-
ductor packages biclust [93], QUBIC [94], and runibic [95].
Gene co-expression networks can also be constructed with
the WGCNA package [96]. Enrichment analysis is routinely
conducted on gene clusters derived from these methods.
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To identify enriched TF binding motifs, transcript an-
notation and promoter sequences are retrieved from
Ensembl. For genes with multiple transcripts, the tran-
scription start site (TSS) with multiple transcripts is
used. If multiple TSS locations have the same number of
transcripts, then the most upstream TSS is used. Pro-
moters are pre-scanned using TF binding motifs in
CIS-BP [52]. Instead of defining a binary outcome of
binding or not binding, which depends on arbitrary cut-
offs, we recorded the best score for each of the TFs in
every promoter sequence. Then student’s t-test is used
to compare the scores observed in a group of genes
against the rest of genes. The P-values are corrected for
multiple testing using false discovery rate (FDR).

To enhance reproducibility in research, we will make
older versions of iDEP software and database for each
significant upgrade. iDEP also produces an R and R
Markdown file which captures users’ parameterization
during the analysis. These files could be downloaded,
alongside related database files, to reproduce their
analysis.

The Shiny package by RStudio provides a powerful
web framework for developing applications using R. We
used docker containers to configure and manage the
Shiny server. Containerization also enables us to easily
deploy the service and scale up to take advantage of
multiple cores. Load balanced with Nginx, our web ser-
ver can handle hundreds of concurrent users by distrib-
uting jobs to dozens of R processes. The source code for
iDEP and our server configuration files are available at
our GitHub repository [97]. Detailed documentation of
iDEP, including video tutorial and a full list of supported
species, is available at [98].

Additional files

Additional file 1: Tables S1-S16. Table S1. contains list of 220 species
covered by current version of iDEP. Table S2. include the 2196 types of
gene IDs that can be recognized. Tables $3-S16. are results from the
analyses of two example datasets. (XLSX 1970 kb)

Additional file 2: Read count file for Hoxd1 knockdown example. This file is
derived from short read archive (SRA) SRP012607 using Sailfish. (CSV 718 kb)

Additional file 3: Figures S1-S21. Results from the two example
datasets. (PDF 2973 kb)

Additional file 4: DNA microarray data of thymic tissue of down
syndrome infants. Data is from GSE69210 from NCBI. (CSV 4745 kb)

Additional file 5: An example of customized R code generated by iDEP.
This code is generated for the analysis of the Hoxal dataset. (R 11 kb)

Additional file 6: An example of R Markdown file generated by iDEP.
This code is generated for the analysis of the Hoxal dataset. (RMD 15 kb)

Additional file 7: Core R functions in iDEP. This code is generated for
the analysis of the Hoxal dataset. (R 172 kb)

Additional file 8: Read count file for the mouse ionization/p53 dataset.
This file was used in our analysis. (CSV 1513 kb)

Additional file 9: Experiment design file for the mouse ionization/p53
dataset. This file was used in our analysis. (CSV 226 bytes)
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