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Abstract

Background: Bacterial small non-coding RNAs (sRNAs) have emerged as important elements in diverse
physiological processes, including growth, development, cell proliferation, differentiation, metabolic reactions and
carbon metabolism, and attract great attention. Accurate prediction of sRNAs is important and challenging, and
helps to explore functions and mechanism of sRNAs.

Results: In this paper, we utilize a variety of sRNA sequence-derived features to develop ensemble learning methods
for the sRNA prediction. First, we compile a balanced dataset and four imbalanced datasets. Then, we investigate
various sRNA sequence-derived features, such as spectrum profile, mismatch profile, reverse compliment k-mer and
pseudo nucleotide composition. Finally, we consider two ensemble learning strategies to integrate all features for
building ensemble learning models for the sRNA prediction. One is the weighted average ensemble method (WAEM),
which uses the linear weighted sum of outputs from the individual feature-based predictors to predict sRNAs. The
other is the neural network ensemble method (NNEM), which trains a deep neural network by combining diverse
features. In the computational experiments, we evaluate our methods on these five datasets by using 5-fold cross
validation. WAEM and NNEM can produce better results than existing state-of-the-art sRNA prediction methods.

Conclusions: WAEM and NNEM have great potential for the sRNA prediction, and are helpful for understanding the
biological mechanism of bacteria.
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Background
Non-coding RNAs (ncRNAs) are a class of RNA
molecules that do not encode proteins. In general,
non-coding RNA molecules are classified into three
major types: ribosomal RNA (rRNA), messenger RNA
(mRNA) and transfer RNA (tRNA). rRNA is the RNA
component of the ribosome; mRNA is a messenger that
delivers genetic information from DNA to the ribosome;
tRNA is an adaptor molecule that has the capability of
linking mRNA and the amino acid sequence of proteins.
As a new kind of non-coding RNAs, small non-coding

RNAs (sRNAs) have gained wide attention since the dis-
covery of the first sRNA in bacteria.
The sRNAs have been detected in almost all kingdoms

of life and they are high abundant during normal growth
of cell [1]. The sRNAs are usually 50–500 nucleotides
(nt) in length [2]. The majority of sRNAs regulate their
target genes by base pairing and function as diffusible
molecules [3]. Therefore, sRNAs can play important
roles in controlling cellular processes in bacteria, such as
cell proliferation, metabolic reactions and carbon metab-
olism [4]. Since sRNAs in bacteria have different func-
tions, predicting sRNAs provides significance for
understanding biological mechanisms. Wet lab methods
identify sRNAs by using deep sequencing [5]. However,
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these methods are tremendously expensive, laborious
and time-consuming. There exist a large number of un-
explored sRNAs, which makes it impossible to identify
sRNAs effectively through biochemical experiments.
In recent years, many computational methods have

been proposed for the sRNA prediction. These methods
are roughly classified as three types: comparative gen-
omics methods, free energy methods and machine learn-
ing methods. Comparative genomics methods identify
sRNAs by comparing sequence or structural homology
to known sRNAs from different bacteria. Axmann [6]
identified cyanobacteria non-coding RNAs by compara-
tive genomics. Pichon [7] proposed a program named
“Intergenic Sequence Inspector” (ISI) to identify sRNAs.
Klein [8] developed a screening technique to predict
sRNAs. Free energy methods utilize the free energy
change when sRNA sequences transform into ordinary
structure to distinguish sRNAs from pseudo sRNAs.
Uzilov [9] predicted the second structure of sRNA by
minimizing the folding free energy change. Machine
learning methods transform the sRNA prediction as the
binary classification problem. The binary classification
methods take the real sRNAs as positive instances, and
construct pseudo sRNAs as negative instances, and then
formulate the work as the binary classification. Yachie
[10] developed a gapped Markov model to predict
non-coding and antisense RNA genes in E. coli. Tjaden
[11] integrated primary sequence data, transcript expres-
sion data and conserved RNA structure information to
predict sRNAs in bacteria via Markov models. Saetrom
[12] used the sequence information to build sRNA clas-
sifiers by combining genetic programming and boosting
algorithms. Arnedo [13] incorporated different existing
sRNA prediction methods. Carter [14] utilized the com-
position information of sRNA sequences to train support
vector machine (SVM) models and neural network (NN)
models. Barman [15] used tri-nucleotide composition of
sequences to construct SVM-based models. Generally,
machine learning-based methods for the sRNA prediction
have greater efficiency and better performances than com-
parative genomics methods and free energy methods. Be-
sides, there are a number of successfully applications of
machine learning techniques in bioinformatics [16–30].
Motivated by previous machine learning-based methods,

we believe that there is still room to improve the sRNA
prediction performances. One important point is how to
make the best of various sRNA sequence-derived features,
because sRNA sequences bring important information for
the sRNA prediction. To the best of our knowledge,
sequence-derived features have been used to successfully
solve a large number of bioinformatics problems [31–38].
In this paper, we develop computational methods for

the sRNA prediction by utilizing sRNA sequence-derived
features, as the extension of our previous work [39].

Compared with existing methods, we consider diverse
sRNA sequence-derived features to build prediction
models. First of all, we compile one balanced dataset and
four imbalanced datasets from the experimentally
validated sRNAs of Salmonella Typhimurium LT2 (SLT2).
Second, we investigate a variety of sRNA sequence-de-
rived features, such as spectrum profile, mismatch profile,
reverse compliment k-mer and pseudo nucleotide com-
position. Finally, two ensemble learning strategies are used
to integrate diverse features. One is the weighted average
ensemble method (WAEM), which uses the linear
weighted sum of outputs from the individual sRNA
feature-based predictors to predict sRNAs, and the genetic
algorithm is adopted to optimize the parameters in the en-
semble system. The other is the neural network ensemble
method (NNEM), which trains neural networks in two
steps by combining features from the same feature groups.
In the 5-fold cross validation experiments, WAEM
achieves AUC scores of 0.942, 0.952, 0.951, 0.957 and
0.957 on the balanced dataset and four imbalanced data-
sets, and NNEM produces AUC scores of 0.958, 0.962,
0.961, 0.962 and 0.961 on the five datasets. WAEM and
NNEM outperform existing sRNA prediction methods.
Moreover, our studies can reveal the importance of fea-
tures in the sRNA prediction, and provide the guide to the
wet experiments.

Materials and methods
Datasets
As far as we know, lots of experimentally validated sRNAs
are publicly available. In this paper, we compiled our bench-
mark datasets from the sRNAs of Salmonella Typhimurium
LT2 (SLT2) [40]. First, we downloaded the complete gen-
ome sequence of SLT2 in NCBI (http://www.ncbi.nlm.nih.
gov/nuccore/16763390?report=fasta), and extracted 193
sRNA sequences according to the start and the end pos-
ition information of the specific SLT2 sRNA provided in
[41]. This data was used by Barman [15] and Arnedo [13].
Then, we removed 11 redundant sRNAs, and used the
remaining 182 experimentally verified sRNAs as positive in-
stances. Finally, we used EMBOSS shuffleseq program to
randomly shuffle the complete genome sequence [42], and
utilized the same position information to extract sequence
fragments from the shuffled sequence. We used these se-
quence fragments as negative instances.
Actually, we can shuffle the complete genome se-

quence many times to obtain different negative instances
datasets. To avoid the influence of data bias, we con-
structed one balanced dataset and four imbalanced data-
sets. The ratios of positive instances to negative
instances are 1:1, 1:2, 1:3, 1:4 and 1:5, respectively.
Table 1 summarizes five datasets used in this paper.
Besides, we analyzed the length distribution of SLT2

sRNA sequences. Figure 1 demonstrates that lengths of

Tang et al. BMC Bioinformatics 2018, 19(Suppl 20):503 Page 14 of 93

http://www.ncbi.nlm.nih.gov/nuccore/16763390?report=fasta
http://www.ncbi.nlm.nih.gov/nuccore/16763390?report=fasta


sRNA sequences are significantly different. The majority
of sRNA sequences have typical lengths that range from
45 nt to 250 nt, but some sRNA sequences may have
more than 500 nucleotides. In our SLT2 sRNA dataset,
the shortest sRNA sequence has 45 nucleotides.

Sequence-derived features of sRNAs
The sRNA sequences have four types of nucleotides A, C,
G and T, and their lengths are quite different. As far as we
know, lots of RNA sequence-derived features have been
proposed to characterize sRNAs, and several web servers
and software [43–46] have been developed to extract fea-
tures from sequences. In this work, we consider the fol-
lowing features for the sRNA prediction, and they are
implemented by using the python package “repDNA” [43].
k-spectrum profile: k-spectrum profile is also known

as k-mer profile. The spectrum profile describes repeated
patterns of sequences. There are 4k types of k-length
contiguous subsequences, and the k-spectrum profile of
a sRNA sequence is to count k-length contiguous subse-
quences [47]. Given a sequence x, the k-spectrum profile
is defined as f spek ðxÞ ¼ ðc1; c2;…c4k Þ , where ci is the oc-
currence frequency of corresponding k-length contigu-
ous subsequences. Spectrum profile has been widely
adopted in biological applications [14, 15, 31, 32].
Mismatch profile: (k, m)-mismatch profile is similar to

k-spectrum profile but allowing up to m (m < k) mis-
matches in the exact k-length contiguous subsequences
[48, 49]. Given a sequence x, the (k, m)-mismatch profile

is defined as f mis
k ðxÞ ¼ ðPm

j¼0c1 j;
Pm

j¼0c2 j;…;
Pm

j¼0c4k jÞ ,
where cij denotes the occurrence frequency of the ith
k-length contiguous subsequence with j mismatches.
Reverse compliment k-mer (k-RevcKmer): the feature is

a kind of deformation of k-mer [43, 50], and it takes the
reverse complement of RNA into consideration. Given a
sequence x, the reverse complement k-length contiguous
subsequences are removed after generating k-mer, then
the occurrence frequencies of the remaining k-length sub-
sequences are calculated to constitute a feature vector.
Pseudo nucleotide composition features: the feature

contains occurrences of different di-nucleotides or
tri-nucleotides as well as their physicochemical properties
[43]. There are four types of pseudo nucleotide composition
features: parallel correlation pseudo di-nucleotide
composition (PCPseDNC), parallel correlation pseudo
tri-nucleotide composition (PCPseTNC), series correlation
pseudo di-nucleotide composition (SCPseDNC), and series
correlation pseudo tri-nucleotide composition (SCPseTNC).
The pseudo nucleotide composition features have a param-
eter λ representing the highest counted rank of the correl-
ation along a sequence. More details about pseudo
nucleotide composition features are described in [32, 43].
For the spectrum profile features, we considered the

1-spectrum profile, 2-spectrum profile, 3-spectrum pro-
file, 4-spectrum profile and 5-spectrum profile. For the
mismatch profile features, we considered the (3, m)-mis-
match profile, (4, m)-mismatch profile and (5, m)-mis-
match profile. For the reverse compliment k-mer
features, we considered the 1-RevcKmer, 2-RevcKmer,
3-RevcKmer, 4-RevcKmer and 5-RevcKmer. For the
pseudo nucleotide composition features, we considered
PCPseDNC, PCPseTNC, SCPseDNC and SCPseTNC.
All these features are demonstrated in Table 2.

Ensemble learning strategies
Since there are various sequence-derived features, how to
take full advantage of these features is critical for the sRNA
prediction. In machine learning, ensemble learning is a use-
ful technique which can integrate diverse features to pro-
duce better performances and generalization [51]. Studies
have shown that ensemble learning can successfully solve a
number of bioinformatics problems [52–60]. We develop
two ensemble learning strategies for the sRNA prediction:
the weighted average ensemble method (WAEM) and the
neural network ensemble method (NNEM).
Figure 2 shows the workflow of two ensemble learning

methods. First, we obtain experimentally verified sRNAs
of SLT2 and construct pseudo sRNAs to compile the
benchmark datasets. Second, we extract various RNA
sequence-derived features. Third, two ensemble learning
strategies (WAEM and NNEM) are proposed to make
the best of these features for the sRNA prediction.

Table 1 Benchmark datasets of SLT2

Dataset Ratio #Positive instances #Negative instances

Balanced 1:1 182 182

Imbalanced 1:2 182 364

1:3 182 546

1:4 182 728

1:5 182 910

Fig. 1 The length distribution of sRNAs in SLT2
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Weighted average ensemble method
As shown in Fig. 2, WAEM relies on the basic predictors
and the weighted average ensemble rule. The basic pre-
dictors are the primary component in WAEM, and they
can be constructed by using different features or differ-
ent machine learning classifiers. Since we consider a var-
iety of sequence-derived features, we adopt a suitable
machine learning classifier to build basic predictors.

Here, we compared two popular machine learning classi-
fiers: random forest (RF) and support vector machine
(SVM), and we adopted RF to construct individual se-
quence feature-based prediction models as basic predic-
tors because of its high accuracy (results are provided in
the section “Evaluation of features”).
We design a weighted average ensemble rule to com-

bine the outputs of base predictors for the sRNA

Table 2 Sequence-derived features of sRNA

Feature group Index Feature Dimension Parameter

Spectrum profile F1 1-spectrum profile 4 No parameter

F2 2-spectrum profile 16 No parameter

F3 3-spectrum profile 64 No parameter

F4 4-spectrum profile 256 No parameter

F5 5-spectrum profile 1024 No parameter

Mismatch profile F6 (3, m)-mismatch profile 64 m: the max mismatches

F7 (4, m)-mismatch profile 256 m: the max mismatches

F8 (5, m)-mismatch profile 1024 m: the max mismatches

Reverse compliment k-mer F9 1-RevcKmer 2 No parameter

F10 2-RevcKmer 10 No parameter

F11 3-RevcKmer 32 No parameter

F12 4-RevcKmer 136 No parameter

F13 5-RevcKmer 512 No parameter

Pseudo nucleotide composition F14 PCPseDNC 16 + λ λ: the highest counted rank

F15 PCPseTNC 64 + λ λ: the highest counted rank

F16 SCPseDNC 16 + 6 × λ λ: the highest counted rank

F17 SCPseTNC 64 + 12 × λ λ: the highest counted rank

Fig. 2 The workflow of WAEM and NNEM
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prediction. Given N features, we construct N base pre-
dictors fi(i = 1, 2,…N). For a new RNA sequence x, fi(x)
represents the prediction probability of being predicted
as a real sRNA by the base predictors fi. The final pre-
diction probability of the sequence x is given by

F xð Þ ¼
XN

i¼1

wi f i xð Þ
XN

i¼1

wi ¼ 1 ; wi≥0

ð1Þ

Here, we consider the determination of weights as an
optimization problem and solve it by the genetic algo-
rithm (GA). GA is an intelligent search algorithm which
simulates the biological evolution, and its capability for
the optimization problems has been proved in many ap-
plications [31, 36].
In the GA optimization, our purpose is to search the

max AUC score of WAEM on the training data. First,
we randomly generate 100 weight vectors as the candi-
date solutions, and encode these candidates into chro-
mosomes as the initial population. For a chromosome,
we adopt the AUC score of NNEM as the fitness score.
Then, we update the population by three operators, i.e.,
selection, crossover and mutation. The selection prob-
ability, crossover probability and mutation probability
are dynamically adjusted according to the fitness scores
of chromosomes [61]. After 200 generations of update,
we determine optimal weights. Finally, the ensemble sys-
tem makes predictions for the testing set.

Neural network ensemble method
Artificial neural networks (ANNs) are popular prediction
models inspired by the human brain. An ANN has a collec-
tion of connected nodes called artificial neurons, and the
connection can transmit a signal from one neuron to an-
other neuron. A multilayer perceptron (MLP) is a class of
feedforward artificial neural networks. An MLP consists of
an input layer, an output layer and one or more hidden
layers. The information of input data is processed by activa-
tion functions in hidden layers and passed through to the
units in each layer. MLP utilizes a supervised learning tech-
nique called backpropagation training algorithm for training.
Here, we design a multilayer perceptron model (NNEM) to
integrate diverse sRNA sequence-derived features.
Figure 2 presents the neural network architecture of

NNEM. We merge features from the same feature
groups to construct four types of feature vectors: SP fea-
tures, MP features, RCK features and PNC features, and
they are from feature group spectrum profile, mismatch
profile, reverse compliment k-mer and pseudo nucleo-
tide composition respectively. Then, we implement two
steps to construct a NNEM model. In the first step, we

build four MLP models by utilizing the four types of
merged feature vectors, and our purpose is to integrate
features from the same feature groups. The outputs of
four MLP models are the node named “SP”, “MP”,
“RCK” and “PNC” respectively. In the second step, we
use outputs of four MLP models as inputs to build a
MLP model, which can produce final predictions.
We utilize backpropagation training algorithm to train

MLP models in NNEM. For NNEM, the parameters of
MLP models are extremely important and they can deter-
mine the final performances. In the first step, the cross en-
tropy and L2 regularization term are used as loss function.
We use L2 regularization term because the lengths of the
feature vectors are greater than the sizes of datasets. We
use the python package “scikit-learn” to implement four
MLP models. We adopt one hidden layer whose activation
function is the “relu” function. The size of the four hidden
layers are all set to 700 and the L2 regularization term par-
ameter is set to 0.3. In the second step, we use cross en-
tropy as loss function. We implement the MLP model by
using Tensorflow. Similarly, we use one hidden layer, which
has 10 nodes, and adopt the “relu” activation function.

Evaluation metrics
In this paper, we estimate performances of prediction
models by 5-fold cross validation (5-CV). In the 5-CV,
the whole dataset is randomly divided into 5 equal-sized
subsets and each subset is constructed by means of
stratified sampling from the dataset. Then four subsets
are combined as the training set, and the remaining sub-
set is used as the testing set in each fold of 5-CV. We
construct prediction models on the training set and then
make predictions for the testing set. The process of
training and testing is performed until each subset has
been used for testing, and averaged performances over
five folds are adopted as overall performances of models.
Here, we adopt several common performance metrics

of binary classification problem to evaluate perfor-
mances of the proposed method. According to the real
labels and the predicted labels, instances can be divided
into four classes: true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). Therefore,
four metrics: sensitivity (SN), specificity (SP), accuracy
(ACC) and AUC score are defined as follows.

SN ¼ TP
TP þ FN

SP ¼ TN
TN þ FP

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

The AUC score is the area under receiver operating
characteristic curve (ROC) which is plotted by using the
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false positive rate (1-specificity) against the true positive
rate (sensitivity) for different cutoff thresholds. Clearly,
the larger the AUC score is, the better the predictor per-
forms. We adopt the AUC score as the primary metric
because it assesses the performance regardless of any
threshold.

Results and discussion
Parameters of features
As shown in Table 2, among all seventeen sRNA
sequence-derived features we consider, the features in
mismatch profile feature group and pseudo nucleotide
composition feature group have parameters. For better
prediction in the following study, it is requisite to discuss
how to set parameters in the computational experiments.
For mismatch profile feature group, the parameter k

means the length of contiguous subsequences and m
represents the max mismatches. Commonly, m is set to
less than one-third of k. In this paper, m is set to 3, 4
and 5, therefore, we consider (3, 1)-mismatch profile, (4,
1)-mismatch profile and (5, 1)-mismatch profile.
For pseudo nucleotide composition feature group, the

parameter λ is an integer which means the highest
counted rank of the correlation along a sequence. In
PCPseDNC and SCPseDNC, λ ranges from 1 to L − 2. In
PCPseTNC and SCPseTNC, λ ranges from 1 to L − 3. L
is the length of the shortest sRNA sequence, and is 45
according to the section “Datasets”. To select the best
parameter λ on the four features, we evaluated the four
features with different parameters on the balanced data-
set by using 5-fold cross validation, and random forest

was used to construct prediction models. As shown in
Fig. 3 (a) and Fig. 3 (b), when λ was set to 9, 15, 1 and 1,
PCPseDNC, SCPseDNC, PCPseTNC and SCPseTNC
could achieve the greatest AUC scores. Therefore, we
used these values for pseudo nucleotide composition in
the following study.

Evaluation of features
For the comprehensive study, we compared the capabilities
of the sequence-derived features in Table 2 for the sRNAs
prediction. We constructed individual feature-based
models and implemented 20 runs of 5-fold cross validation
on the five benchmark datasets in the section “Datasets”.
First of all, to test different machine learning classi-

fiers, we constructed models on the balanced dataset by
using random forest (RF) and support vector machine
(SVM). Here, we respectively implemented RF and SVM
by using python “scikit-learn” package. For RF, we set
the number of trees in the forest to 200 and used the de-
fault value for other parameters. For SVM, we tested dif-
ferent kernels and adopted RBF kernel due to its better
performance. As shown in Table 3, RF outperforms
SVM on twelve features in terms of AUC scores. Hence,
we adopted RF as the classification engine to build pre-
diction models in the following study.
Furthermore, to test the influences of ratios of positive

instances vs. negative instances on performances of pre-
diction models, we constructed models by using RF on
the five benchmark datasets. As shown in Table 4,
different prediction models may produce similar perfor-
mances on different benchmark datasets, which indicates

Fig. 3 a AUC scores of the PCPseDNC and SCPseDNC-based models with the variation of the parameter λ on the balanced dataset; b AUC scores
of the PCPseTNC and SCPseTNC-based models with the variation of the parameter λ on the balanced dataset
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Table 3 Performances of individual feature-based models constructed by RF and SVM on the balanced dataset

Index Feature AUC ACC SN SP

RF SVM RF SVM RF SVM RF SVM

F1 1-spectrum profile 0.682 0.657 0.560 0.512 0.912 0.985 0.209 0.039

F2 2-spectrum profile 0.829 0.821 0.756 0.749 0.792 0.788 0.720 0.711

F3 3-spectrum profile 0.909 0.874 0.834 0.800 0.863 0.835 0.805 0.765

F4 4-spectrum profile 0.923 0.909 0.860 0.840 0.873 0.866 0.846 0.814

F5 5-spectrum profile 0.912 0.896 0.842 0.822 0.847 0.874 0.838 0.770

F6 (3, m)-mismatch profile 0.769 0.795 0.679 0.717 0.807 0.812 0.552 0.622

F7 (4, m)-mismatch profile 0.880 0.885 0.797 0.816 0.814 0.843 0.780 0.789

F8 (5, m)-mismatch profile 0.913 0.907 0.835 0.832 0.848 0.882 0.822 0.782

F9 1-RevcKmer 0.632 0.655 0.516 0.542 0.972 0.935 0.060 0.150

F10 2-RevcKmer 0.842 0.804 0.765 0.726 0.828 0.817 0.702 0.636

F11 3-RevcKmer 0.924 0.868 0.855 0.791 0.848 0.831 0.863 0.750

F12 4-RevcKmer 0.938 0.894 0.880 0.818 0.880 0.869 0.880 0.768

F13 5-RevcKmer 0.937 0.906 0.874 0.829 0.859 0.856 0.889 0.802

F14 PCPseDNC 0.895 0.905 0.827 0.828 0.850 0.868 0.803 0.787

F15 PCPseTNC 0.931 0.922 0.862 0.857 0.856 0.848 0.868 0.865

F16 SCPseDNC 0.902 0.888 0.825 0.811 0.841 0.810 0.809 0.811

F17 SCPseTNC 0.905 0.910 0.825 0.840 0.854 0.841 0.795 0.839

Table 4 Performances of individual feature-based models constructed by RF on the benchmark datasets

Index AUC ACC

Balanced Imbalanced Balanced Imbalanced

1:1 1:2 1:3 1:4 1:5 1:1 1:2 1:3 1:4 1:5

F1 0.682 0.718 0.730 0.729 0.738 0.560 0.691 0.754 0.804 0.840

F2 0.829 0.847 0.862 0.865 0.868 0.756 0.789 0.836 0.863 0.877

F3 0.909 0.917 0.921 0.928 0.930 0.834 0.856 0.887 0.905 0.915

F4 0.923 0.933 0.930 0.934 0.933 0.860 0.884 0.906 0.921 0.930

F5 0.912 0.894 0.872 0.869 0.863 0.842 0.864 0.882 0.896 0.910

F6 0.769 0.808 0.822 0.832 0.840 0.679 0.766 0.809 0.843 0.866

F7 0.880 0.902 0.910 0.917 0.922 0.797 0.842 0.870 0.894 0.909

F8 0.913 0.924 0.929 0.938 0.939 0.835 0.871 0.901 0.916 0.927

F9 0.632 0.657 0.667 0.679 0.691 0.516 0.619 0.707 0.755 0.791

F10 0.842 0.847 0.865 0.875 0.875 0.765 0.796 0.836 0.867 0.882

F11 0.924 0.926 0.933 0.941 0.944 0.855 0.879 0.901 0.920 0.930

F12 0.938 0.949 0.948 0.954 0.954 0.880 0.902 0.918 0.931 0.942

F13 0.937 0.932 0.923 0.924 0.920 0.874 0.897 0.910 0.925 0.936

F14 0.895 0.883 0.886 0.888 0.884 0.827 0.805 0.835 0.864 0.876

F15 0.931 0.922 0.922 0.924 0.921 0.862 0.855 0.876 0.895 0.902

F16 0.902 0.894 0.890 0.890 0.887 0.825 0.833 0.859 0.882 0.897

F17 0.905 0.898 0.901 0.903 0.899 0.825 0.822 0.854 0.877 0.897
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that these sequence-derived features are robust to the
data ratio. In general, most features can produce high--
accuracy results on the balanced dataset and four
imbalanced datasets. Among the seventeen features,
4-spectrum profile (F4), 4-RevcKmer (F12) and
PCPseTNC (F15) features have better performances than
other features for the sRNA prediction. Since different fea-
tures can bring different information and no features have
the extremely poor performances. Therefore, we adopted
all features to build the ensemble learning systems.

Performances of ensemble methods
In this section, we evaluated the performances of the
weighted average ensemble method (WAEM) and the
neural network ensemble method (NNEM) by imple-
menting 20 runs of 5-fold cross validation on the five
benchmark datasets.
As shown in Table 5, WAEM achieves AUC score

of 0.942 on the balanced dataset and outperforms
the best-performed individual feature-based model,
which is based on 4-RevcKmer feature (F12) and
produces the AUC score of 0.938. Similarly, WAEM
performs accurate prediction on the datasets with
imbalance ratios 1:2, 1:3, 1:4 and 1:5, and achieves
AUC scores of 0.952, 0.951, 0.957 and 0.957 respect-
ively. WAEM also performs better than individual
feature-based predictors on the four imbalanced data-
sets. The results demonstrate that WAEM has not
only high-accuracy performances but also good
robustness.
We analyzed the optimal weights for individual

feature-based predictors (base predictors) in different
datasets. Weights in WAEM on the balanced dataset
and four imbalanced datasets are visualized in Fig. 4.
As we can see, weights for individual feature-based
predictors are different, and no weight is equal to
zero. The contributions of individual feature-based

predictors to WAEM are reflected by the corre-
sponding weights. Therefore, we can conclude that
every individual feature-based predictor is useful for
improving the performance of predicting SRNAs.
From Table 4, we know that the base predictors
based on the 4-RevcKmer (F12), 5-RevcKmer (F13)
and PCPseTNC (F15) features have the best perfor-
mances among all predictors, and thus 4-RevcKmer,
5-RevcKmer and PCPseTNC have greater weights
than other features, indicating they make more con-
tributions to WAEM models. This is consistent with
our expectations. At the same time, WAEM can
automatically determine the weights for base predic-
tors, and has the good interpretability.
As we can see from Table 5, NNEM produces the

AUC scores of 0.958, 0.962, 0.961, 0.962 and 0.961
on the five benchmark datasets. The performance of
NNEM is better than that of the individual
feature-based predictors, indicating that the
network-based ensemble strategy can effectively
combine diverse information to improve perfor-
mances. NNEM also produces better performances
than WAEM. Further, we tested the statistical differ-
ence between WAEM and NNEM. Table 6 displays
the P-values, which are obtained through paired
t-test of AUCs of WAEM and NNEM on five
benchmark datasets. The result demonstrates that
NNEM is significantly better than WAEM on all
five benchmark datasets (P-value< 0.05). The pos-
sible reason is that the linear ensemble learning
strategy in WAEM cannot deal with complicated
data and the neural ensemble learning strategy is
more suitable for our task.

Comparison with existing sRNA prediction methods
To the best of our knowledge, several state-of-the-art
machine learning-based computational methods have
been proposed to predict sRNAs. Here, we adopted
the latest methods Carter’ s method [14] and
Barman’s method [15] for comparison. Carter built
SVM models to identify sRNAs by utilizing
mono-nucleotide composition and di-nucleotide com-
position. Actually, mono-nucleotide composition and
di-nucleotide composition are same as the
1-spectrum profile and 2-spectrum profile which are
used in our models. Barman also adopted SVM to
predict sRNAs by using tri-nucleotide composition,
which are 3-spectrum profile in this paper.
We respectively built different prediction models

based on the balanced dataset and four imbalanced
datasets. All models were evaluated by 5-CV. As
shown in Table 7, the AUC scores of NNEM,
WAEM, Barman’s method and Carter’s method are
0.958, 0.942, 0.938 and 0.566 on the balanced dataset

Table 5 Performances of WAEM and NNEM on the balanced
and imbalanced datasets

Dataset Ratio Method AUC ACC SN SP

Balanced 1:1 WAEM 0.942 0.887 0.888 0.868

NNEM 0.958 0.901 0.903 0.899

Imbalanced 1:2 WAEM 0.952 0.901 0.853 0.925

NNEM 0.962 0.909 0.872 0.927

1:3 WAEM 0.951 0.915 0.818 0.948

NNEM 0.961 0.920 0.819 0.954

1:4 WAEM 0.957 0.929 0.817 0.956

NNEM 0.962 0.931 0.810 0.961

1:5 WAEM 0.957 0.934 0.808 0.959

NNEM 0.961 0.940 0.782 0.972
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respectively. Compared with Barman’s method and
Carter’s method, NNEM’s average AUC scores are 2.1
and 69.3% higher and WAEM’s average AUC scores
are 0.4 and 66.4% higher. WAEM and NNEM also
yield much better ACC scores than Barman’s method
and Carter’s method. Moreover, WAEM and NNEM
produce greater AUC scores and ACC scores on four
imbalanced datasets than Barman’s method and
Carter’s method. All results demonstrate that WAEM
and NNEM are more powerful than Barman’s
method and Carter’s method for the sRNA predic-
tion. There are several reasons why WAEM and
NNEM have excellent prediction performances. First,
we consider seventeen sRNA sequence-derived fea-
tures in our models rather than one or two features
in the other models, and this can guarantee the in-
formation diversity. Second, we utilize a more effi-
cient classifier to build basic predictors. Finally, the
ensemble learning strategies provide an efficient way
to integrate a variety of features for the better sRNA
predicting performances.

Conclusions
Bacterial small non-coding RNAs are regarded as im-
portant regulators and play essential roles in control-
ling diverse physiological processes. Predicting sRNAs
is an important and challenging topic, which provides

clues for understanding the biological mechanism of
bacteria. This paper is aimed to design the computa-
tional method for the sRNA prediction. We consider
various sRNA sequence-derived features. Then we
propose two ensemble learning methods (WAEM and
NNEM) to integrate diverse features for the sRNA
prediction. Experimental results based on the

Fig. 4 Optimal weights for the WAEM models on the benchmark datasets. dataset1 means balanced dataset 1:1, dataset2 means imbalanced
dataset 1:2, dataset3 means imbalanced dataset 1:3, dataset4 means imbalanced dataset 1:4, dataset5 means imbalanced dataset 1:5

Table 6 P-values of paired t-test on the AUCs of WAEM and
NNEM on benchmark datasets

Dataset Balanced Imbalanced

1:1 1:2 1:3 1:4 1:5

P-values 1.67E-09 3.07E-06 7.26E-09 1.12E-05 5.70E-03

Table 7 Performances of different methods on benchmark datasets

Dataset Ratio Method AUC ACC SN SP

Balanced 1:1 Carter’s method 0.566 0.511 0.264 0.758

Barman’s method 0.938 0.882 0.846 0.918

WAEM 0.942 0.887 0.888 0.868

NNEM 0.958 0.901 0.903 0.899

Imbalanced 1:2 Carter’s method 0.602 0.678 0.033 1.000

Barman’s method 0.937 0.884 0.851 0.916

WAEM 0.952 0.901 0.853 0.925

NNEM 0.962 0.909 0.872 0.927

1:3 Carter’s method 0.619 0.757 0.030 1.000

Barman’s method 0.944 0873 0.818 0.927

WAEM 0.951 0.915 0.818 0.948

NNEM 0.961 0.920 0.819 0.954

1:4 Carter’s method 0.627 0.805 0.025 1.000

Barman’s method 0.944 0.874 0.818 0.929

WAEM 0.957 0.929 0.817 0.956

NNEM 0.962 0.931 0.810 0.961

1:5 Carter’s method 0.636 0.835 0.011 1.000

Barman’s method 0.943 0.875 0.884 0.865

WAEM 0.957 0.934 0.808 0.959

NNEM 0.961 0.940 0.782 0.972
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benchmark SLT2 datasets show that WAEM and
NNEM can produce high-accuracy performances
when evaluated by 5-fold cross validation. By fair
comparison on same datasets, WAEM and NNEM
outperform state-of-the-art methods. In conclusion,
the methods we proposed are promising tools for
predicting sRNAs in bacteria.
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