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Abstract

Background: Translational and post-translational control mechanisms in the cell result in widely observable
differences between measured gene transcription and protein abundances. Herein, protein complexes are among
the most tightly controlled entities by selective degradation of their individual proteins. They furthermore act as
control hubs that regulate highly important processes in the cell and exhibit a high functional diversity due to their
ability to change their composition and their structure. Better understanding and prediction of these functional states
demands methods for the characterization of complex composition, behavior, and abundance across multiple cell
states. Mass spectrometry provides an unbiased approach to directly determine protein abundances across different
cell populations and thus to profile a comprehensive abundance map of proteins.

Results: We provide a tool to investigate the behavior of protein subunits in known complexes by comparing their
abundance profiles across up to 140 cell types available in ProteomicsDB. Thorough assessment of different
randomization methods and statistical scoring algorithms allows determining the significance of concurrent profiles
within a complex, therefore providing insights into the conservation of their composition across human cell types as
well as the identification of intrinsic structures in complex behavior to determine which proteins orchestrate complex
function. This analysis can be extended to investigate common profiles within arbitrary protein groups. CoExpresso
can be accessed through http://computproteomics.bmb.sdu.dk/Apps/CoExpresso.

Conclusions: With the CoExpresso web service, we offer a potent scoring scheme to assess proteins for their
co-regulation and thereby offer insight into their potential for forming functional groups like protein complexes.
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Background
Biological systems are governed by a multitude of entan-
gled interactions between biomolecules with an immense
number of physical and chemical properties. Protein com-
plexes are large biomolecules with a wide range of tasks
in the cell and consist of multiple subunits linked by
non-covalent interactions. These interactions can lead to
a variety of stable or transient states where the com-
plexes display different compositions of their subunits
or different structures that are often fine-tuned by post-
translational modifications. An example of functional
diversity are ribosomes that are known to contribute
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differentially to translation of distinct subpopulations of
mRNAs [1]. There is a pressing need to investigate com-
plex capabilities for regulatory control of cellular pro-
cesses. To achieve this, a detailed map of protein complex
composition, abundance, and behavior in different cell
types and tissues is required. Such a map will consider-
ably improve the characterization and the prediction of
the functional states.
Various experimental methods exist to identify protein

complexes and to determine and quantify which pro-
tein subunits they are composed of. Determination of
protein interaction partners within a complex provides
valuable knowledge about complex and protein func-
tion and thus their potential behavior [2]. Most promi-
nent experimental methods to determine protein-protein
interactions are based on the yeast-2-hybrid protocol or
the application of affinity purification coupled with mass
spectrometry [3, 4]. These methods however suffer from
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either large false identification rates or depend on purifi-
cation steps that often lead to a strong bias in the results.
More details about protein structure can be achieved by
chemical cross-linking or hydrogen-deuterium exchange
mass spectrometry [5]. Despite the power of these meth-
ods, they cannot yet be applied on entire proteomes.
For an accurate, large-scale and general characterization,
protein complex behavior should be studied across large
numbers of samples without perturbations towards e.g.
subgroups of proteins and additionally rely on highly
confident identification of the proteins.
There is an increasing amount of evidence supporting

the hypothesis that the majority of protein complexes are
tightly controlled in the cell. Post-transcriptional regula-
tion occurs predominantly for protein complex members,
leading to strong co-regulation of complex subunits. This
could be shown by systematic investigation of protein
and gene expression levels in human cancer [6, 7], in a
study comparing 11 cell types and 4 temporal states [8],
based on the co-occurrence of protein pairs across human
experiments in the PRIDE database [9], or generally in a
selection of proteomics data sets [10]. In summary, these
studies showed that only a fraction of complex compo-
sition and abundance is regulated at transcriptional level
and therefore other mechanisms such as protein degra-
dation contribute to protein complex stoichiometry. This
highlights the power of directly measuring protein abun-
dance profiles by common proteomics approaches such as
bottom-up mass spectrometry to thoroughly study pro-
tein complexes and their variants across cell types and
states.
In contrast to most proteomics data repositories where

only raw data and identification results are available, Pro-
teomicsDB [11, 12] is a large compendium of quantitative
protein abundances, therefore highly useful to investigate
general patterns of protein changes across more than 100
different human cell lines.
Here, we apply threescoringmodels on the ProteomicsDB

data to assess the significance of subunit co-regulation
in protein complexes. We compare and benchmark dif-
ferent randomization and scoring approaches on known
complexes and reveal particular substructures of complex
behavior for a few selected use cases. The scoring and
extensive visualization is implemented in the web service
CoExpresso that allows investigating co-regulatory pat-
terns in any group of human proteins.

Implementation
Quantifications of proteins and IDs of known com-
plexes were downloaded from ProteomicsDB [11, 12] and
CORUM [13], respectively. We used three randomization
approaches that differently resemble data structure within
all protein abundance profiles. Scores were calculated for
the co-regulation of proteins in a complex applying three

different models for the comparison of protein profiles.
The scores were stored in a database. For each pro-
tein in each complex, significance for their co-regulation
was calculated and assessed on basis of the scores. A
web service was implemented to allow interrogating the
score database to test arbitrary protein groups for the
significance of their co-regulation. Figure 1 provides an
overview of the workflow and the web interface.

Data retrieval
Quantitative abundance profiles of SwissProt proteins
were extracted from ProteomicsDB hosting mass spec-
trometry based protein abundances for distinct human
cell types including cell tissues, cell lines and fluids.
In ProteomicsDB, proteins and samples are annotated
according to UniProtKB and Brenda Tissue Ontology [14],
respectively.
From the downloaded profiles (summer 2016), we

retained only cell types with more than 1000 proteins and
which were tagged by Brenda ontology terms. Proteins
not available in at least 2 cell types were removed. This
reduced the data to comprise 15,409 proteins and 140 tis-
sues. Uniprot accession numbers for annotated human
complexes were downloaded from CORUM and filtered
for duplicates, leading to a total of 2175 reported complex
compositions.

Complex abundance profiles
For each protein group C, only the nt cell types with full
coverage, t = [1..nt] , i.e. having quantitative values for all
proteins p = [1..np], were considered, resulting in a nt by
np matrix EC(t, p).

Randomization techniques
We applied 3 different forms of randomization to obtain
random protein groups being quantified in the same num-
ber of cell types as the proteins of protein group C. The
often relatively low coverage of proteins over multiple cell
types required creating randomized sets for each combi-
nation of number of cell types and number of proteins.

Independent sampling (IS): Randomization of quanti-
tative values of all proteins in all tissues comprised sets
with the same dimensions as the to be tested protein
group. That is, the nt by np randomized values were
obtained by sampling, independently at random, ntnp val-
ues from all quantitative values of all proteins in all tissues.
10,000 random groups were created for each combination
of nt and np.

Protein-centered sampling (PCS): Randomization of
proteins and categorization into cell type coverage. This
randomization type turned out to be more complex and a
sufficient large coverage of random groups was achieved
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Fig. 1 Schema of entire workflow to investigate protein complex behavior. Models and randomization methods that were not used in the final
assessment of CORUM complexes are shown in grey. For a more detailed description of the workflow, see Methods

by the following procedure. For each combination of num-
ber of proteins np and number of cell types nt :

1 Take all proteins being each quantified in at least nt
cell types

2 Repeat the following 5000 times: sample np proteins
IDs and count full cell type coverage of the protein
group

3 Keep unique protein combinations with coverage
over at least five cell types

With this procedure, we obtained 1000–20,000 unique
and random protein groups for each relevant combination
giving a total of more than 20,000,000 randomized groups.
Obtaining random protein groups with low coverage was
computationally most demanding. Our method is scal-
able with respect to data coverage and will also perform
within a similar time frame when increasing the number
of considered cell types.

Protein- and tissue-centered sampling (PTCS): All
proteins simultaneously found in the same cell types as
the tested protein groupwere randomized to create 10,000
samples. That is, np proteins are sampled independently
at random from all proteins that appear in the same cell

types as the tested protein group, and their observed
values in those cell types are considered.

Similarity models and scoring
Mean correlation model (MCOM): Protein abun-
dances were averaged for each cell type, restricting to
cell types covered by the entire protein group, M(t) =<

EC(t, p) >p. For each protein p, Pearson’s correlation to
the means M(t) provides a measure of how much the
protein follows the common profile of the protein group,
SMCOM(p) = cor(M(t),EC(t, p)), where cor(x(t), y(t))
denotes Pearson’s correlation between samples x and y.

Pairwise correlation model (PCOM): Pearson’s corre-
lation was calculated between all proteins pairs using the
abundances in the cell types covered by all proteins. The
score is then given by the sum,

SPCOM(p) =
np∑

p,q=1;q �=p
cor (EC(t, p),EC(t, q))

Factor analysis model (FAMS): The model is based on
factor analysis developed for microarray analysis [15] and
recently modified to improve protein inference in bottom-
upmass spectrometry data [16]. The following parameters
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were used: Weight w = 0.1, μ = 0.1, 1000 maximal
iterations and a minimal noise of 0.0001. The feature
weights W were used to score each protein of a group:
SFARMS(p) = W (p).

Scores for protein groups: Overall scores per protein
group were generated by simply averaging the scores of
the individual proteins, Ŝ = ∑np

p=1 SMODEL(p)/np, where
MODEL stands for either MCOM, PCOM or FAMS.

Scoring statistics
For each model, randomization method, and a given com-
bination of nt and np, the aforementioned scores were
calculated for randomized protein groups, and stored in
a database. These scores, more than 100,000,000 in total,
were then used to calculate the probabilities to reject the
null hypothesis (of observing the score for a set of np pro-
teins over nt tissues) for both a single protein p and a
group of proteins:

pMODEL(p) = N
[
SMODEL

(
p(random)) > SMODEL(p)

] + 1
N

[
SMODEL

(
p(random))] + 1

and

pMODEL =
N

[
Ŝ(random)
MODEL > ŜMODEL

]
+ 1

N
[
Ŝ(random)
MODEL

]
+ 1

,

where p(random) denotes a protein from a randomized pro-
tein group, Ŝ(random)

MODEL a score for a randomized protein
group, and N[ ...] counting the number of all valid cases
within the brackets.
For p-values from multiple protein groups, correction

for multiple testing was carried out via the Benjamini-
Hochberg procedure.

Results
Tight regulation of protein complexes by translational
and post-translational control mechanisms may result in
the degradation of more abundant proteins that do not
form the complex. Then the proteins of known complexes,
such as the ones collected in the CORUM database,
will show similar abundance protein profiles when com-
pared across different cell types. Given that proteins often
have multiple functions, a protein complex might present
itself in different compositions or the complex does not
change in abundance, we did not assume all complexes to
show highly similar abundance profiles of their proteins
but merely investigated how much co-regulation can be
observed.
We applied different scoring systems to evaluate

whether proteins in human complexes exhibit similar reg-
ulatory behavior when compared over multiple cell types.

Despite of having a large set of available protein abun-
dances, coverage of the proteins over the 140 cell types
was often sparse (Additional file 1: Figure S1), requiring
scoring methods that account for missingness. In such a
scenario, just calculating the similarity between protein
abundance profiles, e.g. by calculating Pearson’s corre-
lation, will not provide statistically valid measures for
their co-regulatory behavior. For instance, low coverage
over cell types leads automatically to higher correlations
between protein abundance profiles than for higher cov-
erage (Additional file 1: Figure S2). Hence, confidence
estimations of protein co-regulation require adapting the
scoring methods to include effects coming from data cov-
erage. This can be achieved by empirically calculating
p-values from comparison of the score of a protein to
the scores obtained from appropriately randomized data.
Therefore, we investigated different ways of randomiz-
ing the ProteomicsDB data to identify the best perform-
ing combination of scoring scheme and randomization
procedure.
Table 1 summarizes the used methods and random-

izations. In short, MCOM compares each protein profile
versus the averaged profile of protein group, allowing to
assess how much a protein follows this common trend.
PCOM is based on pairwise comparisons and summarizes
them by their sum. This method was implemented to con-
sider internal structures of protein subgroups with high
correlations. The FAM model is based on factor analysis
and calculates weights for each protein, giving a measure
of how much each protein contributes to the profile of the
entire protein group.
For the following analysis, each protein complex

reported in CORUM was assessed for coverage in Pro-
teomicsDB and further evaluated by the different models
when all protein subunits were available in at least 5 cell

Table 1 Summary of scoring models and randomization
methods

Model Abbrv. Output

Mean correlation MCOM Similarity to averaged
abundance profile

Pairwise correlation PCOM Sum of pairwise
similarities

Factor analysis FAM Weights for protein
contribution to full set

Randomization Abbrv. Basis

Independent
sampling

IS Mix all values

Protein-centered
sampling

PCS Keep protein profiles

Protein- and
cell type-
centered
sampling

PTCS Keep protein and cell
type profiles
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types. We tested a total of 1414 protein groups out of 2157
annotated in CORUM.

Scoring models
Empirical confidence estimation of co-regulatory behav-
ior was carried out by representing the null distribu-
tion (i.e. cases of no co-regulation) by scores obtained
from randomizations. By comparing the scores of the dif-
ferent models to scores from randomly sampled data,
we obtained probabilities to discard the observed abun-
dance profiles as result of randomly chosen proteins.
Thus the false discovery rates (FDRs), represented by
p-values corrected for multiple testing, provide a mea-
sure for significance of a given complex on basis of
co-regulation of its subunits within human cell types.
The different randomization techniques were applied
to resemble the intrinsic data structure on different
scales.
Figure 2a compares the p-values calculated for each

model and randomization.More “realistic” randomization
(IS< PCS <PTCS) resulted in lower number of complexes
with significant abundance profiles. MCOM and PCOM,
both models being based on Pearson’s correlation, pro-
duced nearly the same results on complex level (see also
Additional file 1: Figure S3). The FAMS approach however
performed differently, reaching a higher number of signif-
icant complexes for the protein-centered randomization
On protein level (Fig. 2b), lower protein num-

bers with significant abundance profiles could be
expected and were observed when using randomiza-
tion methods that maintain protein and cell type
properties. Here, PCOM displays a higher number of
proteins than FAMS and MCOM for low false discovery
rates.

Robustness
Recovery of proteins and complexes with significant abun-
dance profiles does however not ensure robustness of the
methods towards noise. As example, one could expect a
protein complex to contain subunits that do not follow
the general trend of the abundance profiles. This could
be due to wrong assignment of a protein to a complex
or due to different behavior of a subunit being heavily
regulated by e.g. post-translational modifications or by
forming transients regulating complex function.
Method robustness in handling differentially abundant

proteins can be simulated by adding randomly chosen
proteins to the CORUM complexes. In all complexes, we
increased the number of proteins by 50%, 75% and 100%.
Figure 3 shows ROC curves for these simulated com-
plexes, where we compared the significance by counting
true (actual complex subunits) and false positives (added
proteins). Here, the different methods and randomiza-
tion approaches showed consistent differences for their
robustness. Randomization of the entire ProteomicsDB
data lead to lower robustness for all methods. One the
other hand, protein-centered (PCS) and protein-cell type
centered (PTCS) randomization gave nearly identical per-
formance results. Hence, the following analysis will focus
on PCS randomization, although being the computation-
ally mosts expensive one, as it yields higher counts of
significant proteins. In addition,MCOMand FAMmodels
had lower false positives rates at least in the lower range.

Use cases
The following use cases will provide detailed results of the
scoring models and general complex behavior for three
selected complexes that are representative for the inves-
tigated complexes. We obtained 60 CORUM complexes

a b

Fig. 2 Comparison of models for significant co-regulations. Number of complexes (a) and proteins (b) with significant abundance profiles according
to the different scoring models and randomizations calculated for different thresholds for their false discovery rate (FDR)
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Fig. 3 Performance of scoring models measured by robustness to 50%, 75% and 100% artificially added random proteins. Proteins were categorized
into complex subunits and random proteins. True positive and false positives rates (TPR and FPR) were given by the fraction of true positives and
false positives at a given FDR threshold. MCOM and FAMmodels lead to better performance. Only slight difference between PCS and PTCS
randomizations can be observed

with lowest FDR values (< 0.0003) for all three scoring
models.
Use case A: Condensin I (Fig. 4a) represented the first
of the complexes with lowest FDR values in all mod-
els (PCS randomization). All five proteins were com-
monly expressed in 75 cell types. Very high correlations
between all proteins confirmed the high interaction evi-
dence from STRINGdb [17]. However, Condensin subunit
2 (NCAPH) showed slightly lower correlation and lower
scores. Indeed, NCAPH is known as regulatory subunit of
Condensin I with different nucleolar localization during
interphase [18]. We observed different abundance levels
of NCAPH in several cell types leading to lower weight
by factor analysis (Additional file 1: Figures S4 and S5A).
Tissues with 2-fold lower abundance levels (compared
to the mean of all proteins of the complex) were blood
platelet and lung while 2-fold higher abundance levels
where measured for lymph nodes and several cancer cell
lines.

Use case B: 28S mitochondrial ribosomal subunit
(Fig. 4b), being essential for ATP production, represents
the complex with lowest FDR in all models and most
proteins. The 30 proteins were commonly available in 23
cell types. Both our visualization and STRINGdb interac-
tions suggest a more open structure or composition of the
complex with a core component of heavily co-regulated
proteins. The correlation map (upper figure) roughly
distinguishes two slightly overlapping large subgroups
(proteins MRPS22-MRPS2 and MRPS15-MRPS12) with
higher correlations amongst their proteins. We found a
strikingly different behavior of these groups in lung tissue
(Additional file 1: Figure S5B). This suggests that the 28S
ribosomal complex plays a different role in lung where it
might break up into two functional units.
We looked into more examples of subgroups with highly

co-regulated abundances. Higher coverage over cell types
for these subgroups allows gathering further insight into
their co-regulation. MRPS17, MRPS36 andMRPS12 show
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Fig. 4 Examples for complexes with highly co-regulated proteins. Upper panels: hierarchical clustering of pairwise correlations between protein
abundance profiles. The sidebars show the significance of MCOM and FAMmodels (PCS randomization). Middle panels: Network visualization of
profile similarities. Edge widths correspond to pairwise correlations. Grey tones of the proteins depict FDR significance calculated by PCOM (PCS
randomization). Lower panels: STRINGdb (version 10) networks of proteins. Edge width is given by interaction confidence

very low correlation (Additional file 1: Figure S6A) and
this is confirmed when estimating their significance over
48 cell types (individual proteins p > 0.05 and all over-
all scores p > 0.1). MRPS12 and MRPS12 are known to
be altered in many and different cancer types [19], which
could explain their particularly different behavior.
A group of the five proteins MRPS21, MRPS24,

MRPS26, MRPS6 and MRPS33 exhibited highest corre-
lations and reasonably high significance. We investigated

their co-regulation as a protein group on their own where
their abundance profiles were available in a higher number
of 34 cell types (Additional file 1: Figure S6B) and con-
firmed highly significant co-regulation. A literature search
did not identify any functional behavior for this protein
subgroup.
Moreover, the correlation map of 28S mitochon-

drial ribosomal subunit exihibits a large subgroup of
proteins (DAP3, MRPS2, MRPS5, MRPS7, MRPS10,



Chalabi et al. BMC Bioinformatics           (2019) 20:17 Page 8 of 10

MRPS14,MRPS15, MRPS18B, MRPS22, MRPS23,
MRPS27, MRPS28, MRPS34 and MRPS35) with high
correlations (Additional file 1: Figure S6C). When inves-
tigating these proteins as subgroup, all proteins but
MRPS15 showed high significance for co-regulation. All
of them were consistently lower abundant in lung tissue
when compared to the other proteins of the complex.
This confirms that this subgroup might play a particular
role in lung tissue.

Use case C: NUMAC complex (nucleosomal methyla-
tion activator complex, Fig. 4) denotes a case with slightly
lower significance. All scoring models suggest high sig-
nificance with an FDR below 0.5%. The 10 proteins were
found in 33 cell types with ACTB distinct behavior and
drastically higher abundance than the other proteins.
Strong evidence for interactions of all components but
SCYL1 in STRINGdb suggests that ACTB plays a crucial
role in complex composition but might still have other
functions in the cell. We assume that this protein is not
actively degraded when not forming the complex. All 3
models agreed in having high FDR values for ACTB and
SMARCD1 (FDR >0.1), suggesting that the latter plays a
particular role in this complex.

A data source for tightly co-regulated proteins
Given the strong co-regulation in annotated protein com-
plexes, we asked whether our randomly sampled protein
groups with highly significant co-regulation could deter-
mine novel but yet not well characterized complex com-
positions in human cells. Random protein groups with
the highest scores did however not provide evidence for
these proteins to be arranged as complexes but showed
an increase in protein interactions. We calculated net-
work enrichment scores in STRINGdb for the top scoring
100 protein groups and found the majority to be consis-
tently higher than for randomly chosen protein groups
(Additional file 1: Figures S7-S8). This means that highly
significant protein groups do potentially have particu-
lar common biological functions such as co-regulation
on transcriptional level or being represented by common
members of a known or unknown pathway. We imple-
mented CoExpresso that interrogates groups of human
proteins to assess their co-regulation strength. Therefore,
our CoExpresso web service can be highly useful for the
interested researcher to test their hypothesis on the basis
of human cell types in general. Figures and statistical
measures can be obtained for any list of (mixed) human
protein accession numbers and gene names given that
there is sufficient data coverage in ProteomicsDB.

Discussion
The literature provides at least hundreds proteomics
experiments per year from which a large percentage have

their raw data deposited in the major data reposito-
ries (e.g. PRIDE nearly reaching 10,000 projects to date
[20]). Availability of protein abundances is however still
very rare also because the comparison of protein abun-
dance across experiments and projects is still a major
bottleneck in the proteomics field. ProteomicsDB pro-
vides a large catalogue of protein abundances in human
cell types which we used to thoroughly investigate pro-
tein complex behavior. Despite the large number of char-
acterized cell types, data coverage is rather low, where
more than 20% of the proteins were detected in only
2–5 cell types. Such low coverage hindered straight-
forward application of e.g. simple correlation and we
therefore compared a variety of different scoring mod-
els and randomizations that reproduce the inherent data
structure.
Our comparison showed that appropriate randomiza-

tions are crucial to achieve results with simultaneously
high recall and considerable robustness to noise. The
results speak against complete randomization of all val-
ues, where global differences amongst cell types and
proteins are neglected. We found that protein identities
(PCS method) needed to be maintained to reach robust
results. On the other hand, maintaining the identity of
the tissues (PCTS method) in the investigated protein
group did not lead to lower robustness. We therefore con-
clude that testing properties of protein profiles in general
should be compared to a randomized set where protein
identity is kept. In data with many missing values, this
randomization requires categorizing the random protein
groups into their tissue coverage which can be compu-
tationally expensive. We therefore provide a web service
that stores the randomizations and where arbitrary pro-
tein groups can be tested for their significance. By test-
ing annotated complexes from the CORUM database for
the significance of their concurrent protein abundance
profiles, we could confirm almost 50% (500–600 depend-
ing on scoring model) of the protein groups being co-
regulated with an FDR below 0.1. This confirms the tight
regulation of complex proteins previously reported and
extends this observation to be valid generally in human
cells. Given the lack of coverage over sufficient cell types
in many cases, resulting in rather low statistical power,
we predict that most protein complexes will be found
to be translationally and post-translationally regulated.
While most insight into dysregulation of complex sub-
units comes from gene expression data, our tool allows
extending the analysis by determination and comparison
of complex behavior on protein level. Instead of analyzing
and comparing protein behavior alone, our user-friendly
tool characterizes protein changes with respect to the
complex or a in general to a protein group. Thus we pro-
vide direct insight into the functional behavior of a protein
group.
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Our analysis additionally confirmed and extended
details about protein complex substructure that indicates
regulatory features that orchestrate complex function by
changes in complex composition or by here not investi-
gated post-translational modifications.
We furthermore tested whether the large database of

randomized protein groups could be used to identify
novel protein assemblies that represent highly interact-
ing functional modules such as complexes. We did not
find enrichment for known protein-protein interactions
in the most significant protein groups. This means that
investigating protein co-regulation by random sampling
alone is not a good source to search for novel com-
plexes but remains highly valuable to test for complex
behavior and confirm their composition across cell types.
Given the combinatorial explosion when considering the
number of possible protein groupings, the random sam-
pling strategy used here considers only a small fraction
of all protein groups that contain highly co-regulated
proteins. Novel protein assemblies could still be found
by selective and iterative algorithms that determine pro-
tein groups with highest co-regulation within all possible
combinations.

Conclusion
The here presented study provides deep insight into pro-
tein complex behavior in human cells. The data for all
1414 investigated protein groups can be accessed via
the CoExpresso web service. Arbitrary protein groups
can be tested for their significance with respect to their
co-regulation in human cell, such as investigating prior
hypotheses about protein groups with common strongly
co-regulated functional behavior. With more data on
hand, we expect to improve statistical power and accuracy
by including more data sets and by characterizing the role
of quantified post-translational modifications.

Availability and requirements
Project name: CoExpresso
Project home page: http://computproteomics.bmb.sdu.
dk/Apps/CoExpresso and https://bitbucket.org/veitveit/
coexpresso for source code and R scripts.
Operating system(s): Platform independent (web
service)
Programming language: R and javascript
Other requirements: We recommend a modern web
browser (e.g. Firefox or Chrome)
License: Apache 2.0

Additional file

Additional file 1: Supplementary Figures to CoExpresso: Assess the
quantitative behavior of protein complexes in human cells. (PDF 5647 kb)
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