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Abstract

Background: Cyclic peptide-based drug discovery is attracting increasing interest owing to its potential to avoid
target protein depletion. In drug discovery, it is important to maintain the biostability of a drug within the proper
range. Plasma protein binding (PPB) is the most important index of biostability, and developing a computational
method to predict PPB of drug candidate compounds contributes to the acceleration of drug discovery research.
PPB prediction of small molecule drug compounds using machine learning has been conducted thus far; however,
no study has investigated cyclic peptides because experimental information of cyclic peptides is scarce.

Results: First, we adopted sparse modeling and small molecule information to construct a PPB prediction model
for cyclic peptides. As cyclic peptide data are limited, applying multidimensional nonlinear models involves concerns
regarding overfitting. However, models constructed by sparse modeling can avoid overfitting, offering high
generalization performance and interpretability. More than 1000 PPB data of small molecules are available,
and we used them to construct a prediction models with two enumeration methods: enumerating lasso
solutions (ELS) and forward beam search (FBS). The accuracies of the prediction models constructed by ELS
and FBS were equal to or better than those of conventional non-linear models (MAE =0.167-0.174) on cross-
validation of a small molecule compound dataset. Moreover, we showed that the prediction accuracies for
cyclic peptides were close to those for small molecule compounds (MAE =0.194-0.288). Such high accuracy
could not be obtained by a simple method of learning from cyclic peptide data directly by lasso regression
(MAE =0.286-0.671) or ridge regression (MAE =0.244-0.354).

Conclusion: In this study, we proposed a machine learning techniques that uses low-dimensional sparse
modeling to predict the PPB value of cyclic peptides computationally. The low-dimensional sparse model
not only exhibits excellent generalization performance but also improves interpretation of the prediction
model. This can provide common an noteworthy knowledge for future cyclic peptide drug discovery studies.
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Background

Cyclic peptides have attracted considerable interest
from both the pharmaceutical industry and academia
[1-4] for three main reasons. First, as with monoclo-
nal antibody therapeutics, they can bind to target pro-
teins with high affinities [5]. Second, they can interact
with flat, shallow, and featureless surfaces of proteins
or protein-protein interaction interfaces that are barely
targeted by small molecule drugs [6]. Third, they have
the potential for oral activity or oral bioavailability,
similar to classical small molecule drugs [7-13]. More
than 40 cyclic peptide drugs are currently approved
for clinical use, and more than 20 cyclic peptides are
in clinical development [14]. Most clinically approved
cyclic peptides come from natural products, e.g., anti-
bacterials or human peptide hormones [15-19]. Re-
cently, de novo rational design techniques [20-22]
and random screening techniques [23, 24] have facili-
tated development of novel cyclic peptide ligands for
difficult targets [25-28].

Plasma protein binding (PPB), is the reversible
binding of compounds to plasma proteins, and thus
an equilibrium exists between bound and unbound
forms. The fraction bound to plasma protein at equi-
librium (f;) is an important pharmacokinetic property
[29] since PPB is strongly related to the absorption,
distribution, metabolism, excretion, and toxicity of
such compounds. In most cases, only unbound por-
tions of the compounds can be distributed into tis-
sues, which then interact with the target proteins
and are finally excreted from the blood [30, 31]. The
candidate compounds that do not have appropriate
PPB value are dropped in the later stages of drug
discovery [32, 33]; however, experimental measure-
ments are expensive and time-consuming. Moreover, the
dropout of candidate compounds in the later stage in-
creases the development costs. Therefore, it is necessary
to estimate the PPB values of candidate compounds com-
putationally in the early stages and prioritize development
strategies.

As for small molecules, there are some reports related
to the development of computational PPB prediction
methods. PPB prediction methods are roughly classified
into docking-based methods [34] and machine learning
methods [35-38]. In docking-based methods, the PPB
value is predicted using the molecular docking score on
the basis of the pose in which compounds are docked to
the plasma protein. Lexa et al. docked compounds to
two major binding sites of human serum albumin (HSA)
[34]. They reported that the weighted combination of
the predicted LogP and docking score most accurately
distinguishes between high-PPB-value compounds and
low-PPB-value compounds, with an AUC of 0.94, when
evaluated against a “strict set” In machine learning
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methods, the model is trained on experimental PPB
values of compounds, and the model predicts PPB values
of unknown compounds. Previously, Ingle et al. used
1045 pharmaceutical data for model construction with
support vector machines, k-nearest neighbors, and ran-
dom forests and they evaluated these models against test
data of 200 independent compounds and 406 environ-
mentally relevant ToxCast chemicals [36]. They reported
that the consensus model ensembled by these three
non-linear models yielded mean absolute error (MAE)
of 0.151-0.155 for pharmaceuticals and 0.110-0.131 for
environmentally relevant chemicals. On the other hand,
we found no reports on the development of PPB predic-
tion methods for cyclic peptides. This implied the diffi-
culty of predicting cyclic peptides due to paucity of
experimental PPB data of cyclic peptides. It is also diffi-
cult to predict the binding poses of cyclic peptides owing
to their large size and flexibility.

In general, it is considered that experimental PPB
values of cyclic peptides is necessary to predict that
of other cyclic peptides. However, as mentioned
above, PPB data of cyclic peptides are insufficient,
and it is very difficult to construct a prediction model
with cyclic peptides. In practice, a prediction model
trained on public cyclic peptide data is not very ac-
curate, as discussed in the results section. Meanwhile,
there are sufficient PPB data of small molecules. If
small molecule data are informative for predicting
cyclic peptides, machine learning method will work
well. It is assumed that the physicochemical phenom-
ena of PPB is same and important factors for explain-
ing and governing PPB of both small molecules and
cyclic peptides are universal. Feature selection, which
is a task in machine learning, has the potential to
extract such factors. Indeed, sparse modeling is a
well-known method for feature selection. If these
factors can be successfully extracted through feature
selection, they could facilitate the construction of a model
that predicts PPB values of cyclic peptides using PPB data
of small molecules.

Here, we first propose the sparse model construction
method to predict PPB values of cyclic peptides using
small molecule data. The low-dimensional sparse model
not only exhibits excellent generalization performance
but also improves interpretation of the prediction
model.

Materials and methods

Datasets

We used three types of datasets: small molecules, FDA-
approved cyclic peptides, and cyclic peptides from in-
house experiments. All molecules are available in the
SMILES format with the fraction bound to plasma
protein (f,) for PPB value listed in Additional file 1:



Tajimi et al. BMC Bioinformatics 2018, 19(Suppl 19):527

Supplementary Table S1. f;, is a real number between 0
and 1. For some molecules, the f;, value is determined as
not a specific value but a range [fpmin, fomax]- We calcu-
lated the averaged value obtained by (fpmin + fpmax)/2 and
used it as f, of the molecule.

The PPB values were converted into pseudo-equilibrium
constant parameters (In K,) for model construction, as
there is a greater need for the resolution of higher f,
values (f,>0.8) than for that of moderate f, values
(fp = 0.5). The transformation equation is given by

InK,=C In Js ,
1-f,

where C is a constant set to 0.3 as in a previous study
[36]. The results of the In K, predictions were converted
back to f, for assessment of model accuracy according to
a previous study [36]. To prevent divergence of the In
K, value, f;, was scaled (f, x 0.99 + 0.005) as in [37].

Small molecule dataset

We used pharmaceuticals with experimental f, values
originally corrected by Ingle et al. [36]. The training
data and test data were split exactly as in [36]. We
used 1017 out of 1045 training compounds and 194
out of 200 test compounds by removing compounds that
could not calculate a part of molecular descriptors owing to
failure of conformation generation. The former is the small
molecule training data and the latter is the small molecule
test data.

Public cyclic peptide drugs dataset

There are 24 cyclic peptides with PPB assay experi-
mental results in DrugBank [39] (accessed November
6, 2017), which is a public database of FDA-approved
drugs.

Original synthetic cyclic peptides dataset

As the number of publicly available data of cyclic pep-
tide drugs is small compared to that of small molecule,
we additionally designed and experimented with 16 cyc-
lic peptides composed exclusively of natural amino acids.
The synthetic cyclic peptide sequences are listed in
Table 1. First, linear peptides were synthesized. Then,
circularization was achieved by making a disulfide bond
between N-terminal and C-terminal cysteine residues
and confirmed by TOF/MS and HPLC analyses. Human
PPB values f;, were determined by the equilibrium dialy-
sis method [40]. Frozen human plasma was thawed im-
mediately at room temperature. Then, the plasma was
centrifuged at 3220 g for 10 min to remove clots and the
supernatant was collected into a fresh tube. The working
solutions of test compounds were prepared in DMSO at
a concentration of 200 pM. Then, 3 uL of the working
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Table 1 Sequences of synthetic cyclic peptides. Circularization
was achieved by making a disulfide bond between N-terminal
and C-terminal cysteine residues. These peptides are available in
the SMILES format listed in Additional file 1: Table S1

Peptides  Sequences Exp. PPB
(fp)
Pep.1 Cys Tyr Phe GIn Asn Pro Arg Gly Cys 0242
Pep.2 Cys Tyr lle GIn Asn Pro Leu Gly Cys 0.005
Pep.3 Cys Ala Trp Lys Val Thr Cys 0.00040
Pep4 Cys Phe Pro Phe Trp Lys Tyr Cys 0616

Pep.5 Cys Trp Arg Pro Arg Val Ala Arg Cys 0O

Pep.6 Cys Phe Phe Trp Lys Thr Thr Cys 0.263
Pep.7 Cys Lys Leu Lleu Lys Lys Thr Cys 0
Pep.8 Cys Tyr Tyr Tyr Tyr Tyr Tyr Tyr Cys 0855

Pep.9 Cys Ala Gly Leu Val Leu Ala Ala Cys O

Pep. 10 Cys Trp Val His Pro GIn Phe Glu Cys 0367
Pep.11 Cys Asn GIn Pro Trp GIn Cys 0

Pep.12  Cys Ser Phe Asp Asp Trp Leu Ala Cys 0.800
Pep.13  Cys Tyr Leu Ala Glu Tyr His Gly Cys 0349
Pep.14  Cys Ala Pro Ala Trp Ala His Gly Cys 0074
Pep.15  Cys Phe Val Tyr Ser Ala Val Cys 0.153
Pep.16  Cys Arg lle Lys Arg Tyr Cys 0.151

solution was removed for mixing with 597 uL of human
plasma to achieve a final concentration of 1 uM (0.5%
DMSO). The plasma samples were vortexed thoroughly.
The dialysis membranes (HTD 96a/b Dialysis Membrane
Strips MWCO 12-14 K, Cat. #1101, Batch# 1141 (12-17))
were soaked in ultrapure water for 60 min to separate the
strips, then in 20% ethanol for 20 min, and finally in the
dialysis buffer (100 mM sodium phosphate and 150 mM
NaCl) for 20 min. The dialysis apparatus was assembled
according to the manufacturer’s instructions. Each cell
was filled with the spiked plasma sample and dialyzed
against equal volume of the dialysis buffer. The assay was
performed in duplicate. The dialysis plate was sealed and
incubated in an incubator at 37 °C with 5% CO, at 100
rpm for 6 h. At the end of incubation, the seal was re-
moved and 50 puL of samples from both buffer and plasma
chambers were transferred to wells of a 96-well plate. 50
uL of blank plasma was added to each buffer sample and
an equal volume of phosphate buffered saline was supple-
mented to the collected plasma sample. 300 puL. of room
temperature quench solution (acetonitrile containing in-
ternal standards (IS, 100 nM Alprazolam, 500 nM Labeta-
lol and 2puM Ketoprofen)) was added to precipitate
protein. Samples in the plate were vortexed for 5 min and
centrifuged at 3220 g for 30 min at 4 °C. Then, the super-
natant was transferred to a new 96-well plate with 100 pL
or 200 pL water (depending on the LC-MS signal response
and peak shape) for LC-MS/MS analysis.
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Molecular descriptors

To characterize molecules, we calculated 2D descriptors
of the compounds and 3D descriptors of conformers of
the compounds. The descriptors were calculated using
molecular_descriptors.py and QikProp provided by
Schrodinger, LLC [41]; there are 281 descriptors in total.
As conformers are required to generate 3D descriptors
of compounds, the most stable conformation of each
compound was generated from SMILES by LigPrep
(Schrodinger, LLC) [42]. The descriptors consist of
physical properties (e.g., LogS, LogP, and ASA) and
topological descriptors based on the graphical representa-
tion of the molecules. All the descriptors were standard-
ized to mean y =0 and variance ¢* = 1 with reference to
small molecule training data.

Enumeration of extracted descriptor sets

It is important to extract better descriptors in terms of
robustness and interpretation of the prediction model.
The biophysical basis of PPBs must be the same for
small molecules and cyclic peptides. However, in this
case, a result of feature selection strongly depends on
the training data (small molecules). In other words,
descriptors specific to small molecules (i.e., those that
cannot represent cyclic peptides) will be chosen. Thus,
we present multiple results of feature selection. Enumer-
ating lasso solutions (ELS) and forward beam search
(FBS) were used as feature selection methods, and the
generated models were compared to baseline models
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trained on all descriptors. Feature selection was per-
formed using the small molecule dataset, followed by ap-
plication of the extracted subsets of descriptors to two
cyclic peptide datasets. This process is needed because
there are insufficient cyclic peptide data for extracting
and verifying the descriptors. An outline of the feature
selection and sparse modeling is shown in Fig. 1(a).

Enumerating lasso solutions

Hara and Maehara [43] proposed a sparse modeling
algorithm for enumerating solutions to the lasso regression
problem (least-squares method with L; regularization).
This enumerating lasso solutions (ELS) algorithm is
summarized in Algorithm 1, where » is the number
of dimensions of a feature space, P={1,2,...,n} is a
set representing indices of all the features, Lasso(S) is
the function that calculates the lasso solution that
allows coefficients of features included in SS P to be
non-zero, and supp(f) is a set of features with non-zero
coefficients in the enumerated lasso solution (. This
algorithm calculates a lasso solution different from f by
removing the features of supp(f5) one by one from S. The
output candidate is added as a tuple (f3, S, F) to the priority
queue for the objective function value of the lasso. F is a
set of features removed from P. The weight parameter of
the L; regularization term is related to the sparseness of
the lasso solution. The algorithm can output multiple
results of feature selection, whereas ordinary lasso regres-
sion outputs only a single result.

enumerating

Train data — lasso solutions =——> <
(small molecules) (ELS)

fx)=w'x+ )\"le

feature selection

o= wix AP,

proposed models

-~
ELS features 1
[ model

Adjust L, regularization weight

ELS features 2 Ridge
model

Adjust L, regularization weight

ELS features 3 Rudge
model

Adjust L, regu\anzallon weight

g .
FBS features 1
model

forward Adjust L, regularization weight
—» beam search = < ~a
(FBS) FBS features 2
model

Adjust L, regularization weight

FBS features 3 Rldge
model

Adjust L, regu\anzallon weight

Fig. 1 Outline of the construction of the prediction models for PPB in this study. a The flow of feature selection and model construction using
enumerating lasso solutions (ELS) and forward beam search (FBS). b The flow of evaluation for prediction performance on baseline models and
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Algorithm 1 Enumerating lasso solutions (ELS) [43]

: Prepare the priority queue as an array holding candidates (53, S, F).
: Compute * € Lasso(P) and insert (8*, P, @).

for k=1,2,..., K do

> K: #enumeration models

Extract (3,5, F') from the priority queue.

for i € supp(p) and i ¢ F do

Compute ' € Lasso(S \ {i}) and insert (8, 5\ {i}, F).

F «— FuU{i}
end for
10: end for

Forward beam search

We also used forward beam search (FBS), which can
output multiple results by applying beam search to the
forward-stepwise extraction. A ridge regression model
(least-squares method with L, regularization) was used
for each descriptor set. The residual sum of squares was
used for the loss of each model. When the search was
completed, the best results of the descriptor sets were
output in ascending order of loss. This FBS algorithm is
summarized in Algorithm 2. P={1,2,...,n} is a set
representing indices of all the features. Ridge(S) is the
function that calculates the ridge solution.

1
2
3
4
5: Output 3 as the k-th solution %) if it is not already output.
6
7
8
9

Parameters of ELS and FBS

To balance the prediction accuracy and interpretabil-
ity, we selected the number of descriptors in an ex-
tracted set to be around 5. For ELS, the weight
parameter of the L; regularization term was set to
0.13 so that the number of features with non-zero co-
efficients in lasso’s global optimal solution was 5. The
search depth of FBS was set to D=5 so that each ex-
tracted set has just 5 descriptors. In addition, the
weight parameter of the L, regularization term in FBS
was set to 1.0. Furthermore, the number of enumera-
tions of each method was set to K=200, and the

Algorithm 2 Forward beam search (FBS)

: Prepare an array holding candidates (3, .5).

: set ={(2,9)}.
:ford=1,2,...,D do
next = {}

for i€ Pandi ¢ S do

Compute ' € Ridge(S U {i}).

> D: depth of beam search

Insert (8, S U {i}) to next if (5, S U{i}) ¢ neut.

1
2
3
4
5: for (5,9) € set do
6:
7
8
9

end for
10: end for
11: Extract best W elements from next.
12: set < best W elements
13: end for

14: Output best K elements from set as solutions.

> W: width of beam search

> K: #enumeration models
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Fig. 2 Scatter plot for three datasets, namely small molecules, cyclic
peptide drugs, and synthetic cyclic peptides, in molecular weight
(MW) and octanol/water partition coefficient (QPLogPo/w) space

beam width of FBS was set to W =300, which are de-
termined for the following reasons. In the general
tendency, a larger value of K increases the possibility
of finding a better model. The number of descriptors
we selected is around 4 to 5, and K needs to be set
between 100 and 300. In this local range, selected
features were the same. In other words, the prediction
accuracy was the same; thus, K was set to 200. Simi-
larly, a larger value of W will also result in a better
model because the search range becomes wider. How-
ever, in the range of W =200-400, the prediction ac-
curacy was the same; thus, W was set to 300.

Model evaluation

The models were evaluated and compared based on the
root mean squared error (RMSE) of the predicted f;, the
mean absolute error (MAE) of the predicted f,, and the
correlation coefficient (R) of In K,. These metrics are de-
fined in the equations below:

S (fui i)
N

RMSE =

)
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MAE — S fbi S
- N
R SNM{( InK,),~ InK,}{( InK,); - InK,"}

(k) - BRIk, - R,

where N is the number of data, f}; is the predicted value
of f; in compound i, f}; is the experimental value of f,
in compound i, (In K,,); is the In K, value converted from
Soir (InK,); is the In K, value converted from f; ;, and

InK, and InK," are the mean values of (In K,); and
( InK,);, respectively.

Model construction

Baseline models

To verify the effectiveness of the proposed method,
four baseline models were constructed (white boxes
in Fig. 1(b)). These models were trained on two
different types of datasets (small molecule training
dataset or cyclic peptide drug dataset), and baseline
performances were obtained by predicting three data-
sets: small molecule test dataset (SM), cyclic peptide
drug dataset (CP), and synthetic cyclic peptide dataset
(SCP). Detailed schemes are described in Fig. 1(b).
The ridge model with all features and lasso model
with five features were used to construct baseline
models. Hereafter, we refer to their baseline models
“regressor name-training data” (e.g., ridge-SM). In
baseline #1 (ridge-SM) and baseline #2 (lasso-SM),
the models were trained on the small molecule train-
ing dataset, and predicted three datasets. In baseline
#3 (ridge-CP) and baseline #4 (lasso-CP), PPB values
of the cyclic peptide drug dataset and the synthetic
cyclic peptide dataset were predicted. When predict-
ing cyclic peptide drug dataset by ridge-CP and
lasso-CP, leave-one-out cross-validation (LOOCV) was
also conducted.

Table 2 PPB prediction results of small molecules for sparse modeling by ELS and FBS compared to the baseline results. These

situations are shown in a part of Fig. 1(b)

Method Training set Test set RMSE (fy) MAE (fp) R(n K,)
ridge-SM Small molecules (training data) Small molecules (test data) 0212 0.155 0.781
(baseline #1)

lasso-SM Small molecules (training data) Small molecules (test data) 0.233 0.176 0.707
(baseline #2)

ELS Small molecules (training data) Small molecules (test data) 0228 0172 0714

FBS Small molecules (training data) Small molecules (test data) 0.230 0.167 0.725
Non-linear model [36] Small molecules (training data) Small molecules (test data) 0.225-0.251 0.155-0.177 0.707-0.787
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Fig. 3 Boxplots of RMSE of each model for prediction of small
molecule test data from small molecule training data. ELS stands for
enumerating lasso solutions, and FBS stands for forward beam
search. Each box plot indicates the median value (orange line), first
and last quartile, and the outliers (circles). Here, IQR denotes the

interquartile range. The ends of the whiskers represent the lowest
datum still within 1.5 X IOR of the lower quartile, and the highest

datum still within 1.5 X IOR of the upper quartile

Proposed models

To compare the two feature selection methods, ridge re-
gression models were generated for all extraction results
obtained using the small molecule training data. The L,
regularization weight parameter was adjusted on the
basis of 3-fold cross-validation with small molecule
training data for each result of the descriptor subsets.
This cross-validation is only used to select model param-
eters during training. The models having the smallest
RMSE of test data from each of the two methods of fea-
ture selection were selected as the proposed models be-
cause it was assumed that the model of best prediction
of unknown data explains the PPB. Under the same
conditions as those for ridge-SM and lasso-SM, the
prediction accuracies of the proposed models were also
evaluated.
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Results

Distribution of the datasets

To visualize the datasets, a scatter plot with molecular
weight (MW) and octanol/water partition coefficient
(QPLogPo/w) is shown in Fig. 2. It was found that most
of the cyclic peptides are larger than the small mole-
cules. The distribution of the synthetic cyclic peptides
was slightly similar to that of the small molecule dataset,
compared to that of the cyclic peptide drug dataset.

Small molecules PPB modeling

Hereafter, we present the prediction results in each
situation described in Fig. 1(b). The results of predict-
ing the f,, values of small molecule dataset are listed
in Table 2, and this situation is the same as that in
the work of Ingle et al. The prediction accuracy of
ridge-SM and lasso-SM is similar to that in the work
of Ingle et al. As for the proposed ELS and FBS, it
was found that the prediction accuracy is as good as
that of ridge-SM and lasso-SM. Figure 3 shows the
boxplots of each RMSE in f;, of the small molecule
test data with 200 different models. Although the
prediction accuracy of both ELS and FBS varied ac-
cording to the selected descriptors, the variation in
the RMSE of ELS and FBS was around 0.02 and 0.01,
respectively. Figure 4 shows a scatter plot of the PPB
prediction results for ELS and FBS. The correlation
coefficients between experimental f, and estimated f}
in ELS and FBS were 0.714 and 0.725, respectively.

Simple ridge and lasso regression for cyclic peptides PPB
directly

The prediction results for ridge-CP and lasso-CP are
listed in Table 3. The prediction accuracy degraded
compared to that of ridge-SM and lasso-SM, as the
number of the data is much smaller than that of the
small molecule dataset. Internal validation with the
cyclic peptide drug dataset was carried out in LOOCV
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Fig. 4 Scatter plots of the experimental values of small molecule test data versus predicted values of that for models constructed by ELS and FBS.
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Table 3 Prediction results for ordinary lasso sparse modeling and ridge regression as baseline results under the several situations

shown in a part of Fig. 1(b)

Method Training set Test set RMSE (f,) MAE (fp) R(n K,
ridge-CP-LOO Cyclic peptide drugs (LOOCV) Cyclic peptide drugs (LOOCV) 0.338 0.244 0418
(baseline #3)

lasso-CP-LOO Cyclic peptide drugs (LOOCV) Cyclic peptide drugs (LOOCV) 0.358 0.286 0.289
(baseline #4)

ridge-CP Cyclic peptide drugs (# = 24) Synthetic cyclic peptides (# = 16) 0413 0354 0442
(baseline #3)

lasso-CP Cyclic peptide drugs (# = 24) Synthetic cyclic peptides (# = 16) 0.688 0627 0.069

(baseline #4)

(ridge-CP-LOO and lasso-CP-LOO in Table 3) and the
results were allowable (MAE =0.244-0.286). For the
prediction model constructed based on the cyclic pep-
tide drug dataset, however, the prediction model
could not predict for the synthetic cyclic peptide
dataset at all. In this case, the MAE of ridge-CP and
lasso-CP was 0.354 and 0.627, respectively. Originally,
the number of cyclic peptide samples was extremely
small. This implies that using cyclic peptides as training
data is inappropriate unless the number of data is
increased.

Prediction for cyclic peptide drugs with small molecules
using sparse modeling

The results of predicting PPB values of cyclic peptide
drugs using the models constructed with the small mol-
ecule training data are listed in Table 4. In particular, ridge
regression prediction ridge-SM failed (MAE =0.442),
indicating the effectiveness of sparse modeling. Among
the constructed models, ELS predicted PPB values of
cyclic peptide drugs more accurately than other
methods (MAE =0.216). The random prediction by
output f, from uniform distribution was compared with
ELS and FBS. The cyclic peptide dataset is predicted

10,000 times through random prediction. The average
MAE is 0.374. Compared with this value, ELS (MAE =
0.216, one-sided P-value =0.0013 with unpaired z-test)
and FBS (MAE = 0.288, one-sided P-value = 0.044 with
unpaired t-test) are significantly better. Figure 5
shows a boxplot of RMSE of f;, when predicting In K,
of cyclic peptide drug data in all models. Although
the RMSEs of the worst model in ELS and FBS were
similar, the RMSE of the best model in ELS was less
than that of FBS.

Prediction for synthetic cyclic peptides with small
molecules using sparse modeling

The results of predicting the synthetic cyclic peptide
dataset using the models trained on the small mol-
ecule training data are listed in Table 5. As already
seen in Fig. 2, the spatial distribution of the synthetic
cyclic peptide dataset overlaps with that of the small
molecule dataset; thus, this prediction result also
shows good accuracy. Ridge-SM, lasso-SM, and ELS
showed nearly equivalent accuracy, and FBS was particu-
larly accurate (MAE =0.194). The prediction accuracies
of ridge-CP and lasso-CP were worse. Therefore it is
reasonable to use a small molecule dataset with

Table 4 PPB prediction results of cyclic peptide drugs for sparse modeling by ELS and FBS compared to the baseline results. These
situations are shown in a part of Fig. 1(b). The values with asterisk represent the best prediction performance in each evaluation
criterion, and ridge-CP-LOO and lasso-CP-LOO lines are reproduced from Table 3

Method Training set Test set RMSE (f,) MAE (f,,) R(n K,
ridge-SM Small molecules (training data) Cyclic peptide drugs (# = 24) 0.528 0442 0.120
(baseline #1)

lasso-SM Small molecules (training data) Cyclic peptide drugs (# = 24) 0.321 0.251 0444
(baseline #2)

ELS Small molecules (training data) Cyclic peptide drugs (# = 24) 0.272* 0.216* 0.464*
FBS Small molecules (training data) Cyclic peptide drugs (# = 24) 0.381 0.288 0.270
ridge-CP-LOO Cyclic peptide drugs (LOOCV) Cyclic peptide drugs (LOOCV) 0.338 0.244 0418
(baseline #3)

lasso-CP-LOO Cyclic peptide drugs (LOOCV) Cyclic peptide drugs (LOOCV) 0.358 0.286 0.289

(baseline #4)
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ELS FBS
Fig. 5 Boxplots of RMSE of each model for prediction of cyclic
peptide drugs. Each box plot indicates the median value (orange
line), first and last quartile, and the outliers (circles). Here, IOR
denotes the interquartile range. The ends of the whiskers
represent the lowest datum still within 1.5 X /QR of the lower
quartile, and the highest datum still within 1.5 % /QR of the
upper quartile

abundant data for predicting cyclic peptide PPB.
Figure 6 shows a scatter plot of predicted f, and
experimental f;, of the two cyclic peptide datasets in
each model with the smallest RMSE.

Discussion

Comparison of ELS and FBS

Interestingly, the best model of ELS outperformed
that of FBS in terms of prediction of cyclic peptides
(Table 4), unlike the results of prediction with small
molecules (Table 2) and the original synthetic cyclic
peptides (Table 5). We analyzed the prediction accur-
acies in detail. The relationship between the predic-
tion error of small molecule training data and that of
small molecule test data is shown in Fig. 7. According
to the figure, the averaged prediction accuracy for
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small molecule test data is nearly the same as that
for training data in ELS, whereas the averaged pre-
diction accuracy for small molecule test data is
worse than that for the training data in FBS. This
means that the models based on FBS are more over-
fitted to the training data. Thus, we concluded that
models of ELS are more robust in predicting diverse
molecules such as cyclic peptides, which have prop-
erties different from those of training data (small
molecules). ELS can generate models having high
generalization ability. This is important when pre-
dicting for cyclic peptides with the model trained on
small molecules.

Interestingly, the prediction tendencies of the best models
of ELS and FBS are different. To compare the bias of pre-
diction in cyclic peptide drug dataset and synthetic cyclic
peptide dataset (Fig. 6(a) and 6(b)), Pr(f,—f; > 0.3) and

Pr(f,—f, > 0.3) are calculated by counting samples,
where fj, represents the predicted value and f), represents
the experimental value. In ELS, Pr(f,-f;, > 0.3) = 3/40
—0.075 and Pr(fj—f, > 0.3) = 7/40 = 0.175. In FBS,

Pr(f,~f; > 0.3) = 8/40 = 0.200 and Pr(f;-f, > 0.3)
=6/40 = 0.150. These values seem to indicate that
ELS often predicts lower f, than experimental f, but
FBS exhibits an opposite tendency to that of ELS.

Feature set and prediction accuracy of the most
predictable model

The extracted descriptors by our best models for
small molecule test data of the two feature selection
methods are summarized in Tables 6 and 7. The
physical descriptors were compared with those ex-
tracted in the previous study by Ingle et al. [36]. Inter-
estingly, most of the physical descriptors, such as the
charge descriptor (PEOE), the surface descriptor
(SASA, PISA), and the partition coefficient (LogPo/w,
QPLogPo/w), are consistent; hence, we confirmed that

Table 5 PPB prediction results of synthetic cyclic peptides for sparse modeling by ELS and FBS compared to the baseline results.
These situations are shown in a part of Fig. 1(b). The values with asterisk represent the best prediction performance in each
evaluation criterion, and ridge-CP and lasso-CP lines are reproduced from Table 3

Method Training set Test set RMSE (f,) MAE (f,) R(n K,
ridge-SM Small molecules (training data) Synthetic cyclic peptides (# = 16) 0.321 0.263 0.761
(baseline #1)

lasso-SM Small molecules (training data) Synthetic cyclic peptides (#=16) 0.276 0.228 0.714
(baseline #2)

ELS Small molecules (training data) Synthetic cyclic peptides (#=16) 0319 0.269 0.748
FBS Small molecules (training data) Synthetic cyclic peptides (# = 16) 0.230* 0.194* 0.805*
ridge-CP Cyclic peptide drugs (# = 24) Synthetic cyclic peptides (# = 16) 0413 0.354 0442
(baseline #3)

lasso-CP Cyclic peptide drugs (# = 24) Synthetic cyclic peptides (# = 16) 0.688 0627 0.069

(baseline #4)




Tajimi et al. BMC Bioinformatics 2018, 19(Suppl 19):527

Page 166 of 188

a ELS b FBs
1.0F . 1.0F" j j j j e
- o 3
eO.S r . . &0.8 r . R
206} g 206} . 1
[0] [}
E E
§0.4 H .. §0.4 - e 1
nj . . ] . -
02f . . 02f .. . 1
00 L 1 Ml 1 “: 1 ’ 1 1 1 00 L 1 Mg ’A " ’A ) 1 1 AA
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Predicted fp Predicted fp,
Fig. 6 Scatter plots of the experimental values of cyclic peptide data versus predicted values of that for models constructed by ELS and
FBS. The models were trained on small molecule training data. The green dots denote cyclic peptide drugs and the red rectangles
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feature selection methods worked well and that these
descriptors may be important for predicting PPB
values.

PCA analysis with extracted descriptors

The distances between the molecules in the linear
models can be estimated with the distance of the
scatter plot of principal component analysis (PCA).
Thus, we applied PCA for all molecules with ELS ex-
tracted descriptors that performed the best for cyclic
peptide drug data. Figure 8 shows scatter plots of first
and second principal components (PC1, PC2) of ELS
extracted descriptors. Figure 8(a) shows small mole-
cules and cyclic peptide drugs in the same PC space.
Figure 8(b) shows only cyclic peptide drugs for the
readers’ benefit. Both small molecules and cyclic pep-
tide drugs tend to have low f, when PCl and PC2
are smaller and high f, when PC1 and PC2 are larger.
Therefore, these features are considered to be similar
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Fig. 7 Scatter plot of RMSE values of small molecule training
data versus small molecule test data for models constructed by
ELS and FBS

explanations for PPB in both small molecule com-
pounds and cyclic peptides. Although the region in
which cyclic peptides are plotted is biased compared
to small molecule compounds, this feature set may
partially represent the important structure of cyclic
peptides.

Good and bad cases for prediction

Figure 9 shows four cyclic peptides as good and bad
prediction cases. Oritavancin (Fig. 9(a)) is typical good
case (experimental f, is 0.85 and estimated f, is ob-
tained as 0.84 by ELS). Pep.l of the synthetic cyclic
peptides (Fig. 9(b)) is also a good case (experimental
f» is 0.24 and estimated f;, is obtained as 0.18 by
ELS). Acetyl-daptomycin succeeded in predicting
PPBs, as shown in Fig. 9(c). Daptomycin, shown in
Fig. 9(d), is an example of a bad case and it is quite
suggestive. Although the only difference between
acetyl-daptomycin and daptomycin is the absence
or presence of the alkyl chain (Figs. 9(c) and (d), dashed
magenta rectangle area), the PPB values of these two
cyclic peptides are totally different. The PPB value of
daptomycin is 0.85, whereas that of acetyl-daptomycin
is 0.12. A previous study related to these two cyclic
peptides reported that the alkyl chain of daptomycin
forms a hydrophobic interaction with HSA [44].
Therefore the absence or presence of the alkyl chain

Table 6 Descriptors and regression coefficients of the best
model for cyclic peptide drugs obtained by ELS trained on
small molecule training data

Descriptor Category Regression coef.
Radial centric Topological descriptors 0.06
PEOE6 Physical property 0.10
PISA Physical property 0.11
QPLogPo/w Physical property 0.25
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Table 7 Descriptors and regression coefficients of the best
model for cyclic peptide drugs obtained by FBS trained on
small molecule training data

Descriptor Category Regression coef.
PEOES8 Physical property -042

PEOE9 Physical property -0.39

Xu Topological descriptors 0.75

Percent Human Physical property 0.18

Oral Absorption

QPLogPo/w Physical property 0.36

is important. The PCA plot based on the selected de-
scriptors showed that the distance between the points
corresponding to daptomycin and acetyl-daptomycin
was not large (Fig. 8(b)). Thus, it can be assumed
that extracted descriptors do not evaluate the effect
of the alkyl chain sufficiently well.

We need some new descriptors that express a local or
partial structure to predict the PPB value of cyclic pep-
tides. Toward this end, it could be assumed that taking
particular note of residues that are most likely to bind to
HSA or other plasma proteins is a reasonable approach.
We need to define “residues that are most likely to bind”
and calculate descriptors covering these residues and
surrounding structures. The difference in local alkyl
chain was important for PPB in the case of Fig. 9. Xu
index appeared in FBS model (Table 7) is known as one
of topological descriptors for the molecular backbone
[45, 46]. Therefore, it may be possible to extract the
difference well by evaluating it for the local structure.
The correlation coefficient between f, and Xu index is
0.452. This medium correlation perhaps show that Xu
index is important for providing an explanation of PPB.
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However, the correlation between molecular weight and
Xu index is very high (coefficient = 0.990). It is important
to propose a novel descriptor that not merely reflects the
total weight like Xu index but can express local structural
difference. Accordingly, it might be possible to generate
descriptors that focus on the local or partial structure of
cyclic peptides and stand for the binding between plasma
proteins and cyclic peptides.

Conclusions

This study aimed to predict the fraction bound to plasma
proteins of cyclic peptides by using sparse modeling tech-
niques in machine learning. Enumeration methods were
utilized to predict PPB values of cyclic peptides with the
model trained on experimental PPB data of small mole-
cules. Two enumeration methods, enumerating lasso
solutions (ELS) and forward beam search (FBS), were
compared to four baseline models constructed using ridge
and ordinal lasso regressions. Their prediction accuracies
were evaluated with two cyclic peptide datasets: public
cyclic peptide drugs obtained from DrugBank database
and original cyclic peptides synthesized in this study, and
proposed models showed better performance than base-
line models (ELS obtained MAE value of 0.216 and 0.269
in cyclic peptide drugs and synthetic cyclic peptides, re-
spectively, FBS obtained MAE value of 0.288 and 0.194 in
cyclic peptide drugs and synthetic cyclic peptides, respect-
ively). The prediction model constructed by the sparse
modeling techniques, ELS and FBS, well achieved the
aim of this study; that is, predicting PPB value of cyc-
lic peptides.

The directions for future work are as follows. It is
known that the local structure is important for predicting
PPB of cyclic peptides, but the descriptor set of the most
accurate model can only partly represent this structure.
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Thus, we shall investigate an example of a method for
constructing the features that can represent the local
structure better. In addition, gathering experimental PPB
values of cyclic peptides is important for further discus-
sion and for improving the accuracy of the prediction
model.
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