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Abstract

Background: Long reads provide valuable information regarding the sequence composition of genomes. Long
reads are usually very noisy which renders their alignments on the reference genome a daunting task. It may take days
to process datasets enough to sequence a human genome on a single node. Hence, it is of primary importance to
have an aligner which can operate on distributed clusters of computers with high performance in accuracy and speed.

Results: In this paper, we presented IMOS, an aligner for mapping noisy long reads to the reference genome. It can
be used on a single node as well as on distributed nodes. In its single-node mode, IMOS is an Improved version of
Meta-aligner (IM) enhancing both its accuracy and speed. IM is up to 6x faster than the original Meta-aligner. It is also
implemented to run IM and Minimap2 on Apache Spark for deploying on a cluster of nodes. Moreover, multi-node
IMOS is faster than SparkBWA while executing both IM (1.5x) and Minimap2 (25x).

Conclusion: In this paper, we purposed an architecture for mapping long reads to a reference. Due to its
implementation, IMOS speed can increase almost linearly with respect to the number of nodes in a cluster. Also, it is a
multi-platform application able to operate on Linux, Windows, and macOS.
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Background
Long reads are usually very noisy having multiple sub-
stitutions, insertions, and deletions, c.f. PacBio RS II [1]
and Nanopore MinION [2]. At the same time, long reads
are valuable in bridging repeat regions which provide
information not acquired by short reads. They can also
be used to identify many structural variations such as
translocations, duplication, etc. To exploit the full infor-
mation embedded in such reads, one requires to align
them accurately to the reference genome.
Several long read aligners are developed in the past.

Each aligner has its own capability. The Pacific Bioscience,
the company which makes PacBio RS II sequencer, pre-
sented BLASR [3] for aligning Pacbio long reads. It has
good accuracy by reporting several locations with dif-
ferent scores for each read. Despite the costs (e.g. time,
energy, storage) paid for finding every possible location,
most of them have the least importance for downstream
analysis due to the low alignment score. Heng Li presented
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Minimap2 [4] as the successor of his prior work BWA-
MEM [5]. It is a very fast and accurate long read aligner.
In addition to the great ideas including using minimizers
[6], it is implemented very efficiently. Sedlazeck et al. [7]
proposed a long read aligner which produces alignments
optimized for structural variation detection. Meta-aligner
[8] is designed based on statistical features of the reference
genome. The main concern of Meta-aligner is to align all
reads by respecting the integrity of them with no clipping.
This conservative attempt makes it more accurate but
rather slow in mapping. Therefore, we set an aim of this
paper to improve both speed and accuracy ofMeta-aligner
in order to have a fast and accurate long read aligner not
restricted to a specific OS.
With the ever-increasing size of genomics data and the

growing demands for sequencing, ordinary single node
software would not be able to satisfy all the computing
needs where they last in order of days for a full run. Dis-
tributed processing as a cost-efficient solution to speed
up the computations could be a good feasible choice
in practice compared to other solutions such as using
hardware acceleration (e.g. FPGA and ASIC). There are
some aligners designed to work on distributed platforms.
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DistMap [9] is a distributed software deploying nine short
read aligners on an Apache Hadoop [10] cluster. Abuin
et al. developed two applications , called BigBWA [11]
and SparkBWA [12] that distribute BWA on both Apache
Hadoop and Apache Spark [13]. As mentioned by Abuin
et al in [12], SparkBWA is the successor of BigBWA and
provide a better performance. None of the prior works
pay attention to hardware-aware optimizations. Another
aim of this paper is to develop a working application for
aligning long reads that outperforms current rivals and to
present an efficient framework to build an application that
could be easily upgradeable.
Meta-aligner developed in our lab uses genomes statis-

tics to achieve higher performance. However, in its origi-
nal form, it is not competitive to other aligners. Therefore,
we propose some improvements that make it faster and
more reliable in this paper. We also re-develop it and
apply the improvements using Java. Although it can han-
dle large datasets, it is also suitable for aligning small
datasets without changing the OS. For the distributed
working mode, we use Apache Spark, which is a sophis-
ticated big data processing platform recently developed
and widely adopted for large-scale applications. We pro-
pose and develop a distributed architecture for aligning
long reads to a reference genome. We select our improved
Meta-aligner(IM) and Minimap2 for deploying on the
proposed framework.This shows that our framework is
general and can be adopted by other aligners as well.

Single node implementation
In our single node implementation, Meta-aligner is
improved in five significant ways. In this section, we
describe the details of improvements made on Meta-
aligner. The first two makes the mapping more accurate,
while the others three accelerates the program. Moreover,
these upgrades also lead to an output more comfortable
for downstream analysis. Then, we applied these improve-
ments and implemented a new aligner in Java language.
To the best of our knowledge, IMOS is the first long read
aligner in Java. It is suitable for other contributors to use
it in multi-platforms applications.

Get feedback from the local alignment algorithm
We use feedback from the local alignment algorithm after
mapping each read to gain higher accuracy by: (i) verify-
ing that the edit distance is not more than expected from

the input specification, and (ii) making the reported posi-
tion more precise. Figures 1 and 2 show the flowcharts
of computing procedure on a read for Meta-aligner and
IMOS, respectively. Meta-aligner aligns all reads and then
run local alignment. We changed the procedure by get-
ting feedback from the local alignment algorithm which
is based on the Smith-Waterman (SW) algorithm [14].
Consequently, we can compare the edit distance reported
by SW and what we expect from input data to find out
whether the read correctly assigned or not. Also, to avoid
wasting time on the low quality or hard-to-map reads, we
defined a threshold (Th) for the number of attempts at
aligning a read.
Since in a long read, there are lots of insertions and dele-

tions the reported position based on the information of
seeds could be different from the exact position of the long
read. For instance, a long read split into 20 seeds of length
40 base pairs. If we report the position of the long read
based on the information of seeds 19 and 20, indels in 18
previous seed are implicitly ignored. Thus, the reported
position might differ about 100 base pairs (15% of 18×40)
from the exact position. Therefore, we use the information
of the local alignment algorithm to refine the position.

SureMap instead of bowtie
Meta-aligner used bowtie [15] which considers no gap
while mapping seeds to the reference genome. On the
other hand, we used SureMap [16] instead of Bowtie
because it can handle indels for short reads. Therefore,
SureMap can extract more accurate information from a
seed. Hence, this improvement leads to better accuracy.

Integrated design
The Meta-aligner structure has a top-level procedure
that incorporates a prebuilt short read aligner in order
to map seeds of a long read. These two parties com-
municate through storing input and output on the disk.
The top-level procedure splits the reads into a num-
ber of seeds and writes them into several files. For each
file, it calls the short read aligner with these files as
input. Then, the short read aligner loads the input file
from the disk to the main memory and writes down
the output to the disk again. Finally, the top-level pro-
cedure loads the output file of short read aligner from
the disk to the main memory and maps long reads with
respect to the mapped short reads. This structure has
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Fig. 1Meta-aligner: flowchart of computing procedure on a read
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Fig. 2 IMOS: flowchart of computing procedure on a read

two issues that degrade the performance of the map-
ping, I) high storage usage as a low-speed unit, and II)
additive initialization time of the short read aligner with
each call.
We re-implemented both SureMap and the top-level

procedure in Java. By integrating them, they work as one
unit in a same memory address space. This removes any
storage or initialization overheads.

Change traversing in the alignment stage
Meta-aligner has two main stages, alignment and assign-
ment stages. In the alignment stage, it tries to find the
position of a read by finding two seeds that mapped
uniquely. If a read did not align in this stage, in the assign-
ment stage, it tries to find the position of the long read
regarding every possible position of every seed. Their
results show that a large fraction of the dataset is mapped
in the alignment stage with a shorter time per read and a
small fraction have a long processing time per read in the
assignment stage.
Meta-aligner traverses seeds with a brute-force algo-

rithm. We use a randomized method to gain a higher
speed. Our experiments show that two adjacent seeds
have a high chance to be in a same region (random or
repeat region). A random (repeat) region is a region or
interval in the sequence of DNA that a read can (can-
not) be uniquely mapped in it. Meta-aligner traverses
seeds sequentially from first to last seed. Therefore, if a
significant portion of a read located in a repeat region,
Meta-aligner alignment stage will last long while comput-
ing seeds that are in repeat regions. We use a randomized

method to gain a higher speed. Our traverse method has
two states:

1 If the seed is in a repeat region, next seed will be one
random seed among remaining seeds.

2 If the seed is in a random region, next seed will be
one random un-traversed seed among adjacent ones
unless both are traversed. In the latter case, next seed
will be one random seed among remaining seeds.

Algorithms 1 and 2 show the traverse method of the
original Meta-aligner and IMOS, respectively. It is evident
that this improvement has no effect on accuracy and only
increase the speed of the traverse method on average.

Efficient search in the assignment stage
After a read did not map in the alignment stage, the orig-
inal Meta-aligner performs another fragmentation opera-
tion which splits a read into a number of seeds. In other
words, it adds new seeds of the long read as shown in
Fig. 3. The primitive seeds are the result of the first
fragmentation done in the alignment stage and the over-
lapping seeds are the outcome of the new fragmentation
in the assignment stage. The original Meta-aligner com-
putes every seed (primitive and overlapping seeds) in its
assignment stage. We do not process seeds that are not
informative so as to gain a higher speed. Since primi-
tive seeds computed once, they are less informative in the
assignment stage. Also, It is possible to find two seeds
that can be uniquely mapped among newly added seeds.
Therefore, we only compute newly added seeds which are
more informative.

Fig. 3Meta-aligner fragmentation
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Algorithm 1: Alignment Stage
1 Split reads toW/l1 equal non-overlapping seeds
2 Alignment Stage 1:
3 for each read do
4 Map seed 1 & 2 with bowtie
5 if S1 & S2 map uniquely && confirms each

other then
6 compute position
7 mark read as mapped
8 end if
9 end for

10 Alignment Stage 2:
11 for each unmapped read do
12 for i=3 to W/l1 do
13 Map seed i with bowtie
14 if Si maps uniquely && confirms a previous

uniquely mapped seeds then
15 compute position
16 mark the read as mapped
17 end if
18 end for

Algorithm 2: Alignment Stage [Modified]
1 Split unmapped reads toW/l1 equal
non-overlapping seeds;

2 for each unmapped read do;
3 Pick a random number i from 1 toW/l1;
4 while read is unmapped && there is still

unchecked seeds do;
5 check seed i;
6 if Si mapped uniquely then;
7 if Si confirms a previous uniquely mapped

seed then;
8 compute position;
9 mark the read as mapped;

10 end if;
11 if both adjacent seeds is check then;
12 Pick i randomly among unchecked

seeds;
13 else;
14 Pick i randomly from unchecked

adjacent seeds;
15 end if;
16 else;
17 Pick i randomly among unchecked seeds;
18 end if;
19 end while;
20 end for;

Distributed (Spark) implementation
In the best case, the performance of single machines can
be doubled in every 1.5 years with respect to Moore’s law.
Moreover, a two times faster machine is four times more
expensive while distributed systems cost to performance
ratio is almost constant. For having an unlimited (theo-
retically) processing power, we need a distributed system
that allows us to double the performance every time by
doubling the number of machines. Since our application
works with a huge amount of data and processing of this
amount of data lasts long, we need a distributed system to
do jobs in a reasonable time.
In this section, first, the reasons why we chose Apache

Spark and its introduction are presented. Our cluster
design comes after that. Then, the technical implementa-
tion issues are explained and the solutions are presented.
Afterward, an overview of our worker node design is pre-
sented. Finally, after discussing our batch implementation
thoroughly, a summary of streaming implementation is
presented.

Platform
We had two directions I) implement our own platform, II)
use a matured distributed processing platform. We chose
the second option because:

• Implementing our own platform is time-consuming.
• It is difficult to implement a platform that considers

every kind of failure.
• It is hard to relay on an immature distributer.

To determine which platform suits the application well,
we consider the fact that aligning reads to a reference is
intrinsically a batch job. Therefore, the platform should
provide a high throughput in order to reduce the pro-
cessing time. In addition, the runtime should scale almost
linearly with respect to the number of nodes in the cluster.
After considering a number of different choices for

deploying IM and Minimap2 in a distributed environ-
ment, we chose Apache Spark [13] among Apache big data
processing platforms [10, 13, 17–19]. It is an open source
big data processing framework for distributed environ-
ments. It can work on a cluster of computing machines.
According to results of evaluations done in [20, 21] which
analyzed the performance of big data platforms through
a number of standard benchmarks, Apache Spark pro-
vides better throughput and scalability in both batch and
stream processing. As a summary, the main reasons for
our choice are described as follows:

• Open Source: Spark is open source and has an active
community which is growing and contributing
rapidly.

• Fast: Spark is very fast and up to 100 times faster
than its predecessors like Apache Hadoop [10] due to
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its implementation. It improves in many aspects such
as storage and fault-tolerant mechanism.

• Highly Scalable: Spark tries to reduce runtime
overheads in order to reach a linear speed up related
to the number of nodes in the cluster.

• Unified Platform: It offers a wide range of services
for different applications and implementations. In
other words, it is an all-in-one platform. For instance,
an application which is designed for batch processing
can be re-designed for stream processing with a little
effort. This greatly speeds up developing and
maintenance of an application.

• Easy to Develop: There is no need to involve
developers with low-level system controls such as
managing the cluster. The developer needs only to
concentrate on designing the algorithms and the
program. This ease brings focus and concentration to
developers for innovation.

• Independent Design: Each component of Apache
Spark like the cluster manager can be customized
independently.

Figure 4 shows the architecture of Apache Spark which
is master/slave. The driver runs the main function of
applications and creates a SparkContext for each applica-
tion which coordinates the independent set of processes
of the parent application. The SparkContext can be con-
nected to a cluster manager which could be one of Apache
Spark Standalone, Apache Hadoop Yarn [22], Apache
Mesos [23], andGoogle Kubernetes [24]. The clusterman-
ager connects the master node to workers and allocates
the required resources on the cluster to the application.
Each worker node runs an executor process which is the

unit responsible for computing and storing operations. It
runs and coordinates tasks. Tasks are the smallest oper-
ational components that can be run in parallel. A set of
tasks form a job and a set of jobs form an application.
The SparkContext sends tasks to executors. Each rectan-
gle is a component that could be placed on any networked
machine. For instance, a driver and a worker can be placed
on a same machine or two distinct machines.
Apache Spark can work with Hadoop Distributed File

System (HDFS) [25] which is a highly fault-tolerant dis-
tributed file system. It is designed to work on low-cost
commodity hardware. Similar to Spark, HDFS also has a
master/slave architecture. AnHDFS cluster has a NameN-
ode as the master which manages the file system and
controls the access to files. Each cluster may have a num-
ber of DataNodes as slaves that store a file as a number of
blocks and execute file operations such as opening a file.

Cluster design
We implemented our improved Meta-aligner on the core
Spark which is the batch processing engine of Apache
Spark. Figure 5 shows the architecture of IMOS where
the rounded rectangle and each rounded square represent
a machine. Spark Driver, HDFS NameNode, and Clus-
ter Manager which are the coordinators are placed on
the master node. Since the coordinators do jobs such as
scheduling and allocation periodically, it is better to have
the master node near the workers. Therefore, we placed
all of them on the same local area network (LAN). If a
user wants to submit an application remotely, it is better
to connect to the master node through SSH or something
similar instead of placing the coordinators on the user
machine. On every slave node, there are a Spark executor,

Fig. 4 Apache Spark architecture
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Fig. 5 IMOS architecture. A master node (rounded rectangle) with a number of slaves ones (rounded square). Spark Driver, HDFS NameNode, and
the cluster manager are placed on the master node. Each slave node contains a HDFS DataNode, a Spark Executor, and an instance of IMOS worker.
Spark executor communicates with DataNode and IMOS worker through storage disk and socket as the medium, respectively. Components of
Spark, HDFS, and our design are distinguished using slate gray, blue, and green colors, respectively

an HDFS DataNode, and an IMOS worker which is an
interface that can run either IM or Minimap2. The work-
flow of our design is such that the system first distributes
the long reads among processing nodes using HDFS and
then employs Spark to call the instances of IMOS worker
where the data resides. Afterward, the IMOS worker runs
an aligner among IM and Minimap2 to start mapping.
Finally, The results can then be written on HDFS for being
prepared for any downstream analysis or can be sent to
the master node for being aggregated.

IMOS worker
IMOS worker is designed to independent of the underly-
ing aligner. It is an interface that bridges the Spark execu-
tor and the aligner. At the startup of the IMOS worker,
the user defines its desired aligner. Then, the application
runs the aligner in the modified mode as its child process.
After the initialization has been done, IMOS worker starts
listening to the Spark executor and takes the data with
commands and passes them to the aligner. Finally, IMOS
worker returns back the results as soon as the aligner’s job
is completed.
In this paper, Meta-aligner and Minimap2 are modified

to work with IMOS worker. Other aligners can be adopted
similarly.

Load balancing
Load balancing is the key to reach the full potential of a
distributed system. The finish time of a distributed job is
measured by the time that every task is done.
We presented a load balancer that works on top of a

HDFS. Its core concept is to prepare the input file such
that the characteristics of each chunk of data be similar
when the HDFS distributes them across the cluster nodes.
Therefore, there is no need to perform any change in the
HDFS NameNode. Moreover, this can be done indepen-
dently as a data preparation step. Thus, the running time
of load balancing is not an issue since it is a static task.
However, we provided a linear greedy solution that works
near optimal.
Our analyses show that the two features of a FastQ file

which have the most influence on the processing time
are the average length and the number of reads. In addi-
tion, these two features can be extracted easily. As a
big picture, we scan the FastQ file and group every N
reads where N is the number of nodes in the cluster.
After the creation of each group, the reads will be sorted
by the length. Then, we distribute them one-by-one in
a Round-Robin manner to the nodes such that a node
receives the read with maximum length once in every N
distributions.
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Since the whole FastQ file consisting R reads is needed
to be scanned and there is a sort with the order of N logN
for every R/N groups, the time complexity of the load
balancer is O(R logN). As the number of nodes is much
smaller than the number of reads, it can be considered as
a constant and be neglected.

Implementation issues
We faced some serious concerns while trying to imple-
ment our design efficiently. These concerns are explained
in the following.

Minimize storage usage
The key to Spark performance is its in-memory process-
ing technique. It keeps track of data through a number of
operations by storing the intermediate data reliably in the
main memory. Accordingly, to conform the Spark archi-
tecture, the first question is how to implement our design
to minimize the usage of storage as a low-speed unit in
the system. One of the best high-performance designs for
this application is that the reference files remain in the
main memory for the entire application runtime to avoid
storage-to-memory communication overheads. Apache
Spark provides two type of variable for this purpose:
Broadcast Variables and Accumulators. Both have prob-
lems that make them inappropriate for our design. Broad-
cast variables are broadcasted to every worker nodes in
the application initialization. This has four main issues:

• High Network Usage: Broadcasting this large
amount of data over the network will use the network
inefficiently.

• Initialization Time: For each application, there will
be an initialization time to broadcast the reference
files.

• Node Failure: Each time a node faces a failure, the
data must be broadcasted again.

• Memory Overhead: In Spark implementation, a
broadcast variable is accompanied with a large meta-
data. Our experiments show that an 11GB variable at
the host occupies 17GB of the guest main memory.

On the other hand, accumulators can only be defined as
primitives such as Integer. Hence, none of these options
solve the problem of maintaining the reference files in the
main memory. Therefore, we used another strategy.
Since the single node implementation of almost every

aligner keeps the reference files in the main memory for
the whole runtime, we decided to place an instance of
the IMOS worker in every worker nodes as an indepen-
dent application working with spark through a memory-
to-memory medium. We chose socket programming on
localhost as the safest medium which also provides an
ultra-fast communication speed.

In this implementation, an instance of the IMOS
worker runs at the worker node setup-time once at
the cluster setup. The Spark executor, IMOS worker,
and the selected aligner communicating through socket
programming while the only storage usage is loading the
data fromHDFS by the Spark executor. In addition to solv-
ing the aforementioned problems of broadcast variables
and accumulators, this design benefits from I) high-speed
memory-to-memory transactions instead of using storage
disk as the medium, II) the initialization of the aligner
done once for multiple jobs.

Data structure
The second concern is about the data Structure. What
data Structure is provided by Apache Spark and how
to use it most efficiently. Apache Spark core concept
is Resilient Distributed Datasets (RDD) which is a dis-
tributed collection of data that can be operated in parallel.
RDD is not the data, it contains a number of partitions
storing data. Further, an interesting feature is that it recov-
ers automatically from failure. An RDD can be created by
parallelization of a dataset in the driver program or load-
ing from a file system like HDFS. In our design, an RDD is
created by loading the input FastQ file from HDFS.
A possible question is that why partitioning is needed.

Loading every record from the file system into a single
partition requires a large amount of space in the main
memory, but with this technique, records can be trans-
ferred to the main memory in a partition-by-partition
quantization. Since the processing power is limited which
obviously cannot process every record in parallel, it is
enough to read a sufficient amount of data each time to
make sure that the CPU is fully utilized. In our design,
the partitions size is set to 64MB which is equals to
HDFS block size. This size setting avoids repartitioning
in order to save time. Moreover, 64MB is approximately
the required size to store 4750 long reads with the average
length of 7000 base pairs which is large enough to ensure
that the CPU always has reads to process. Of course, this
only affects the efficiency of memory usage with negligible
effect on CPU time.
RDDs can perform two sets of operations: Transforma-

tions and Actions. Transformations create a new RDD
from an existing one. Actions collect and return the values
stored in the RDD to the driver program. All transforma-
tions are lazy whichmeans they will not compute anything
until an action requires the result of them. This infers
that there is no need to worry about memory usage while
chaining a number of transformations.
In our design, IMOS should create an RDD containing

reads fromHDFS. Then, it should send read mapping task
with a transformation and return the mapped information
with an action. There are two suitable transformations for
read mapping: map() and mapPartitions() methods. The
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former operates on elements of the RDD while the latter
operates on a partition (list) of elements from the RDD.
We have decided to choose mapPartitions() because of
two reasons:

• Reduce Overheads: As mentioned earlier, we need
to send reads from Apache Spark executor to the
aligner through a localhost connection. Sending reads
in burst could use network efficiently. Still, An ideal
high-performance design is to keep CPU always
working at maximum utilization. Using batch data
reduces I/O overheads leading to a better CPU
utilization.

• Custom Thread Control Mechanism: Using map()
method, Spark creates a thread for each read. Creating
and killing threads in a high number would waste a
lot of time. Furthermore, Spark may create more
threads than the number of physical cores which is
not recommended for a high-performance design due
to the race for shared resources and the high number
of context switches. It is noteworthy that there are
also better opportunities for maximizing CPU usage
by customizing threads when reads arrive in batch.

Controlling threads
As stated above, we need to control the threads. So, the
questions are “Which implementation of threads suits our
design?” and “How to implement threads to work effi-
ciently together providing mutual exclusion as there are
many shared resources?”. We designed our own thread

control mechanism. Instead of creating a thread for each
read, we create a number of threads equal to the num-
ber of cores and assign each thread to a core. Moreover,
we stepped farther and used Java Thread Pool instead
of the ordinary threads. It enables us to use wake/sleep
instead of create/kill to save time. The mapPartitions()
method gives a list containing the reads. We divide the
list into the number of threads and assign each part to
a thread. For maximizing the CPU usage, every thread
must start and end together. Therefore, we need load
balancing to maximize utilization. We distributed reads
with respect to the length of reads such that the average
read length of every part is almost equal. Since our dis-
tribution is not perfect, we designed a race-free double
end queue for storing the reads that are assigned to each
thread. When a thread finishes the processing of its own
queue, it joins a thread which has more remaining reads in
its queue.
Spark may callmapPartitions()method more than once

at the same time. If we create a number of threads with
each call, there might be more threads than the number
of cores. As we discussed earlier, this is not pleasant for
a high-performance design. So, used a semaphore-based
mechanism to ensure that only one partition is being
processed at each time.

Worker node design
Figure 6 shows the workflow of each worker node in our
design. As it is shown, there are four entities with separate
memory address space:

Fig. 6Worker node workflow. Horizontal and vertical line separates different hardware and software units, respectively
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• HDFS DataNode: The only entity that always uses
storage is DataNode that stores a chunk of the input
FastQ file.

• Spark Executor: The spark executor works as a
manager to divide the chunk into a number of
partitions that formed an RDD and transfers them to
the aligner for being processed. It also calls a
mapPartitions() function on each partition.

• IMOSWorker: It is an interface between the Spark
executor and the aligner. There is also a lock to
control the parallelization of the mapPartitions()
functions.

• Aligner: It is shown as a black box since it could be
any aligner.

The Scenarios for the cases that either the IM or Min-
imap2 is selected as the aligner are a little bit different
where we will elaborate more in the sequel.
First, the Spark executor reads the chunk from HDFS.

For the IM case, it is the only storage-to-memory com-
munication. The Spark executor stores the FastQ file as
an RDD in the main memory. The RDD contains a num-
ber of partitions where each of them is a list that contains
a part of the reads. As mentioned above, a mapParti-
tions() function is called on each partition. Each map-
Partitions() sends a request to the IMOS worker to get
the lock and use the aligner. The lock grants functions
in First-Come-First-Served order like a queue. Then, the
granted function transfers the list of reads that stored
in the partition to the memory space of IMOS Worker.
Unlike the IM case that IMOS worker passes reads
through socket-programming, IMOS worker uses storage
in the Minimap2 case. After the transfer is completed
the IMOS worker calls the aligner to start mapping the
reads. When the mapping process is finished, the aligner
returns the results to the IMOS worker. Similarly in both

cases, returning the results goes through a memory-to-
memory medium. Afterward, the granted function gets
the result back from IMOS worker and releases the lock.
Finally, the granted function can send the results to the
Spark Driver or store them on the HDFS DataNode. This
procedure repeats until every partition in every RDD is
processed.

Apache Spark streaming implementation
Last but not least, we also implemented our improved
Meta-aligner on the Spark Streaming. The Spark stream-
ing is an extension to the core Spark. It can receive streams
from brokers such as Apache Kafka [26]. The streams
arrive in a record by record quantization. In every speci-
fied time interval, the spark streaming gets all the arrived
records and organize them together in a bundle called
micro-batch. Each micro-batch will be passed to the core
Spark and treated like a normal batch. The communica-
tion and processing time could overlap each other by using
stream processing techniques. Therefore, at least theoret-
ically, it could reduce the latency and total processing time
of each dataset. We discussed it with more details in the
Discussion section.

Results
Experimental setup
We performed two sets of experiments to evaluate the
performance of IMOS in single node and distributed
modes. In the single-node, we have used a server with a
Intel Xeon E5-2630 v3 processor having 8 cores and 32 GB
of RAM operating on Ubuntu 14.04 LTS.We used Apache
Spark 2.2.0 for both batch and streaming experiments. In
the distributed mode, we deployed an apache spark clus-
ter of 10 nodes with one driver node and 9 worker nodes.
Each node has a configuration similar to the one used in
the single node.

Table 1 Datasets Characteristic: The name of synthetic datasets contains the read simulator name

DataSet name Dataset size (MB) Read length (bp) Read length range (bp) Mismatch (%) Indel (%) Number of reads

Wgsim-S0 59 300 FIX 0.9 0.1 100000

Wgsim-S1 193 1000 FIX 0.9 0.1 100000

Wgsim-S2 193 1000 FIX 0 10 100000

Wgsim-S3 193 1000 FIX 9 1 100000

Wgsim-L0 232 7000 FIX 1 16 20000

Wgsim-L1 232 7000 FIX 0.9 0.1 20000

Wgsim-L2 458 12000 FIX 1 16 20000

SimLoRD 315 8182 500-34687 1 16 20000

PBSim 343 7596 181-24998 1 16 22556

SRX533609 2589 6890 500-39445 1 16 174537

ERX1366175 800 12997 503-55908 1 16 30713

For Wgsim datasets, There are two type of synthetic datasets, S- and L-class which refers to Short and Long reads and their name start with S and L, respectively. The last two
datasets are real and represent by the accession number
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Datasets
Table 1 presents characteristics of eleven datasets used
to examine the performance of aligners. Nine of them
are synthetic designed for evaluating speed and accu-
racy for different traits using three different read simu-
lators: Wgsim [27], SimLoRD [28], and PBSim [29]. We
used Wgsim to generate reads with different length and
error rate. Its Synthetic datasets designed in two classes:
short reads (Wgsim-S-class) and long reads (Wgsim-L-
class). Although IMOS developed especially for high error
long reads, we also evaluate the performance of align-
ing short reads too. SimLoRD and PBsim are used to
simulate the PacBio SMRT sequencing. SimLoRD is used
with its default parameters which are driven from public
PacBio datasets and PBsim is used with its sampling-based
method to produce reads similar to the real datasets used
in this paper. We used two real datasets that are sam-
ples from Human 54× and Han Chines Trio PacBio reads
with accession numbers of SRX533609 and ERX1366175
published in NCBI Sequence Read Archive [30]. They are
used for measuring speed on a real dataset. Note that,
the reference genome used in all experiments is human
genome hg19.

Single node experiments
We analyzed the performance of our Improved Meta-
aligner, the original Meta-aligner, BWA-MEM, and
Minimap2. Comparison of Improved and the origianl
Meta-aligner demonstrate how effective are our improve-
ments and that of Minimap2 and BWA-MEM helps the
better comparison of IMOS and Spark-BWA. Table 2
shows the performance of the tools for every dataset. We
filter out alignments with MAPQ less than 10 and then
measure the accuracy and map rate. Our measurement
of accuracy is the number of SAM file [31] lines with
the correctly reported position to the number of all lines.
Map Rate is the percentage of mapped reads (containing
incorrect ones) to all.
Whereas for the synthetic datasets we know the real

position of each read, we calculate the accuracy by com-
paring the real positionwith the one that the tool declared.
The parameter T which is illustrated in the Accuracy col-
umn is for Tolerance. Suppose T, P, and X as Tolerance,
the real Position, and the declared position. if X satisfies
in the equation P−T <= X <= P+T , then the declared
position is correct.
Since the actual position for the real dataset is not

known, calculating accuracy is not possible. We could
have calculated the accuracy by edit distance factor. If an
aligned read is more than a certain percent similar to the
reference, then count it as correctly mapped read. A sig-
nificant concern with this calculation is the fact that due
to high error rates, a read may be aligned to a position
different than the real one by chance. These types of errors

can directly affect the correctness of any downstream
analysis.
The results confirm the improvements. IM always per-

forms better than the original Meta-aligner in terms of
Map Rate, Accuracy, and Speed. There is an exception
that IM is slower than Meta-aligner for Wgsim-S3 dataset
where mismatches and indels happened frequently and
rarely, respectively. This happened because the original
Meta-aligner uses Bowtie which is more efficient in han-
dling mismatches than SureMap. The point is that IM
can offer better accuracy even in this case. However, it is
noteworthy to mention that the Wgsim-S3 is an unusual
case especially for PacBio datasets. Comparing results of
Wgsim-S-class and Wgsim-L-class datasets, we can con-
clude that IM works better at least under one of these
circumstances: 1) Read Length is very long, 2) Error rate
of read is very high. Despite we designed IM for long
noisy reads, the result shows a little difference between the
result of S-class and L-class. This is interesting as it shows
the robustness of IM. In terms of speed, IM is up to 6×
faster than Meta-aligner.
Moreover, the comparison of IM with BWA-MEM and

Minimap2 shows that IM is competitive in term of map
rate and accuracy. The forth column of Table 2 shows that
IM always has the best accuracy for indel rich datasets
where T = 0. A main reason for the better speed of
BWA-MEM and Minimap2 w.r.t IM is the programming
language used for the implementation. Although Java is
platform independent, it is slower than C\C++.
As we expected, Minimap2 is always faster than BWA-

MEM. Specially for PacBio reads, it is about 10 times
faster. Although it offers slightly better accuracy for
Pacbio read, it has similar accuracy for other cases.
The real datasets characteristic are like PBSim and Sim-

LoRD. We can approximate the accuracy of the tools by
the results of these two. We can conclude that IM accu-
racy is always better than Meta-aligner alongside higher
map rate for real datasets and is competitive with BWA-
MEM and Minimap2 where it is better for smaller Ts and
a bit worse for bigger Ts. Given our definition of accuracy,
one can conclude that IMOS output is trustworthy for any
downstream analysis.

Apache Spark experiments
IMOS also is designed and implemented as an Apache
Spark batch as well as streaming application to be exe-
cutable on clusters. As mentioned before, our rival in
the distributed environment is SparkBWA. Usually, a
Spark cluster has a master node with a number of
worker nodes. Since an instance of IMOS single node
should be run on each slave node, the computational
process remains the same. Therefore, accuracy and map
rate for each dataset was the same as the single node
experiments.
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Table 2 Single Node performance comparison of IMOS and the original Meta-aligner

Dataset Tool Map rate (%) Accuracy (%) T=0 Accuracy (%) T=10 Accuracy (%) T=100 Time (s)

Wgsim-S0 IM 99.66 94.5 94.9 94.9 40

Meta-aligner 95.31 93.40 93.73 93.74 58

BWA-MEM 97.81 99.81 99.99 100 20

Minimap2 97.44 97.94 99.99 99.99 12

Wgsim-S1 IM 99.95 97.36 97.9 97.9 97

Meta-aligner 97.79 94.76 96.27 96.29 174

BWA-MEM 98.89 99.78 99.99 99.99 79

Minimap2 98.67 97.86 99.99 99.99 25

Wgsim-S2 (Indel rich) IM 99.43 87.17 95.52 96.62 360

Meta-aligner 70.74 21.58 79.6 90.65 501

BWA-MEM 97.65 85.42 99.94 99.97 130

Minimap2 97.99 75.76 99.16 99.98 23

Wgsim-S3 (Mismatch rich) IM 99.46 95.13 96.62 96.62 352

Meta-aligner 99.05 67.09 96.21 96.23 202

BWA-MEM 98.38 82.18 90.86 99.91 134

Minimap2 97.79 76.60 98.94 99.99 24

Wgsim-L0 (Indel rich) IM 99.96 78.04 97.27 97.37 780

Meta-aligner 79.96 7.41 39.2 92.37 1928

BWA-MEM 98.84 74.78 99.69 99.98 180

Minimap2 99.04 59.02 94.58 99.98 47

Wgsim-L1 IM 99.81 99.02 99.05 99.05 438

Meta-aligner 99.49 90.71 97.71 97.73 2306

BWA-MEM 99.20 99.10 100 100 118

Minimap2 99.05 98.06 100 100 33

Wgsim-L2 (Indel rich) IM 98.63 76.61 99.14 99.14 1954

Meta-aligner 95.97 5.02 31.56 94.23 6103

BWA-MEM 99.22 75.00 99.77 99.98 318

Minimap2 99.22 58.69 94.74 99.98 72

SimLoRD IM 92.79 89.75 93.69 93.69 991

Meta-aligner 92.79 0.08 22.15 42.09 1851

BWA-MEM 92.43 85.46 95.98 97.65 458

Minimap2 92.43 79.88 98.07 99.89 75

PBSim IM 99.75 88.60 95.81 95.96 1098

Meta-aligner 90.55 1.05 5.15 40.49 3918

BWA-MEM 98.65 65.22 96.01 97.65 567

Minimap2 98.93 54.50 95.56 99.98 78

SRX533609 IM 92.35 - - - 9031

Meta-aligner 70.05 - - - 24,393

BWA-MEM 92.75 - - - 3653

Minimap2 89.58 - - - 348

ERX1366175 IM 97.33 - - - 2780

Meta-aligner 88.15 - - - 14,303

BWA-MEM 95.24 - - - 1512

Minimap2 94.14 - - - 146
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Fig. 7 Scalability of application on a spark cluster. Zero as number of worker nodes is the results of single node with no spark involved

We deployed tools on an apache spark cluster of 10
nodes, one master and nine workers. The master node is
placed at the middle of a star topology connected to nine
other worker nodes. We repeated the experiment for dif-
ferent number of worker nodes to evaluate the scalability
of tools. Figure 7 shows the speed up of tools with sin-
gle node performance as the reference point. As expected,
the performance of each tool almost doubles with dou-
bling the number of nodes. Therefore, the relation ratio
of tools approximately remains constant. Hence, selecting
this reference point matters because the effect of imple-
mentation overheads is more recognizable. Comparison
of worker node numbers of 0 (single node) and 1 shows
the overheads of distributed implementation. The results
show that IMOS with IM as aligner in batch mode has
the least overhead and with Minimap2 has slightly more
overheads because it uses storage. Unlike IMOS that keeps
the aligners data in the memory for entire application

runtime, SparkBWA calls BWA for each partition mean-
ing initialization and more importantly loading reference
files should be run for each partition. This is themajor fac-
tor of high SparkBWA overheads alongside use of storage
as interconnect media between Spark executor and BWA.
IMOS with IM and Minimap2 speed up is about 2.5×

and 3× better than SparkBWA. Moreover, according to
results of Table 2, Minimap2 is about 10× faster than
BWA-MEM. Therefore, IMOS is roughly 25× faster than
SparkBWA when using Minimap2. In addition, it is fasci-
nating to know that although IM is about 2 times slower
than BWA-MEM, IMOS even with IM is faster than
SparkBWA (about 3/2 times). The results of streaming
implementation are not as expected and is discussed in
the Discussion section.
We also analyzed the performance of our thread con-

trol mechanism used in IMOS-IM. Figure 8 shows
the processing time of each 16 threads in the thread

Fig. 8 Processing time of 16 threads for a partition of 1000 reads
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pool for a partition containing 1000 reads. Note that
the result for every other partition was very simi-
lar, so we only present an example. As shown, the
maximum difference between the processing time of
threads is only 3%. This shows the effectiveness of
our load balancing and thread control mechanism.
The average CPU utilization with this technique was
about 99%.

Discussion
In this section, we first compare choosing between batch
and streaming processing. Then, we report the bottleneck
analysis of IM and a future solution.

Batch vs streaming
The input data of this application is a Fasta file contain-
ing reads. This file can be very huge in size. Therefore,
the communication time is not negligible. For instance,
a Fasta file containing 10× coverage of human genome
which counts as a low coverage would be 60GB. Transfer-
ring this file through almost the highest Internet connec-
tion which is reported to be about 184 Mb/s according to
Akamai [32] will last about 45 min. Stream processing is
able to overlap the communication time with processing
time. So, we implemented IMOS-IM using Spark Stream-
ing. As shown in Fig. 7 scalability of spark streaming is
not as good as its batch processing. Our analysis shows
that the micro-batch mechanism used for spark stream-
ing and its scheduler for distributing data are the two
main overheads. Also, if the system is fully utilized then
the communication time of next job overlaps with the
execution of the current job. Therefore, seeing the whole
system as a pipeline, we can only count the execution
time for each dataset which is the dominant time. Thus,
we decided to release IMOS working with Apache Spark
batch processing.

Bottleneck analysis
We have analyzed the performance of IMOS-IM on a
single node in order to find the bottlenecks. We have
profiled CPU, cache, main memory, storage, and context
switches when themapping was running. Our analyses are
presented for each item in the following.

• CPU: The average reported CPU utilization over the
application runtime is 98% approximately which
verify the maximum CPU utilization.

• Context Switches: As expected, since we do not
create more threads than the number of cores, the
context switch occurs rarely.

• Storage:We monitored the hit rate of main memory.
The hit rate only falls with the arrival of new
partitions. This means that the storage usage is just as
expected.

• Main Memory:We monitored the read and write
speed of the main memory. Summation of read and
write speed never reaches the maximum throughput
of the used RAM. This reveals that the main memory
is not the bottleneck. However, the high amount of
data read and data write between CPU and RAM gives
us a clue that the cache may not function properly.

• Cache:We analyzed the hit rate of cache L3. Its hit
rate is 40% approximately. As we expect the hit rate
of L3 cache to be more than 50%, the cache has the
highest chance to be the bottleneck.

To verify that cache is the bottleneck, First, we split our
work into two major part, I) Finding the position of a
read using Suremap [16] and II) Local alignment using the
Smith-Waterman algorithm [14]. Timing analysis shows
that finding position scales almost linear with the number
of cores, but local alignment does not. Our analysis shows
that the bottleneck for local alignment is low cache L3
hit rate which is about 15% on average that prevent local
alignment as well as the whole program to scale linearly
on a single node. Note that 15% for the hit rate of L3 cache
is extremely small. Therefore, using a more scalable local
alignment algorithm could lead to a system that scales
linearly as Altera [33] implemented the Smith-Waterman
algorithm using FPGA and gained around 200x speed up.
Consequently, using FPGA as an accelerator could make
the local alignment time negligible and and improve the
overall performance.

Conclusion
We have presented IMOS (Improved Meta-aligner and
Minimap2 On Spark) which is a long read aligner suit-
able for noisy Pacbio reads able to be run on a single node
(IM) as well as on an Apache Spark cluster (IMOS-IM
and IMOS-Minimap2 respectively representing our port
of IM and Minimap2 to our IMOS framework). One of
our main intentions was to improve Meta-aligner in both
accuracy and speed.We have improved the original Meta-
aligner in 5 significant ways and re-implement it in Java.
To the best of our knowledge, IMOS is the first long read
aligner implemented in Java able to run on Linux, Win-
dows, and macOS easily. IMOS is up to 6 times faster than
the original Meta-aligner. Still, IMOS has a higher map
rate alongside a higher accuracy. Eventually, the result of
IMOS is trustworthy for any downstream analysis.
The other intention of ours was to design a framework

suitable for mapping genomic sequences to a reference
genome in a distributed environment. We ported both IM
as well as Minimap2 to our IMOS framework. Moreover,
we provided an interface to be able to run other aligners as
well. IMOS is up to 25× and 1.5× faster than the current
best-performing distributed aligner on Spark, SparkBWA,
when with Minimap2 and IM as aligner respectively.
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The direction for our future works is to integrate our
design with a downstream analysis like structural varia-
tion detection to use the benefits of integration. Designing
both upstream and downstream analysis together pro-
vides more optimization opportunities because one can
design each side to work better with the other side.

Availability and requirements
Project name: IMOS
Project home page: https://easy.ce.sharif.edu/imos
Operating system(s): Platform independent
Programming language: Java and C
Other requirements: Java 8, Apache Spark 2.1 and later,
Apache Hadoop 2.7 and later
License: CC BY 4.0.
Any restrictions to use by non-academics: none
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