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Abstract

Background: In biomedical information extraction, event extraction plays a crucial role. Biological events are used to
describe the dynamic effects or relationships between biological entities such as proteins and genes. Event extraction
is generally divided into trigger detection and argument recognition. The performance of trigger detection directly
affects the results of the event extraction. In general, the traditional method is used to address the trigger detection as
a classification task, as well as the use of machine learning or rules method, which construct many features to improve
the classification results. Moreover, the classification model only recognizes triggers composed of single words,
whereas for multiple words, the result is unsatisfactory.
Results: The corpus of our model is MLEE. If we were to only use the biomedical LSTM and CRF model without other
features, the F-score would reach about 78.08%. Comparing entity to part of speech (POS), we find the entity features
more conducive to the improvement of performance of detection, with the F-score potentially reaching about 80%.
Furthermore, we also experiment on the other three corpora (BioNLP 2009, BioNLP 2011, and BioNLP 2013) to verify
the generalization of our model. Hence, F-scores can reach more than 60%, which are better than the comparative
experiments.
Conclusions: The trigger recognition method based on the sequence annotation model does not require initial
complex feature engineering, and only requires a simple labeling mechanism to complete the training. Therefore,
generalization of our model is better compared to other traditional models. Secondly, this method can identify multi-
word triggers, thereby improving the F-scores of trigger recognition. Thirdly, details on the entity have a crucial impact
on trigger detection. Finally, the combination of character-level word embedding and word-level word embedding
provides increasingly effective information for the model; therefore, it is a key to the success of the experiment.
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Background
In biomedicine, understanding the context of a biomedical
event is significant in information extraction for exist-
ing biomedical literatures. In general, biological events
are used to describe the dynamic interaction between
biological entities, such as proteins and genes. Using NLP
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techniques, an event extraction system predicts relations
between proteins/genes and the processes in which they
take part.
The biomedical event extraction task has been suc-

cessfully applied four times so far: BioNLP 2009 [1],
BioNLP 2011 [2], BioNLP 2013 [3] and BioNLP-ST 2016
[4]. Whether in a phased system (e.g., UTurku system
[5], EVEX system [6], EventMine system [7], et al) or a
joint system (e.g., UMass system [8], FAUST system [9],
et al.), the method put forward in these four share-tasks
should contain two steps: the first step is trigger detection,
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and the second is argument detection. Obviously, trigger
detection is an essential and crucial step in event extrac-
tion. The trigger detection’s performance will ultimately
affect the result regarding event extraction.
In general, we would initially confirm if a word is a trig-

ger, otherwise known as a binary classification task. Then,
we would perform a multiple classification task by iden-
tifying the type of triggers. There are three traditional
bases for methods of trigger detection: they can be based
on statistic or dictionary [10, 11], on rule [12, 13], or
on machine learning approaches [14–16]. In their work,
Buyko et al. made use of a dictionary-based approach to
detect triggers [10]. They first researched all triggers in
the original GENIA corpus, and then had biology stu-
dents sort them by category of events. Finally, the experts
divided triggers and built parts of triggers into a dictio-
nary. Because there are some limitations to this method,
we found its precision was about 47%, and the F-scores
were 46.66%. Cohen et al. used a rule-based approach
to detect triggers [12]. First, they researched all triggers
that have been annotated. Second, they made a statisti-
cal analysis of the frequency of all triggers, and found a
higher frequency of words. Finally, they built a language
model around the concept of “category” with these words.
Despite the possibility of finding additional triggers for a
rule-based approach, its rules are rather complex; tremen-
dous amounts of time is required to make rules, and
detection may be severely affected by imperfect or inap-
propriate rules. As previously stated, the accuracy of this
method could reach approximately 71% in accuracy; yet,
its recall rate was disappointing, with F-scores of only
22.7%. The approach for biomedical events extraction is
based on machine learning in share-tasks. In general, trig-
ger detection of the machine learning-based approach
includes automatically learning features and training clas-
sifiers of triggers. Therefore, it is regarded as a task of
classification. The advantage of the machine learning-
based method is to save manpower, resources and time,
and its recognition effect is better compared to other
methods. The machine learning-based approach gener-
ally uses SVM, CRF, or maximum entropy models, all of
which require more complex feature engineering. With
the extensive application of machine learning, a deep
learning network in natural language also revealed bet-
ter results. Li et al. used a neural network model to train
word embedding as a basic feature [17]. This was used
for biomedical event extraction, which provided a new
direction for simplifying the feature design.
It is relatively rare for researchers to study trigger detec-

tion as an independent project. In the traditional method,
trigger detection is normally seen as a multi-classification
problem; therefore, to promote the recognition perfor-
mance of triggers, external tools are often used to ana-
lyze the original corpus and help obtain more valuable

features. Because the task of classification relies on more
complicated feature engineering, it will lead to high devel-
opment costs in new languages and a new corpus. Con-
sequently, in 2011 [18], Collobert et al. proposed a neural
network framework which uses word embedding and con-
volution operations, and obtained favorable outcomes on
four tasks of NLP sequence annotation. These outcomes
indicated that the framework has a good generalization
capability and learning ability, and does not depend on
cumbersome features of the project. Based on analysis,
this paper will address trigger detection as a sequence
annotation, and will result in amethod of trigger detection
based on bidirectional long short-term memory (LSTM)
and conditions random field (CRF) in FastText seman-
tic space applied on a multi-level event extraction corpus
(MLEE) [19]. The results of this paper will be compared to
other models.

Methods
Basic progress
Figure 1 shows that the basic process of trigger detection
includes three parts.
First, the MLEE corpus is preprocessed by providing

each word with an IBO label, called the label scheme.
Then, a word-embedding training tool (FastText) is used
to build semantic space for different words from the
PubMed corpus. Finally, the bidirectional LSTM model
is established to help in understanding the historical fea-
tures of each word. Concurrently, the CRF model is used
to obtain sentence-level label information and ensure the
relevance and accuracy of the label sequence.

Label scheme
In biomedicine, detecting triggers is a challenging prob-
lem. The words or phrases of the same form can be used
as triggers for different event types. Therefore, it is diffi-
cult to obtain the type of triggers and the range of triggers
(how many words constitute a trigger).
In trigger detection, approximately 10% of triggers are

composed of multiple words in the MLEE corpus. If the
task is classified, only the single word can be recognized.
Therefore, how are multi-word triggers detected? This
paper proposes a “BIO” label mechanism with annotated
triggers which consist of a word or a phrase to help solve
the issue of trigger detection. As shown in Fig. 2, the let-
ter “I” represents “inside”, the letter “B” represents “begin”,
and the letter “O” represents “out”. Thus, the flowing rules
were created: if a word is a trigger, it will be marked as
“B-type”; if a phrase is a trigger, the first token within the
trigger will be marked as “B-type” and the other tokens
within the trigger will be marked as “I-type”. Other words
that are not triggers will be marked as “O”.
For example, a flowing sequence from the corpus is

given as follows: “VEGF plays a key role in the angiogenic
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Fig. 1 The basic process of trigger detection

response that occurs with chronic bradycardia”. There are
two triggers: one is “plays a key role”, whose event type is
“Regulation”; and the other is “angiogenic”, whose event
type is “Blood_vessel_development”. Table 1 shows the
annotation information.

Build semantic space
Text language is different from picture or audio informa-
tion, because a semantic relationship exists between the
words. However, traditional one-hot coding is random
and sparse, and does not have any correlation informa-
tion. For example, one-hot encoding was used for “China”

and “Beijing”, with results of 5178 and 3987, respec-
tively. These results indicated that there is no correlation
between two values. Nevertheless, it is common knowl-
edge that Beijing is the capital of China. Therefore, vector
expressions were used to solve this problem.
The vector space model can convert words into vec-

tor expressions of consecutive values, and map similar
words into similar vector spaces. This is called semantic
space.To improve the performance of trigger detection, we
use FastText tools [20, 21] to build semantic space.
FastText, as the name suggests, is a simple and effi-

cient text classification tool for a standard multicore CPU

Fig. 2 The processing flow of “BIO” label mechanism
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Table 1 The example of annotation information

Word Label

VEGF O

Plays B-Regulation

A I-Regulation

Key I-Regulation

Role I-Regulation

In O

The O

Angiogenic B-Blood_vessel_development

Response O

That O

Occurs O

With O

Chronic O

Bradycardia O

. O

trained on more than one billion words in less than
10 min. Figure 3 shows a linear model with rank con-
straint. This model is like the CBOWmodel of word2vec.
The only difference between FastText and CBOW is that
the middle word is replaced by a label. The traditional lin-
ear classifier will spend expensive to compute complexity
on a large number of classes, and the computational com-
plexity is O(kh), where k is the number of classes and h is
the dimension of the text representation. However, Fast-
Text uses a hierarchical softmax based on the Huffman
coding tree, wherein computational complexity drops to
O(hlog2(k)).
To enrich the word vector, the FastText model considers

the morphology of the word and proposes a “sub-word”
model. This model assesses each word as a bag of charac-
ter n-grams (in practice, n greater or equal to 3 and smaller
or equal to 6). Adding special boundary symbols 〈 and 〉
at the beginning and at the end of words, allow for the

Fig. 3 The structure of FastText model

ability to distinguish between prefixes and suffixes from
other character sequences. Similarly, the word itself will
be included in the set of its n-gram. For example, if we
want to represent the word “regulation” as 3-gram, it will
be shown as:

〈
re, reg, egu, gul,ula, lat, ati, tio, ion, on

〉
.

And the special sequence is
〈
regulation

〉
. the word “reg-

ulation” will thus be represented as the sum of the 3-gram
vectors.
FastText has several advantages: high training speed,

applicability to large-scale corpus, and the efficiency for
low-frequency words. Therefore, its performance is better
than Word2Vec.

Feature learning
This paper used the bidirectional LSTM and CRF model
to detect triggers in corpus, which has three layers: dis-
tributed vector presentation layer, bidirectional LSTM
layer, and CRF layer – all of which are shown in Fig. 4.
For the distributed vector presentation layer, two differ-
ent kinds of word embedding presentations were used to
identify triggers. The first is based on word-level repre-
sentation from a semantic space. If the word does not
appear in the semantic space, we will randomly initial-
ize the word vector. The second is based on character-
level representation used in supervised learning to obtain
results from the MLEE corpus. The greatest advantage
of character-level representation is its ability to express
the word prefix and suffix information in considering the
information of word shape. As shown in Fig. 5, bidirec-
tional LSTM was used to train character-level embed-
ding and was combined with word-level embedding, thus
resulting in more valid word vector as input for the
next layer. For example, if we want to train a word,
we will input this word into two distinct directions of
LSTM. In left-direction LSTM, we can obtain the for-
ward information of this word, whereas in right-direction
LSTM, the backward information of this word can be
utilized. We use Eq. (1) to concatenate it to different
direction information; therefore, we can get charwordi ,
otherwise known as character-level embedding. Simulta-
neously, we refer to the table on semantic space generated
by word-embedding tools, which could result in the word-
level embedding of this word. In the end, concatenating
the character-level embedding and word-level embedding
information with Eq. (2) will yield a final word vector.

charwordi =[ �rightwordi ; �leftwordi ] . (1)
xwordi =[ charwordi ;Embwordi ] . (2)

Where �leftwordi represents the character-level word vector
through the left direction LSTM and �rightwordi repre-
sents another character-level word vector through the
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Fig. 4 The bidirectional LSTM and CRF mode

right direction LSTM. Embwordi represents the word-level
embedding.
The second layer is the bidirectional LSTM layer. As

demonstrated by Fig. 6, x = (xword1 , xword2 , ..., xwordn) is
the result of the first layer.We use it as the input of the sec-
ond layer, which is similar to the process of character-level
representation. However, the only significant difference
is the timing of the bidirectional LSTM regarding the
recording of information. In this layer, it is the intact
information – not the segmental character information of
each word – that will be remembered. The memory cell
could record the significant information of the specific
direction of LSTM. In the end, this results in the context
feature sequence h=(h1,h2, ...,hi, ...,hn), where hi is the

context representation of wordi that can be obtained in
Eq. (3).

hi =[ fordwardhi ; backwardhi ] (3)

When there is a correlation between the labels, we can
use the condition random field (CRF) to learn the global
information effectively. Thus, the third layer, CRF layer,
will help in improving the performance of trigger detec-
tion.We take advantage of the sequence result h to predict
a sequence of labels y = (y1, y2, ...yn). We define a score
matrix P, which size is n× k, where k the number of is dif-
ferent labels, and Pi,j denotes the score of the jth label of

Fig. 5 The distributed vector presentation layer
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Fig. 6 The bidirectional LSTM layer

the ith word. Therefore, we use Eq. (4) to define its score.

f(h, y) =
n∑

i=0
Myi,yi+1 +

n∑

i=1
Pi,yi (4)

Where M a matrix of transition is in reference to scores,
and Mi,j represents the score of a transition from the
label i to label j. The first part of the equation rep-
resents the transfer feature, and the latter represents
the state feature. When given a feature sequence h of
the specific instance and a label sequence y , we can
then use Eq. (5) to maximize the target function by the
CRF label.

f(h, y) − log
∑

ỹ∈Yh
exp f(h, ỹ) (5)

Where Yh represents a set of all probable label sequences.
Therefore, ỹ is the predicted value, and y is the actual value

Results and discussion
From the experiment, we drew two conclusions: the effec-
tiveness of our model, and the generalization of this
model. The model in this paper is an end-to-end system,
which is better for achieving a multi-word-driven trigger
detection task.

Effective result
In Table 2, we compare the results without syntax infor-
mation with Zhou [22] and Pyysalo [19]. The experiments
are implemented in the MLEE corpus. According to the
results, we discover F-scores to be 78.08 [23], which are
better than those of the contrast experiment. Hence, this

indicates that our model for trigger detection is effec-
tive. Different semantic spaces have distinct performance
of detection. Therefore, to compare with other word-
vector tools, we used three additional tools (Word2Vec,
Doc2Vec, and Global vector) to build semantic space.
In Table 3, it is evident that the performance of Fast-
Text is better compared to others. We deem that the
n-gram of FastText considers morphology of the word,
which thus pays more attention to the similarities in
word composition. Accordingly, it can providemore effec-
tive information for the training of word embedding.
Regarding sequence annotation tasks, there are several
methods with which to experiment, such as CRF, LSTM,
LSTM-CRF and bidirectional LSTM. Thus, this paper
will use these methods to detect triggers with the same
input as our model, with the semantic space of Fast-
Text. Table 4 demonstrates that the CRF model has a
better recall rate; however, its accuracy and F-scores are
inadequate. This is most likely due to that specific CRF
model’s reliance on feature engineering. Nevertheless, our
input is of the original sentence without any other lin-
guistic information. As for the LSTM model, its accuracy
and F-scores are much higher, although the recall rate

Table 2 Comparison of trigger detection performance with
existing methods

Method F-score(%) Precision(%) Recall(%)

Pyysalo [19] 75.67 70.65 81.46

Zhou [22] 77.82 74.85 81.04

Ours [23] 78.08 77.89 78.28
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Table 3 Comparison of trigger detection performance with
different word embedding

Semantic Space F-score(%) Precision(%) Recall(%)

Random Embedding 73.72 76.36 71.25

Glove 74.84 79.70 70.54

Doc2Vec 76.03 78.78 73.47

Word2Vec 76.71 79.61 74.02

Ours(FastText) 78.08 77.89 78.28

is lower than that of the CRF model. Hence, a LSTM-
CRF model combines the advantages of both LSTM and
CRF, which would balance and improve the overall per-
formance. Compared to LSTM models, a bidirectional
LSTM model has greater memory capacity because of its
two distinguish-direction memory information, evidently
resulting having the second highest F-scores. If we uti-
lize extra linguistics knowledge, such as part of speech,
we can enhance the input feature, and improve the trigger
detection results. Therefore, we developed a simple part-
of-speech feature to verify our speculation. In addition,
there is an abundance of entity information in the original
corpus. How does entity information affect recognition
performance? The specific results are shown in Table 5.
According to the experimental results, we observed little
effect POS features had on trigger detection. Neverthe-
less, entity information plays a key role in the process
of detection. It is our belief that the event extraction is
crucial in the relationship between triggers and entities.
Thus, entity information could enhance valuable trig-
ger information to improve the performance of trigger
detection.

Generalizable results
In general, sequence annotation model has generalization
ability. Therefore, to demonstrate the detection perfor-
mance of our model, we applied the model to the BioNLP
2009, BioNLP 2011 and BioNLP 2013 corpus. The results
are shown in Table 6. Although the results of detection
are unsatisfactory, the F-scores could reach more than
60%. Because of the integrality of event extraction, recent
experiments on trigger recognition were not found using

Table 4 Comparison of trigger detection performance on
different model

Model F-score(%) Precision(%) Recall(%)

CRF 65.45 57.44 76.06

LSTM 72.60 78.40 67.61

LSTM-CRF 75.22 76.12 74.35

BLSTM 76.39 80.02 73.08

Ours(BLSTM-CRF) 78.08 77.89 78.28

Table 5 The result with features of entity and POS

Features F-score(%) Precision(%) Recall(%)

Ours 78.08 77.89 78.28

Ours+POS 78.12 77.99 72.22

Ours+entity 79.58 80.58 71.57

Ours+POS+entity 80.64 75.28 76.86

these three corpora. However, by comparing Martinez
[16], Vlachos [14], and Liu [24], the generalization of
our model was found to be satisfying. In other words,
the annotation model does not require complex feature
engineering, which can be easily migrated to other cor-
pora or tasks. All the experimental results have a range
of floating. Since the results were unstable, we took
the average of 10 experimental results and 0.5 as the
floating range.

Conclusion and future work
In this paper, we developed a method of trigger detection
based on bidirectional LSTM and CRF by impleneting
only the simplest features such as POS and entity infor-
mation. According the experimental results, we observed
that the model without feature engineering can reach bet-
ter results. Nevertheless, the simplest feature can help
improve the performance of detection. In contrast to
different corpora, our model has positive generalization
ability, and the results of detection were all effective.
Building semantic space is also crucial and important for
success as is the full use of information of word shape
to establish word-level embedding by N-gram of Fast-
Text., and its combination with character-level embed-
ding to get more useful input in the distributed vector
presentation layer. Compared to the classification task,
trigger detection can be regarded as a sequence annota-
tion task, to solve the issue of recognizing a multi-word
trigger properly. In the future, we will try to use the
attention mechanism to increase the weight of valid fea-
tures, to improve the accuracy and F-scores of trigger
detection.

Table 6 The result of different corpus

Corpus systems F-score(%) Precision(%) Recall(%)

BioNLP 2009 Ours 63.01 68.21 58.55

Martinez [16] 60.10 70.20 52.60

BioNLP 2011 Ours 66.81 68.44 65.26

Vlachos [14] 58.98 66.76 52.82

BioNLP 2013 Ours 64.66 63.08 66.33

Liu [24] 50.95 54.22 48.06
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