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Abstract

near-native models.

produce any near-native complex models.

Background: Atomic details of protein-DNA complexes can provide insightful information for better understanding
of the function and binding specificity of DNA binding proteins. In addition to experimental methods for solving
protein-DNA complex structures, protein-DNA docking can be used to predict native or near-native complex
models. A docking program typically generates a large number of complex conformations and predicts the
complex model(s) based on interaction energies between protein and DNA. However, the prediction accuracy is
hampered by current approaches to model assessment, especially when docking simulations fail to produce any

Results: We present here a Support Vector Machine (SVM)-based approach for quality assessment of the predicted
transcription factor (TF)-DNA complex models. Besides a knowledge-based protein-DNA interaction potential DDNA3, we
applied several structural features that have been shown to play important roles in binding specificity between
transcription factors and DNA molecules to quality assessment of complex models. To address the issue of unbalanced
positive and negative cases in the training dataset, we applied hard-negative mining, an iterative training process that
selects an initial training dataset by combining all of the positive cases and a random sample from the negative cases.
Results show that the SYM model greatly improves prediction accuracy (84.2%) over two knowledge-based protein-DNA
interaction potentials, orientation potential (60.8%) and DDNA3 (684%). The improvement is achieved through reducing
the number of false positive predictions, especially for the hard docking cases, in which a docking algorithm fails to

Conclusions: A learning-based SVM scoring model with structural features for specific protein-DNA binding and an
atomic-level protein-DNA interaction potential DDNA3 significantly improves prediction accuracy of complex models by
successfully identifying cases without near-native structural models.

Keywords: Transcription factor, Rigid docking, Knowledge-based potential, Support vector machine, Protein-DNA binding

Background

Protein-DNA interactions play crucial roles in many
cellular processes, including specific binding between
transcription factors (TFs) and their DNA binding
sequences in transcriptional regulation. A deeper
understanding of protein-DNA interactions and their
roles in TF-DNA binding specificity, gene regulatory

* Correspondence: jguo4@uncc.edu

Rosario I. Corona and Sanjana Sudarshan contributed equally to this work.
'Department of Bioinformatics and Genomics, University of North Carolina at
Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA

Full list of author information is available at the end of the article

K BMC

networks and structure-based drug design requires
accurate TF-DNA complex structures. However, des-
pite technical advances in experimental structure
determination, only a very small percentage (~3%) of
structures in the Protein Data Bank (PDB) are
protein-DNA complexes [1-3]. The main technical
barriers in experimental structure determination, such
as the difficulty in crystallizing complexes and size
limitations, are not expected to be overcome anytime
in the foreseeable future [4, 5]. Computational dock-
ing between protein and DNA, on the other hand,
has been considered as a cost-efficient alternative to
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the experimental methods for filling the void in the com-
plex structure landscape. More importantly, success in
docking technology development has great potentials in
structure-based, computer-aided drug design as transcrip-
tion factors represent one of the prime drug targets since
mutations and aberrant TF-DNA interactions are impli-
cated in many diseases [6, 7].

Protein-DNA docking algorithms can be broadly
classified into two groups, rigid docking and flexible
docking [8, 9]. Rigid docking algorithms sample the
relative positions between protein and DNA while
keeping the conformations of both protein and DNA
molecules unchanged. Flexible docking algorithms, on
the other hand, also consider the conformational
changes of protein and DNA when sampling different
positions between protein and DNA. While the rigid
docking methods are relatively simple, they are very
valuable in testing the accuracy of energy functions
for binding affinity and can serve as a starting point
for flexible docking predictions. A number of protein-
DNA docking algorithms have been developed in the
past two decades [2, 10-14]. These methods generally
use knowledge-based or physics-based interaction
potentials, or a combination of both, to guide the
docking process and select complex models. The
accuracy of a docking algorithm is usually reported as
the percent of cases in which the algorithm makes a
good prediction in terms of root mean square devi-
ation (RMSD), either DNA backbone RMSD or inter-
face RMSD (iRMSD), or fraction of native contacts
(NC%) between the predicted complex model and the
native structure [2, 10, 15, 16].

We have previously developed two residue-level,
knowledge-based TF-DNA interaction potentials for
evaluation of TF-DNA binding affinity as well as for
protein-DNA docking simulations [13, 16-19]. The
first one is a multi-body potential, which uses DNA
tri-nucleotides, called triplets, as an interaction unit
of DNA to quantitate the interactions between TF
and DNA molecules. This multi-body potential con-
siders the environment of protein-DNA interactions
and can capture the essential physical interactions
between protein and DNA as it shows specific strong
hydrogen-bond contributions at short distances as
well as van der Waals repulsion and dispersion
attraction [17]. The second 1is an orientation-
dependent interaction potential that introduces an
angle term to better capture the hydrogen bond
interactions between protein and DNA [16]. The
multi-body and orientation potentials were applied
to a dataset of 38 TF-DNA complexes using a
Monte Carlo-based rigid-docking algorithm [8, 16].
The docking method makes predictions by selecting
a TF-DNA complex conformation with the lowest
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energy in each case. Docking with the orientation po-
tential resulted in a prediction accuracy of 55% (21/
38 of TF-DNA complexes) with a cutoff of 3A
RMSD. Among the 38 test cases, five of the them
with near-native structures (RMSD,, predSBA) were
not correctly predicted, resulting in 13% (5/38) false
negative (FN) predictions. The docking program also
failed to produce any near-native TF-DNA complex
conformations in 32% (12/38) of the cases. Neverthe-
less, the docked conformation with the lowest inter-
action energy was predicted as a complex model in
each of the 12 cases, resulting in a high number of
false positive (FP) predictions. Even though DDNAS3,
a knowledge-based atomic-level protein-DNA inter-
action potential, performed better in identifying
near-native protein-DNA conformations, it could not
identify the cases with no near-native models [20].

Quality assessment in protein-DNA docking predic-
tions has important implications in biological and
medical applications. Docking algorithms have gener-
ally relied on interaction energy for model selection,
which always predict at least one model, right or
wrong [2, 10, 16, 21]. While false negative predictions
may result in missed opportunities, false positive pre-
dictions represent a much bigger problem due to the
enormous costs associated with drug development
and tests [22, 23]. To make the docking methods
more valuable and applicable to solving biological
problems, a reliable confidence measure of the
predicted complex models is clearly needed. Molecu-
lar dynamics (MD) simulations have been applied to
filter out false positive predictions, however MD
simulations are computationally expensive, especially
for a large number of cases [15, 24]. Here we present
a learning-based method by applying a support vector
machine (SVM)-based model to evaluate the quality
of TE-DNA complex models. The main features used
for SVM training and testing are based on our recent
study that investigates structural factors for specific
protein-DNA interactions [25]. These features include
protein-DNA contact area (pdca), the number of
protein-DNA base hydrogen bonds (pbhb), and the
number of bidentate hydrogen bonds (bidentate HB)
between protein sidechains and DNA bases [25]. The
SVM model generates a score that indicates the
probability of a predicted TE-DNA complex being a
native or near-native structure. Results on the testing
set of 38 TF-DNA complexes show that the SVM
model greatly improves prediction accuracy, from
60.8% (orientation potential) and 68.4% (DDNA3) to
84.2% (SVM). It significantly reduces the number of
false positive predictions by correctly recognizing the
cases that fail to generate any near-native TE-DNA
complex conformations.
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Methods

Training and testing datasets

The training dataset has 160 TF-DNA complex structures
that were previously compiled for developing a knowledge-
based orientation potential [16]. To generate TF-DNA
complex models, the protein and DNA structures of each
TE-DNA complex in the training set were separated first.
Rigid-body docking simulations were then carried out with
our in-house Monte Carlo-based docking program [13, 16].
A total of 400 docking simulations (200 with the
orientation potential and 200 with the multi-body
potential) for each protein-DNA pair in the training
set were carried out in an attempt to increase the
number of positive (near-native) cases for training
[17]. Of the 160 TF-DNA complexes in the training
set, 19 cases failed to produce all 400 models. There-
fore, 141 cases that have all 400 predicted models
were used for training. We used the benchmark set
developed for rigid TE-DNA docking as a testing set,
which has 38 non-redundant TF-DNA complex struc-
tures and no overlap with complex structures in the
training set [8, 16, 26]. For each case in the testing
set, 200 docking models were generated using the
orientation potential. The RMSD between the pre-
dicted TF-DNA complex model and the native struc-
ture is calculated using DNA backbone heavy atoms
after superimposing the protein conformations of the
two complexes [10, 16]. If the RMSD is <3 A, the
model is labeled as a “good” (or positive) prediction;
otherwise, it is a “bad” (or negative) prediction. It
should be pointed out that the cutoff value for classi-
fying a complex model as a positive or negative can
be modified to a more stringent (e.g. < 1A) or
relaxed (e.g. < 5A) value as needed for different
applications. In addition, the positive or negative
cases can be defined by a different metric, such as
iRMSD or NC% [2, 10, 15, 16].

Features for the SVM model

A total of four features, which include three structural
features, pdca, pbhb, and bidentate HB, and an atomic-
level protein-DNA interaction potential DDNA3, were
used to train the SVM model [25-27]. Even though we
found several other structural features that show clear
patterns among the three specificity groups, highly
specific (HS), multi-specific (MS) and non-specific (NS)
in our previous study, they were not included for SVM
model training since they overlap with the three
selected features (data not shown) [25, 26]. The pdca is
calculated based on the difference of solvent accessible
surface area between the individual protein and DNA
component and the protein-DNA complex [26]. Nac-
cess v.2.1.1 with default parameters was used for calcu-
lating the solvent accessible surface area [28]. All
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hydrogen bonds between protein and DNA in a
TE-DNA complex were identified with HBPLUS
v.3.06 [29]. bidentate HBs are those that form at least
two hydrogen bonds with different acceptor and
donor atoms between residue and bases.

SVM model

A non-linear SVM model with radial basis function
(RBF) kernel was used for training and testing. Platt scal-
ing was applied to transform the binary classifier into a
scoring function [30]. The SVM score p, ranging from 0
to 1, is a probability indicating the likelihood of a
protein-DNA complex to be a near-native or native
structure. For the purpose of an easy comparison with
other scoring methods, including the orientation and
DDNAS3 protein-DNA interaction potentials, we calcu-
lated I — p values as the SVM score. Therefore, the
lower the I- p, the greater the confidence in the pre-
dicted TF-DNA complex models. A linear kernel was
also applied to train the SVM models to see if there are
any performance differences between linear and
non-linear SVM models. R package el1071, which has
embedded functionalities with both linear and RBF
kernels, and Platt scaling, was used for training the SVM
models.

Balanced class selection

For most of the cases in the training dataset, the
number of near-native models produced from docking
simulations is far lower than the number of bad
models. Among all the simulation models, only 7.6%
are considered positives with a 3 A RMSD cutoff. The
majority of the docked complex models (92.4%) have
more than 3A RMSD compared to their correspond-
ing native complex structures. To reduce training
bias, we applied a technique called hard-negative
mining, which applies an iterative training process by
selecting an initial training dataset with all the posi-
tive cases and a random sample of the same size
from the negative cases. It then trains a model based
on the initial training dataset and adds to it the cases
that resulted in false positives after previous training,
until the training dataset remains unchanged [26].

Performance evaluatuion

We used two methods for performance evaluation in
training and testing. The first one is Matthews Cor-
relation Coefficient (MCC), a widely-used method for
assessing binary classifiers. Unlike other measures
such as precision that is biased towards increasing
the number of true positive cases only, MCC evalu-
ates the performance by considering all four cases,
true positive (TP), true negative (TN), false positive
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(FP), and false negative (FN), as shown in Eq. 1. MCC also
has the advantage when the number of positive and nega-
tive cases are unbalanced, making it particularly useful for
this study.

TP x TN-FP x FN
/(TP + FP)(TP + FN)(IN + FP)(TN + FN)

(1)

MCC

In addition to MCC, prediction accuracy (Eq. 2) was
used for evaluating the model performance on the test-
ing set. A probability cut-off of 0.5 for the SVM score p
was applied for assigning a good (I-p<0.5) or a bad
(I-p=0.5) prediction. If the best score out of 200
predictions is < 0.5 with RMSD <3 A, then the case is a TD;
if the best score is < 0.5, but the RMSD of the model is more
than 3 A, then the case is defined as FP; If the best score is
>0.5, and the minimum RMSD of the 200 predictions is
greater than 3 A i, the docking algorithm fails to produce
any good models, the case is classified as TN. How-
ever, if the best score is >0.5, but there is at least one
near native model (RMSD <3 A), then it is considered
as a FN.

B TP + TN
ccuracy =
Y T IP+EP+ EN + IN
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Results

As described in the Methods section, hard-negative
mining was applied to address the issue of unbalanced
number of positive and negative models, in which an
initial random sample of the negative cases was selected
from the training dataset. To test the robustness of the
method, 30 independent SVM models were carried out
for training and testing. The overall MCC values for the
training and testing datasets with linear or RBF kernels
are shown in Fig. la. There is no apparent difference of
performances between the linear kernel and the RBF
kernel, 0.69 (linear) and 0.70 (RBF) for the training data-
set, and 0.78 (linear) and 0.76 (RBF) for the testing set
respectively. The distributions of the MCC values of the
30 independent models show very small variations, sug-
gesting that an SVM model with the four selected
features is very stable. The SVM models significantly
improve the prediction accuracy 84.2% (32/38) over the
orientation potential 60.8% (23/38) and DDNA3 poten-
tial 68.4% (26/38) (Fig. 1b). It is not surprising that all
30 SVM models produced the same accuracy since the
models show very small variations in both the training
and testing sets (Fig. 1a).

The MCC values of the testing set are higher than
those of the training set (Fig. 1a), which may reflect the
different ways of selecting protein-DNA complexes
historically for the training and testing cases. For the
training set, each case is a single TF chain and DNA
complex [16]. However, in the testing set, the protein
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component in each TF-DNA complex is a transcription
factor unit and DNA, which can be a single protein
chain, two interacting protein chains, or even four inter-
acting protein chains in some cases [8]. As a result, the
interface area and the number of hydrogen bonds
between protein and DNA in the testing set is generally
larger than the cases in the training set. A larger inter-
face area and more hydrogen bonds make it easier for
accurate docking predictions [8, 31]. To test if the MCC
difference is a result of the protein components between
the training and testing sets, we randomly split the dock-
ing results in the training set into a new training set
(106 complexes) and a new testing set (35 complexes)
and repeated it 200 times. The results show that when
comparable protein-DNA complexes are used for train-
ing and testing, the MCC values are similar (Fig. 2a).
The testing set has a relatively larger variation than that
in the training set, a possible small sample effect as the
size of the testing set only has 35 cases, three times
smaller than the training set. In terms of the prediction
accuracy, the SVM model still outperforms both the
orientation and DDNA3 potentials (Fig. 2b), though it is
smaller than the benchmark testing set, which is not
unexpected due to differences in the interface area and
the number of hydrogen bonds (Figs. 1b and 2b).

The ability to correctly predict cases that fail to pro-
duce any near-native complex models is the main contri-
bution of the SVM model to the overall performance
improvement over the interaction energy-based predic-
tions. Ten of the 38 docking simulations (1jt0, 1rd8,
1rio, 2fio, 2ito, 2rbf, 3hdd, 1h8a, 1xpx, 1zme) did not
generate any near-native complex models. The SVM
model successfully identified all 10 of them while both
of the interaction-based methods predicted 10 false posi-
tives. Figure 3 shows three examples that compare the
predictions of the orientation potential, DDNA3 and the
SVM score. Each of the three methods had a good
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prediction of a near-native docking structure for 2c6y
(forkhead box protein K2, FoxK2) (Fig. 3a). In the case
of Ijt0 (HTH-type transcriptional regulator QacR), in
which no near-native structures were generated from the
docking simulations, both the orientation potential and
DDNAS3 selected a model with the lowest energy as the
prediction, resulting in false positive predictions in both
cases while the SVM model correctly predicted that
there were no near-native structures produced from the
docking simulations (Fig. 3b). As for 2bnw (omega tran-
scriptional repressor), both the DDNA3 and SVM model
correctly picked one of the near-native conformations as
a model while the orientation potential-based method
resulted in a false positive prediction (Fig. 3c). The
detailed results for all 38 cases are available at
Additional file 1.

The benchmark test set consists of 38 TF-DNA
complexes that are grouped into easy and hard cases as
described in our previous work [8]. The classification is
based on the number of residue-base contact (NRBC).
Seventeen TF-DNA complexes with fewer than 10 NRBC
are classified as ‘hard’ targets and the other 21 complexes
with more than 10 NRBCs are considered as ‘easy’ targets.
The prediction accuracy for the easy targets is the same
(18/21 = 85.7%) in all three prediction methods, 16 TP + 2
TN for SVM and 18 TP for both the orientation and
DDNAS3 potentials (Fig. 4). However, for the hard targets,
the SVM method improves significantly over the
knowledge-based orientation and DDNA3 potentials.
There are 5 TP (29.4%) and 8 TP (47.1%) for the orienta-
tion potential and DDNA3 respectively while there are 6
TP +8 TN (82.4%) predictions from the SVM model.
These cases are considered as hard for docking predic-
tions because it is very difficult to generate near-native
complex models from docking simulations due to incom-
plete sampling and/or the lack of more accurate inter-
action potentials [32]. Therefore, it is critical to be able to
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correctly recognize the hard cases that do not have any
near-native complex models.

The contribution of each of the four features DDNA3,
pdca, pbhb, and bidentate HB in the SVM model to the
prediction accuracy was evaluated by taking out one fea-
ture at a time and compared on the 38 test cases. Both
the MCC values and prediction accuracy decreased after
one of the four features is left out (Fig. 5). The MCC
values and accuracy data show a slightly different trend
since all the docked models are considered in MCC cal-
culation but only one prediction from each case is used
for prediction accuracy. Consistent with the results with
all four features, there are very small or no MCC varia-
tions with any three of the four features. These results
suggest that each of the four features contributes to the
prediction accuracy to some degree and a combination
of four features produces the best prediction results.

Discussion
When a protein-DNA docking simulation generates
near-native models, the knowledge-based potentials have
shown success in identifying these close to native struc-
tures. However, for cases that no near-native complex
conformations are produced, methods using interaction-
based potentials will fail and result in false positive
predictions. In this study, we developed an SVM-based
model for assessing the quality of TF-DNA complex
models using three structural features and DDNA3 and
demonstrated that this SVM model can correctly
recognize the cases without good docking solutions and
reduce the number of false positive prediction
significantly.

We found comparable performances in terms of
MCCs and prediction accuracy between the linear and
non-linear (RBF) kernels. The method is robust as there
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are very small MCC variations (Fig. 1) or lack of MCC
variations (Fig. 5) among 30 independent SVM models,
suggesting that the hard-negative mining technique can
eliminate compositional bias in the training set. The
SVM model and scoring scheme significantly improved
the prediction accuracy over both the orientation and
DDNA3 protein-DNA interaction potentials (Fig. 1).
Most importantly, our SVM based scoring function, un-
like the energy-based approaches, helps us correctly
identify the true negatives where docking algorithms fail
to produce near-native complex conformations. This is
of paramount importance in applying predicted complex
models in drug design as it can dramatically save time
and costs if we know there are no near-native models
generated from any docking program.

While the SVM scoring model predicted much better
for easy targets (~ 90% accuracy) than the hard targets in
the 38 benchmark test set, we found that it failed badly for

the case 2ac0, classified as an easy target in the rigid
docking benchmark (Additional File 1) [8]. 2ac0 is an
X-ray crystal structure of p53 in complex with their target
DNA sequence. Unlike other structures in the testing
dataset, 2 ac0 is a tetramer (dimer of dimers) [20]. A num-
ber of docked models have good SVM scores even though
they are far from the native structure (Fig. 6a). Since three
structural features, pdca, pbhb, and bidentate hydrogen
bond correlate with the size of the protein-DNA interface,
we hypothesized that the extremely large contact surface
between p53 and DNA and the number of hydrogen
bonds may be the cause of the failed prediction. To test
this idea, we separated a dimer p53 from the docked com-
plexes and redid the SVM scoring. The SVM score
correctly picked up one of the near-native conformations
(Fig. 6b). Therefore, caution should be exercised when
predicting TE-DNA complexes with vary large interaction
surface using the SVM model.
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Although the SVM model was developed with
TE-DNA complex models derived from a rigid docking
algorithm, the model can be applied to assess any
TE-DNA complex models, either from rigid docking or
flexible docking because the basic idea behind this
approach relies on interactions between protein and
DNA. While flexible docking is a much harder problem,
our method could still be applied as a post-filter to
reduce the number of false positives. In addition,
depending on the need, new SVM scoring models can
be trained using smaller or larger RMSD values than the
one (3 A) used in this study or using a different metric.
We can envision a fully developed, efficient and accurate
pipeline for TF-DNA docking predictions where the
SVM model developed in this study will serve as a confi-
dence measure for the predicted conformations or clus-
ters of conformations.

Conclusions

A combination of structural features that are important for
specific protein-DNA interaction and a powerful learning-
based SVM method can help assess the quality of complex
models from docking simulations. The key contribution of
the SVM model lies in its ability to dramatically lower the
number of false positive predictions, which has great impli-
cations in structure-based design studies.

Additional file

Additional file 1: Predictions of the 38 test cases using Orientation
potential, DDNA3, and SVM. (PDF 595 kb)

Abbreviations

FN: False negative; FP: False positive; HB: Hydrogen bond;

MCC: Matthews correlation coefficient; MD: Molecular dynamics;

NC: Native contact; NRBC: Number of residue-base contact; PDB: Protein

Data Bank; RMSD: Root mean square deviation; SVM: Support vector
machine; TF: Transcription factor; TN: True negative; TP: True positive

Acknowledgements
The authors would like to thank Dr. Richard Souvenir for his help with the
SVM training techniques.

Funding

This work was supported by the National Institutes of Health [R15GM110618
to JGJ; and National Science Foundation [DBI1356459 to J.G and DBI1356065
to S.Al. Publication costs are funded by the grant DBI1356459 to J.G.

Availability of data and materials
The datasets used in this study are publicly available from Protein Data Bank
as cited in the paper.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 19
Supplement 20, 2018: Selected articles from the IEEE BIBM International
Conference on Bioinformatics & Biomedicine (BIBM) 2017 bioinformatics. The
full contents of the supplement are available online at https.//
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-
supplement-20.

Authors’ contributions

JTG conceived the study and designed the experiment. RIC and SS carried
out the experiment and performed data analysis. SS, RIC and JTG wrote the
manuscript. JTG and SA reviewed and revised the manuscript. All authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.


https://doi.org/10.1186/s12859-018-2538-y
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-20
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-20
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-20

Corona et al. BMC Bioinformatics 2018, 19(Suppl 20):506

Author details

'Department of Bioinformatics and Genomics, University of North Carolina at
Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA. *School of
Computational Science and Engineering, Georgia Institute of Technology,
266 Ferst Drive, Atlanta, GA 30332, USA.

Published: 21 December 2018

References

1. Berman HM, Bhat TN, Bourne PE, Feng ZK Gilliland G, Weissig H, Westbrook
J. The protein data Bank and the challenge of structural genomics. Nat
Struct Biol. 2000;7:957-9.

2. Setny P, Bahadur RP, Zacharias M. Protein-DNA docking with a coarse-
grained force field. BMC Bioinformatics. 2012;13:228.

3. Sagendorf JM, Berman HM, Rohs R. DNAproDB: an interactive tool for
structural analysis of DNA-protein complexes. Nucleic Acids Res. 2017;
45(W1):W89-97.

4. Campagne S, Gervais V, Milon A. Nuclear magnetic resonance analysis of
protein-DNA interactions. J R Soc Interface. 2011;8(61):1065-78.

5. Carey MF, Peterson CL, Smale ST. Experimental strategies for the
identification of DNA-binding proteins. Cold Spring Harb Protoc. 2012;
2012(1):18-33.

6. Darnell JE Jr. Transcription factors as targets for cancer therapy. Nat Rev
Cancer. 2002;2(10):740-9.

7. Sankpal UT, Goodison S, Abdelrahim M, Basha R. Targeting Sp1 transcription
factors in prostate cancer therapy. Med Chem. 2011;7(5):518-25.

8. Kim R, Corona RI, Hong B, Guo JT. Benchmarks for flexible and rigid
transcription factor-DNA docking. BMC Struct Biol. 2011;11:45.

9. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an
overview of search algorithms and a guide to scoring functions.
Proteins. 2002;47(4):409-43.

10.  van Dijk M, van Dijk AD, Hsu V, Boelens R, Bonvin AM. Information-driven
protein-DNA docking using HADDOCK: it is a matter of flexibility. Nucleic
Acids Res. 2006;34(11):3317-25.

11. Knegtel RM, Antoon J, Rullmann C, Boelens R, Kaptein R. MONTY: a
Monte Carlo approach to protein-DNA recognition. J Mol Biol. 1994;
235(1):318-24.

12. Tuszynska I, Magnus M, Jonak K, Dawson W, Bujnicki JM. NPDock: a web
server for protein-nucleic acid docking. Nucleic Acids Res. 2015;43(W1):
W425-30.

13. Liu Z Guo JT, Li T, Xu Y. Structure-based prediction of transcription factor
binding sites using a protein-DNA docking approach. Proteins. 2008;72(4):
1114-24.

14.  Setny P, Zacharias M. A coarse-grained force field for protein-RNA docking.
Nucleic Acids Res. 2011;39(21):9118-29.

15. Chandrasekaran A, Chan J, Lim C, Yang LW. Protein dynamics and contact
topology reveal protein-DNA binding orientation. J Chem Theory Comput.
2016;12(11):5269-77.

16. Takeda T, Corona RI, Guo JT. A knowledge-based orientation potential for
transcription factor-DNA docking. Bioinformatics. 2013;29(3):322-30.

17. Liu Z Mao F, Guo JT, Yan B, Wang P, Qu Y, Xu Y. Quantitative evaluation of
protein-DNA interactions using an optimized knowledge-based potential.
Nucleic Acids Res. 2005;33(2):546-58.

18. Farrel A, Guo JT. An efficient algorithm for improving structure-based
prediction of transcription factor binding sites. BMC Bioinformatics. 2017;
18(1):342.

19.  Farrel A, Murphy J, Guo JT. Structure-based prediction of transcription factor
binding specificity using an integrative energy function. Bioinformatics.
2016;32(12):306-13.

20. Zhao H, Yang Y, Zhou Y. Structure-based prediction of DNA-binding
proteins by structural alignment and a volume-fraction corrected DFIRE-
based energy function. Bioinformatics. 2010;26(15):1857-63.

21.  Sternberg MJ, Gabb HA, Jackson RM. Predictive docking of protein-protein
and protein-DNA complexes. Curr Opin Struct Biol. 1998,8(2):250-6.

22. Deng N, Forli S, He P, Perryman A, Wickstrom L, Vijayan RS, Tiefenbrunn T,
Stout D, Gallicchio E, Olson AJ, et al. Distinguishing binders from false
positives by free energy calculations: fragment screening against the flap
site of HIV protease. J Phys Chem B. 2015;119(3):976-88.

23. Perola E. Minimizing false positives in kinase virtual screens. Proteins. 2006;
64(2):422-35.

25.

26.

27.

28.

29.

30.

31

32.

Page 57 of 93

Li H, Sakuraba S, Chandrasekaran A, Yang LW. Molecular binding sites are
located near the interface of intrinsic dynamics domains (IDDs). J Chem Inf
Model. 2014;54(8):2275-85.

Corona RI, Guo JT. Statistical analysis of structural determinants for protein-
DNA-binding specificity. Proteins. 2016;84(8):1147-61.

Corona R, Sudarshan S, Aluru S, Guo J-T. Confidence assessment of protein-
DNA complex models. In: 2017 IEEE International Conference on
Bioinformatics and Biomedicine. Kansas City: IEEE; 2017. p. 9-15.

Zhang C, Liu S, Zhu Q, Zhou Y. A knowledge-based energy function for
protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem.
2005;48(7):2325-35.

Hubbard SJ, Thornton JM: NACCESS; Department of Biochemistry and
Molecular Biology, University College London. In.: NACCESS; Department of
Biochemistry and Molecular Biology, University College London; 1993.
McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in
proteins. J Mol Biol. 1994;238(5):777-93.

Lin H-TL, Chih-Jen W, Ruby C. A note on Platt's probabilistic outputs for
support vector machines. Mach Learn. 2007,68(3):267-76.

van Dijk M, Bonvin AM. A protein-DNA docking benchmark. Nucleic Acids
Res. 2008,36(14):e88.

Wu J, Hong B, Takeda T, Guo JT. High performance transcription factor-DNA
docking with GPU computing. Proteome Sci. 2012;10(Suppl 1):517.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Training and testing datasets
	Features for the SVM model
	SVM model
	Balanced class selection
	Performance evaluatuion

	Results
	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

