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Abstract

Background: Small open reading frames (smORF/sORFs) that encode short protein sequences are often overlooked
during the standard gene prediction process thus leading to many sORFs being left undiscovered and/or
misannotated. For many genomes, a second round of sORF targeted gene prediction can complement the existing
annotation. In this study, we specifically targeted the identification of ORFs encoding for 80 amino acid residues or
less from 31 fungal genomes. We then compared the predicted sORFs and analysed those that are highly
conserved among the genomes.

Results: A first set of sORFs was identified from existing annotations that fitted the maximum of 80 residues
criterion. A second set was predicted using parameters that specifically searched for ORF candidates of 80 codons
or less in the exonic, intronic and intergenic sequences of the subject genomes. A total of 1986 conserved sORFs
were predicted and characterized.

Conclusions: It is evident that numerous open reading frames that could potentially encode for polypeptides
consisting of 80 amino acid residues or less are overlooked during standard gene prediction and annotation. From
our results, additional targeted reannotation of genomes is clearly able to complement standard genome
annotation to identify sORFs. Due to the lack of, and limitations with experimental validation, we propose that a
simple conservation analysis can provide an acceptable means of ensuring that the predicted sORFs are sufficiently
clear of gene prediction artefacts.
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Background
Small open reading frames (smORF) are sequences that
potentially encode for proteins but are shorter than
other more commonly translated genomic DNA se-
quences [1]. Such protein sequences can theoretically
range from a minimum of two to ~ 100 residues. Various
values have been reported for what can be acceptable as
the limits to be a small and functional protein. The

problem of determining what constitutes the minimum
number of codons to be considered as protein coding
has been discussed since the earliest genome sequences
for Saccharomyces cerevisiae were published [2, 3]. In
addition to the term smORF, these sequences have also
been referred to as short open reading frames (sORFs)
and the proteins that they encode have at times been re-
ferred to as microproteins.
Despite the term sORF turning up only in more recent

literature, the existence of genes that code for proteins
of 150 residues and less have been known for more than
three decades. Functional sORFs have been identified in
a wide range of organisms from prokaryotes to humans.
The Sda protein (46 residues) found in Bacillus subtilis
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is known to inhibit sporulation by preventing the activa-
tion of a required transcription factor [4, 5]. Proteins
such as TAL (11 residues), found in Drosophila melano-
gaster, are known to be important for leg development
[6, 7]. The Cg-1 protein (< 33 amino acids) is involved in
controlling tomato-nematode interaction [8]. In Homo
sapiens, the humanin (24 amino acids) protein is in-
volved in mitochondria-nuclear retrograde signalling
that controls apoptosis [9, 10]. Possibly the smallest
ORF reported to date encodes a six residue polypeptide
– MAGDIS; this ORF is referred to as the upstream
open reading frame (uORF) in the mRNA of
S-adenosylmethionine decarboxylase (AdoMetDC), a
key enzyme in the polyamine biosynthesis pathway [11].
As genome sequencing capabilities steadily progressed

from the late 90s, through the 2000s to the present,
many studies have identified and annotated sORFs dir-
ectly from genome sequence data [12]. Various reports
of sORFs discovered from such efforts have been pub-
lished such as in Escherichia coli (15–20 amino acids)
[13]; in yeast - Saccharomyces cerevisiae (less than 100
amino acids) [12, 14]; in plants - Arabidopsis thaliana
(100–150 amino aicds) [15] and Bradyrhizobium japoni-
cum (less than 80 amino acids) [16]; in insects - Dros-
ophila (less than 100 amino acids) [17]; in mouse (less
than 100 amino acids) [18] and in human (less than 100
amino acids) [19]. More recently, Erpf and Fraser
reviewed the diverse roles of sORF encoded peptides
(less than 150 amino acids) in fungi [20].
Nevertheless, it has also been shown that many ORFs

with lengths of 100 or less amino acids may have been
missed during gene prediction from whole genome se-
quences because the gene prediction tools are tuned to
ignore small genes perceived to be ‘junk’ or non-protein
coding [21]. For example, the early genome annotations
of S. cerevisiae had defined 100 residues and 150 resi-
dues as the minimum number to be encoded by an ORF
thus in a way setting a parameter value for future gene
predictions and annotation work [2, 3]. Perhaps as a
consequence of such practices being integrated as part
of standard gene prediction protocols, the number of
sORFs that have been identified over the years has
remained relatively small. Although the parameters for
the gene prediction can be tweaked and changed in light
of a better understanding regarding the existence of
sORFs, the challenge of ascertaining that the annotated
sORFs are indeed protein coding and not artefacts re-
mains [17].
In this work, we have identified potential sORFs from

fungal genomes by specifically repeating the gene predic-
tion and annotation processes based on a residue length
cutoff of 80 amino acids or less and specified the range
of sORFs length distribution among homologs to avoid
false positives. The cutoff of 80 residues was chosen as a

simplistic means of selecting ORFs that were most likely
to have been overlooked by previous gene predictions.
The identification of 1986 putative predicted sORFs in-
volved a large sequence dataset extracted from 31 fungal
genome sequences with a total of 210,928 ORFs from
existing gene prediction and annotation. The predicted
sORFs were then compared to identify highly conserved
examples within the fungal genomes dataset by adopting
the assumption that such highly conserved sequences
may code for common or even essential functions and
are thus unlikely to be artefacts or randomly matched
examples. This can potentially be a quick and inexpen-
sive means of identifying subsets of sORFs that are clas-
sified as hypothetical proteins for experimental
characterization.

Results
Identification of potential sORFs
The fungal genomes selected were required to have as-
sociated annotations for predicted genes thus limiting
our dataset to only 31 genomes at the time the work
was initiated. These annotations were utilized to identify
5255 sORFs genes that had already been identified in the
original annotation to encode for a maximum of 80
amino acid residues. The ORF prediction process was
then repeated for all 31 fungal genomes using the com-
puter programs getorf [22, 23] and sORFfinder [24] as
detailed in methods section. This process resulted in
16,156,945 sORFs identified by getorf and 902,110 found
by sORFfinder. The results of both searches were over-
lapped to yield a consensus of 42,587 potential sORFs
sequences encoding for 80 residues or less. The ORFs
predicted by getorf with a cutoff of 240 nt were consid-
ered as genes that can either be a region that is free of
STOP codons or a region that begins with a START
codon and ends with a STOP codon [22, 23]. However,
all the sORFs identified in this study have both START
as well as STOP codons.

Characterization of the fungal conserved sORFs
CD-HIT [25] clustering of the combined 47,842 poten-
tial sORFs at 70% sequence identity resulted in 730
sORFs clusters that comprised of 1986 sequences puta-
tively conserved in at least two fungal species (Fig. 1).
Four of the sORFs predicted have Kozak sequences
based on an ORF integrity value that was derived by cal-
culating their coding potential using CPC2 [26]. The
majority of the sORFs predicted were in the under 40
residues range with the shortest sORF in this dataset be-
ing composed of only 11 amino acids (Fig. 2).
The clustering based on 70% similarity of the 47,842

potential sORFs resulted in a total of 1986 putative
sORFs that are conserved within at least two fungal spe-
cies (Additional file 1). Among the 1986 putatively
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conserved sORFs, 927 have homologs with known func-
tions (35 from the purpose built sORF prediction
process; 892 from existing genome annotations) (Fig. 3).
The remainder 1059 putatively conserved sORFs have
uncharacterized functions and can be further divided

into two categories: the first set - 23 sORFs with homo-
logs outside of the 31 fungal genomes; and the second
set - 1036 sORFs with no detectable sequence homologs
outside of the 31 fungal genomes. The latter set can thus
be considered as fungi specific sORFs.

Fig. 1 Research workflow

Fig. 2 Distribution of sORFs according to length for all 31 fungal genomes
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Discussion
The standard gene prediction process may miss ORFs
that encode for protein sequences of less than 100 resi-
dues [12, 27]. In order to address this, we carried out a
two pronged approach using a dataset of 31 available
fungal genomes to carry out: (i) identification of ORFs
that have already been annotated to be below 80 resi-
dues in length and (ii) repeating the gene prediction
process for each genome to specifically identify genes
that encode for sORFs of 80 residues or less.
The bias of the parameter often used to predict

genes that require a minimum of 100 codons may by-
pass the sequences in the intergenic spaces, especially
when such regions are less than 100 residues in
length, but yet they may actually encode for func-
tional proteins of less than 80 residues. Intronic se-
quences may also hypothetically code for such sORFs.
Therefore, these sequences were used as the target
for sORF searches in this work. Predicted sORFs that
were found to occur in multiple genomes were se-
lected for further characterization. However, it was
anticipated that such searches can return a large
number of predicted genes, many of which could be
artefacts of the search process itself. In order to ad-
dress this, the pool of predicted sORFs were then
compared to each other to find potentially homolo-
gous sequences within the predicted sORFs dataset. It
is expected that such short sequences that are con-
served in several genomes can be assumed to be of
functional importance and thus not an artefact of the
gene prediction process, especially more so if those
sequences were also extracted from the intronic re-
gions as was the case in this study.
At the time this work was initiated, 31 fungal genomes

were selected because they had relatively complete gen-
ome sequences and had accompanying annotations. All

the selected genomes were from the kingdom fungi and
from various phyla including Ascomycota, Basidiomycota
and Microsporidia (Table 1). Due to this diversity, we
therefore believe that the workflow developed would be
widely applicable for all fungi and possibly for other king-
doms as well.
The first approach merely involved identifying ORFs

from the existing available annotations for sequences
that fitted the maximum 80 residues criterion used for
this study. This approach was dependent on parameters
had been set by the annotators of the deposited data as
the minimum number of codons that were to be consid-
ered as protein coding. The sORFs retrieved from this
extraction provided a reference for what had already
been identified. The second approach, which can be con-
sidered as the major feature of this work, involved re-
peating the gene prediction and annotation process by
specifically identifying potential ORFs in the intronic,
exonic and intergenic regions. We had opted to focus
the searches on sequences extracted from the intronic
and intergenic regions because a relatively high number
of sORFs can be found within these regions as demon-
strated by the discoveries of 3241 putative sORFs in the
intergenic regions of Arabidopsis thaliana [28] and 15
sORFs in the intronic regions of Drosophila [29].
The sORF identification in the second approach in-

volved the use of two computer programs, sORFfinder
and getorf. The sORFfinder program was specifically de-
signed to detect small ORFs. The getorf program, which
is available as part of the emboss package, employs a less
stringent approach that simply involves setting the se-
quence length parameter for genes to be below 240 nu-
cleotides within the start to stop codons reading frame.
In order to throw a wider net, we specifically included
intronic and intergenic sequences as inputs for sORF
identification. It is not unexpected that the output of

Fig. 3 Distribution of total of conserved sORFs across fungal genomes
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both programs would contain false positives. In order to
narrow down the selection, we had only selected outputs
that were agreed on by both sORFfinder and our getorf
runs at the 240 nt cap. This filtering was done in order
to reduce the number of sequences for further
characterization. It is however possible that true sORFs
are present in the dataset that were predicted by only
one of the programs and thus not investigated further as
a part of this work. This is a clear limitation of the
process that we had introduced as a means to acquire a
more manageable number of sequences for further
characterization.
The bypassing of sORFs that are located in the

intergenic regions can occur during what is consid-
ered as the standard gene prediction process because
these stretches of sequence only have sufficient length
to encode for polypeptides that may be shorter than
100 residues [12, 27] and are thus overlooked as sim-
ply being non-coding filler sequences between two
coding sequences. In order to address the possibility
that a large number of sORFs in the intergenic re-
gions may have been missed during a standard gene
prediction process as demonstrated by the work of
Hanada et al. that identified novel small open reading
frames that were confirmed to at least be transcribed
[28], our analysis also specifically targeted for the
presence of sORFs in those sequences.
Although there were no predicted sORFs that were con-

served in all 31 genomes, there were 68 sORFs from two
homologous clusters that were present in 26 of the 31 fun-
gal genomes. Additionally, there are 1663, 215, and 40
sORFs that could be found in ¼, ½ and ¾ of the 31 ge-
nomes, respectively (Fig. 4). The two clusters identified by
the genome screening approach consist of sORFs that are
homologous to 40S ribosomal protein S28 (Fig. 5a i) and
40S ribosomal protein S30 (Fig. 5a ii). In the first cluster, 11
sORFs from eight species, Cryptococcus neoformans,

Candida glabrata, Eremothecium cymbalariae, Kazachsta-
nia africana, Naumovozyma castellii, Agaricus bisporus,
Aspergillus nidulans and Myceliopthora thermophila that
were originally annotated as hypothetical proteins, were up-
dated to be homologs of 40S ribosomal protein S28. The
annotation for this homology assignment was obtained
using BLAST and domain analysis using InterProScan. Fur-
thermore, the evolutionary analysis on this cluster showed
that all of these sORFs are conserved in fungi and are
closely related in the fungal group when compared against
the outgroup, Ananas comosus (pineapple) (Fig. 6a). This
demonstrates the utility of reannotation projects in general
and especially when they are designed to identify specific
targets such as the one we have carried out in updating the
existing annotation.
The function of sORFs in the first alignment set,

which are conserved in about half of the 31 genomes
(Fig. 5b i), are proteolipid membrane potential modula-
tors that modulate the membrane potential, particularly
to resist high cellular cation concentration. In eukaryotic
organisms, stress-activated mitogen-activated protein ki-
nases normally play crucial roles in transmitting envir-
onmental signals that will regulate gene expression for
allowing the cell to adapt to cellular stress [30]. This
protein is an evolutionarily conserved proteolipid in the
plasma membrane which, in S. pombe, is transcription-
ally regulated by the Spc1 stress MAPK (mitogen-acti-
vated protein kinases) pathway. There are two sORFs (C.
dubliniensis-sf4096_1 and P. pastoris-sf9282_1) from the
computational reannotation that were clustered together
with conserved alignments, and thus indicating they
may have the same function (Table 2). Further evolu-
tionary analysis of this cluster showed that all of the
sORFs in this cluster are closely related in fungal group
against bacteria, Halmonas xinjiangensis (Fig. 6b).
The second alignment in Fig. 5b ii shows four sORFs

predicted from the reannotation that are homologs to

Fig. 4 Clustered conserved sORFs
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Fig. 5 Multiple sequence alignments for sORFs that are conserved within (a) 26 fungal genomes (i-xx3497 and ii-xx4629) and (b) 2/4 fungal
genomes (i-xx4249 and ii-xx6165) based on clustering. The sORFs extracted from genome annotations have identifiers with ‘*gi*’ while those
computed from this work have identifiers with ‘*sf*’
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Fig. 6 Phylogenetics of conserved sORFs within (a) 26 fungal genomes (xx3497) and (b) 2/4 fungal genomes (xx4249) based on clustering
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the 60S ribosomal protein. This is a possible indicator
that sORFs may have been missed during a standard
genome annotation process. Our analysis identified a
higher number of sORFs candidates in S. cerevisiae com-
pared to that published by Kastenmayer et al. [14]. The
total of 77 sORFs predicted for S. cerevisiae contained
all the 16 sORFs predicted by Kastenmayer et al. There
are 20 sORFs in this set that were predicted by the
sORFfinder and getorf integrated prediction process
(Table 3). The other 57 sORFs predicted for S. cerevisiae
have already been previously identified and was ex-
tracted from the genome screening approach.
In 274 clusters predicted from the 31 fungal genomes,

892 putative conserved sORFs have been annotated previ-
ously as a gene and have known functions. Characterization
of the putative conserved sORFs revealed that approxi-
mately 3.8% of the newly predicted sORFs have known
functions but were not annotated as genes in the available
genome annotations. Our sORF annotation workflow also
determined that 832 of the putative conserved sORFs pre-
dicted are hypothetical proteins or have no characterized
function (Fig. 3). Even though these sORFs do not have a
known function, their conservation across multiple species
imply that their presence is of some functional importance.
Out of the total of 848 predicted sORFs from the 31 ge-
nomes (Fig. 3), 93 sORFs from the sORFfinder-getorf inte-
gration output have homologs in other organisms
(Additional file 2).
The total 1986 predicted sORFs were blast searched

against the refseq database [31] and classified accord-
ing to the three major Gene Ontology (GO) classes of
molecular function, biological process and cellular

component. Of the 1986 sORFs predicted, only 617
predicted sORFs could not be classified according to
GO classes. This resulted in 2746 putative sORFs be-
ing classified into biological process, 4546 putative
sORFs classified as cellular components and 155 pre-
dicted sORFs classified to be involved in molecular
function (Fig. 7). The number of genes resulting from
the Gene Ontology classification are higher than the
total number of predicted sORFs predicted because
one gene can be associated with multiple classes. The
overall classification showed that most of the sORFs
predicted have roles in biosynthesis and nucleic acid
metabolism.
In the cellular component classification - there were 184

predicted sORFs classified into mitochondria (59), nucleus
(57), endoplasmic reticulum (13), integral component of
membrane (33) and Ssh1 translocon complex (22). Under
the molecular function classification - the predicted sORFs
were assigned to functions associated to mating pheromone
activity (11), DNA and RNA binding (41), ribosome (145),
cytochrome (7), protein binding (31), zinc ion binding (22),
hydrogen ion transmembrane transporter activity (39),
metal ion binding (16), protein heterodimerization activity
(1), oxidoreductase activity (1), ATP binding (1), GTP bind-
ing (1) and ligase activity (1). For biological process GO
classification, the 115 predicted sORFs in this group were
classified into ribosome biogenesis (26), carbohydrate meta-
bolic process (2), mitochondrial electron transport (4),
DNA repair (1), mRNA export from nucleus (4), translation
(10), protein N-linked glycosylation (1), protein targeting
and targeting (3), copper ion transport (5), nucleocytoplas-
mic transport (14), response to stress (2), protein secretion

Table 2 Characterization of sORFs conserved in 15 fungal genomes

sORFs ID Access Number Existed Description New Description

A.bisporus-gi426200236 EKV50160.1 hypothetical protein AGABI2DRAFT_115218 plasma membrane proteolipid 3

A.fumigatus-gi70999334 XP_754386.1 stress response RCI peptide plasma membrane proteolipid 3

A.niger-gi317027004 XP_001399936.2 plasma membrane proteolipid 3 plasma membrane proteolipid 3

A.oryzae-gi317139792 XP_003189201.1 plasma membrane proteolipid 3 plasma membrane proteolipid 3

C.dubliniensis-sf4096_1 NA NA plasma membrane proteolipid 3

C.gattii-gi321253028 XP_003192603.1 cation transport-related protein plasma membrane proteolipid 3

C.neoformans-gi58264530 XP_569421.1 cation transport-related protein plasma membrane proteolipid 3

D.hansenii-gi50417989 XP_457739.1 DEHA2C01320p plasma membrane proteolipid 3

G.zeae-gi46137413 XP_390398.1 hypothetical protein FG10222.1 plasma membrane proteolipid 3

M.oryzae-gi389644188 XP_003719726.1 plasma membrane proteolipid 3 plasma membrane proteolipid 3

M.thermophila-gi367024053 XP_003661311.1 hypothetical protein MYCTH_2314489 plasma membrane proteolipid 3

P.stipitis-sf9282_1 NA NA plasma membrane proteolipid 3

S.pombe-gi429239798 NP_595350.2 plasma membrane proteolipid Pmp3 plasma membrane proteolipid 3

T.terrestris-gi367036855 XP_003648808.1 hypothetical protein THITE_2106674 plasma membrane proteolipid 3

Y.lipolytica-gi210075749 XP_502906.2 YALI0D16665p plasma membrane proteolipid 3
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(3), protein import into mitochondrial matrix (7), mito-
chondrial respiratory chain complex IV assembly (14), regu-
lation of catalytic activity (8), transmembrane transport (1),
vacuolar proton-transporting V-type ATPase complex

assembly (5) and mitochondrial outer membrane translo-
case complex assembly (1).
Based on the cellular component classification, the se-

creted sORFs are associated with roles in communication,

Table 3 List of sORFs predicted in S. cerevisiae

from this study Kastenmayer et al from this study Kastenmayer et al

S.cerevisiae-gi14318502 YFL017W-A S.cerevisiae-gi6323292 #N/A

S.cerevisiae-gi398364355 YFR032C-A S.cerevisiae-gi6323318 #N/A

S.cerevisiae-gi398365385 YNL024C-A S.cerevisiae-gi6323506 #N/A

S.cerevisiae-gi398365605 YLR287C-A S.cerevisiae-gi6323558 #N/A

S.cerevisiae-gi398365775 YOR210W S.cerevisiae-gi6323634 #N/A

S.cerevisiae-gi398365789 YDR139C S.cerevisiae-gi6323912 #N/A

S.cerevisiae-gi398366075 YLR388W S.cerevisiae-gi6324184 #N/A

S.cerevisiae-gi6321622 YGR183C S.cerevisiae-gi6324259 #N/A

S.cerevisiae-gi6321937 YHR143W-A S.cerevisiae-gi6324313 #N/A

S.cerevisiae-gi6323294 YLR264W S.cerevisiae-gi6324619 #N/A

S.cerevisiae-gi6323357 YLR325C S.cerevisiae-gi6324877 #N/A

S.cerevisiae-gi6324070 YNL259C S.cerevisiae-gi6325391 #N/A

S.cerevisiae-gi6324360 YNR032C-A S.cerevisiae-gi73858744 #N/A

S.cerevisiae-gi6324741 YOR167C S.cerevisiae-gi7839147 #N/A

S.cerevisiae-gi7839181 YHR072W-A S.cerevisiae-sf1119_1 #N/A

S.cerevisiae-gi12621478 #N/A S.cerevisiae-sf19568_1 #N/A

S.cerevisiae-gi147921768 #N/A S.cerevisiae-sf21_1 #N/A

S.cerevisiae-gi33438768 #N/A S.cerevisiae-sf21973_1 #N/A

S.cerevisiae-gi33438785 #N/A S.cerevisiae-sf22173_1 #N/A

S.cerevisiae-gi33438820 #N/A S.cerevisiae-sf23868_1 #N/A

S.cerevisiae-gi33438821 #N/A S.cerevisiae-sf27242_1 #N/A

S.cerevisiae-gi33438834 #N/A S.cerevisiae-sf27243_1 #N/A

S.cerevisiae-gi33438835 #N/A S.cerevisiae-sf27714_1 #N/A

S.cerevisiae-gi33438838 #N/A S.cerevisiae-sf3100_1 #N/A

S.cerevisiae-gi33438839 #N/A S.cerevisiae-sf31758_1 #N/A

S.cerevisiae-gi398365465 #N/A S.cerevisiae-sf32431_1 #N/A

S.cerevisiae-gi398365709 #N/A S.cerevisiae-sf32615_1 #N/A

S.cerevisiae-gi398366109 #N/A S.cerevisiae-sf34463_1 #N/A

S.cerevisiae-gi398366483 #N/A S.cerevisiae-sf35098_1 #N/A

S.cerevisiae-gi398366543 #N/A S.cerevisiae-sf4587_1 #N/A

S.cerevisiae-gi398366617 #N/A S.cerevisiae-sf7880_1 #N/A

S.cerevisiae-gi41629681 #N/A S.cerevisiae-sf85063_1 #N/A

S.cerevisiae-gi6226526 #N/A S.cerevisiae-sf85096_1 #N/A

S.cerevisiae-gi6226533 #N/A S.cerevisiae-sf9229_1 #N/A

S.cerevisiae-gi6320017 #N/A S.cerevisiae-gi6320482 #N/A

S.cerevisiae-gi6320068 #N/A S.cerevisiae-gi6320734 #N/A

S.cerevisiae-gi6320142 #N/A S.cerevisiae-gi6320819 #N/A

S.cerevisiae-gi6320291 #N/A S.cerevisiae-gi6322272 #N/A

S.cerevisiae-gi6323020 #N/A
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differentiation and establishing clonal behaviour. The se-
creted sORFs predicted that was associated to mating
pheromone activity were 34–35 amino acids in length.
There are 51 predicted sORFs that were associated with
functions as membrane features or even in modulating cell
membrane thickness or fluidity to respond to changing en-
vironmental conditions. One such example is the predicted
sORF encoding 52 residues that is associated with plasma
membrane proteolipid 3 (Pmp3p), which is part of the
phosphoinositide-regulated stress sensor that has a role in
the modulation of plasma membrane potential and in the
regulation of intracellular ion homeostasis [32].
The methods that we have developed from available

and proven tools are expected to be easily deployable to
other genomes as and when they become available with
minimal modifications. Recently, a psychrophilic yeast

genome had been reported [33] that has other functional
data also available such as gene expression during cold
stress [34, 35] and the characterization of proteins in-
volved in cold adaptation [36–38]. The mining of such
genomes for sORFs that can then be integrated to the
functional data may be a cost-effective means of identify-
ing sORFs that are involved in psychrophily or other
relevant extremophilic adaptations.

Conclusions
The results of our work reveal that a high number of po-
tential sORFs could be overlooked by the standard gene
prediction workflow. We therefore recommend that the
standard genome annotation process be complemented
by analyses that specifically target the annotation of
sORFs [39, 40], and then have both results integrated to

Fig. 7 Classification of predicted conserved sORFs based on Gene Ontology. The solid colors represents cellular components, the dot patterns
represents biological processes and cross patterns represents molecular functions
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provide a more complete genome annotation. This
workflow is applicable for big data analysis because this
study involved a large number of sequences from 31
completed fungal genomes that consisted of intergenics,
introns, ORFs and genome sequences. Although the
functional validation for predicted sORFs cannot be
done based solely on the genome sequence without any
corresponding transcriptomic or proteomic data, it is
still possible to imply a putative status for the predicted
sORFs by evaluating their conservation with the assump-
tion, albeit a very simplistic one, that the observed con-
servation implies a conserved function of some
biological importance and thus less likely to be artefacts
of the gene prediction process. Furthermore, the pre-
dicted sORFs predicted will be incorporated into a data-
base consisting of sORFs from fungal genomes.

Methods
A workflow was created to predict sORFs from fungal ge-
nomes (Fig. 1) and the components and steps involved are
provided below. The source code for the programs in this
workflow have been deposited on GitHub - https://github.-
com/firdausraih/sORFs-fungal-genomes (Additional file 3).
The data for sORFs were sourced from two datasets: (i)
existing annotations made available with the genome se-
quences and (ii) a purpose built search.

Source of genome data
The data for 31 fungi genomes were downloaded via
FTP from the NCBI at ftp://ftp.ncbi.nlm.nih.gov/ge-
nomes/archive/old_refseq/Fungi/ (Table 1). These 31
fungi genomes were selected from 36 fungi genomes in
NCBI based on the completeness of their genome ana-
lysis and annotation.

Screening sORFs from genome annotation
Known or existing sORF annotations were first extracted
from the existing genome annotations available for the
fungal genomes used. This dataset was restricted to an-
notations for a maximum length of less than 240 nucleo-
tides or 80 amino acids.

Identification of intergenic, intronic and coding regions
The intronic and coding regions for the genomes were
identified using Artemis [41] [https://www.sanger.ac.uk/
science/tools/artemis] based on the chromosome, scaf-
fold or contig sequences and the protein coding se-
quences for each genome. The intergenic regions were
extracted from the genome annotations in the General
Feature Format (GFF) format using a Perl script. The
intergenic regions were extracted from both the forward
and reverse strands.

Identification of sORF using sORFfinder-getorf approaches
Gene predictions that specifically targeted the identifica-
tion of sORFs were done by using sORFfinder-getorf ap-
proaches that combined two programs: getorf and
sORFfinder. The prediction of the sORFs were carried
out for each scaffold and/or chromosome. The sORFs
predictions using getorf from the EMBOSS package [23,
42] were restricted to a maximum length of 240 nucleo-
tides. Identification of sORFs by sORFfinder [24] was
carried out using a 0.5 probability parameter. The results
of sORFfinder, which by default is set at a maximum of
100 amino acids, were then filtered for output contain-
ing 80 amino acids in length.

Determining existing homologs for the predicted sORFs
The predicted sORFs from getorf and sORFfinder search
outputs for each fungi genome were combined and clus-
tered using CD-HIT-EST [25, 43] and those with 100%
identify were removed. Unique sequences that repre-
sented each cluster were then used as BLAST queries to
search against a database of open reading frames (ORFs)
for 31 fungal genomes using BLASTX [44, 45]. BLAST
hits that aligned to less than two thirds of the query se-
quences and with less than 30% sequence identity were
removed and the remainder were used as a potential
sORFs dataset.

Identification of conserved sORFs
The pre-annotated sORFs and those that were predicted
as potential sORFs were then combined and clustered
using CD-HIT at 70% identity to remove clusters that
contained only a single sequence. For each cluster,
sORFs that have homologs in at least two different spe-
cies in one cluster were considered as potentially con-
served sORFs. All conserved sORFs were identified their
Kozak sequences using CPC2 [26].

Multiple sequence alignments and evolutionary analysis
Identification of conserved sORFs in the clusters were
carried out using the MUSCLE [46] sequence alignment
program. A multiple sequence alignment generated
using MUSCLE, which included one out group identified
by PSI-BLAST [45], was used as input to construct a
phylogenetic tree with 1000 bootstrap replications using
the Jones-Taylor-Thornton (JTT) model based on the
Neighbor joining method using PHYLIP 3.695 [47, 48].

Function prediction and classification
The predicted sORFs were annotated using blast, inter-
pro and classified using BLAST2GO into the three main
Gene Ontology classes of molecular function, biological
processes and cellular component [49–51].
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Additional files

Additional file 1: A listing of 1986 putative conserved sORFs predicted.
This file contains a list of 1986 putative conserved sORFs predicted from
all fungal genomes that can be viewed using Microsoft excel or text
viewer. (TXT 151 kb)

Additional file 2: List of predicted sORFs with homologs. This file
contains a list of sORFs predicted from all fungal genomes with their
homologs that can be viewed using Microsoft excel or a text viewer. (TXT
118 kb)

Additional file 3: Pseudocode for sORFs workflow. This file contains a
pseudocode for finding sORFs workflow using Linux environment using
BASH, PYTHON and the Perl programming language. (ZIP 8 kb)
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