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Abstract

Background: Accurate prediction of anticancer drug responses in cell lines is a crucial step to accomplish the
precision medicine in oncology. Although many popular computational models have been proposed towards this
non-trivial issue, there is still room for improving the prediction performance by combining multiple types of
genome-wide molecular data.

Results: We first demonstrated an observation on the CCLE and GDSC datasets, i.e., genetically similar cell lines
always exhibit higher response correlations to structurally related drugs. Based on this observation we built a cell
line-drug complex network model, named CDCN model. It captures different contributions of all available cell line-
drug responses through cell line similarities and drug similarities. We executed anticancer drug response prediction
on CCLE and GDSC independently. The result is significantly superior to that of some existing studies. More
importantly, our model could predict the response of new drug to new cell line with considerable performance.
We also divided all possible cell lines into “sensitive” and “resistant” groups by their response values to a given
drug, the prediction accuracy, sensitivity, specificity and goodness of fit are also very promising.

Conclusion: CDCN model is a comprehensive tool to predict anticancer drug responses. Compared with existing
methods, it is able to provide more satisfactory prediction results with less computational consumption.

Keywords: Anticancer drug response, Cell line-drug complex network, Computational prediction model, Cell line,
Precision medicine

Background
The inherent heterogeneity of cancers always makes the
same cancer patients exhibiting different anticancer drug
responses, which is a major difficulty in cancer treatment.
It is critical to accurately predict the therapy responses of
patients based on their molecular and clinical profiles [1, 2].
With the rapid development of high-throughput technol-
ogy, a huge number of publicly available cancer genomic
data have been generated by large research agencies. It sup-
plies a golden opportunity to translate massive data into
knowledge of tumor biology and then improve anticancer
drug response prediction. Many computational methods
have greatly contributed to this non-trivial issue [3–6]. Su-
pervised learning technique is one of the most widely used

approaches. It can be mainly partitioned into regression
and classification models [7]. The former always generate
numerical estimations of drug sensitivity represented by ac-
tivity area or IC50 [3, 8], and the latter tend to make a high
or low sensitivity prediction depending on the predeter-
mined response levels [9, 10]. Machine learning tools to im-
plement these methods include support vector machines
[11], random forests [12], neural network [4] and logistic
ridge regression [13]. Comparative analysis suggested that
regression model, such as elastic net and ridge regression,
exhibit good and robust performance in different settings
[9, 14].
Besides the above two types of methods, another im-

portant method that gains much attention is the
network-based models [15–19]. One of the earliest at-
tempts should be traced back to Zhang et al. [20], who
presented a dual-layer integrated cell line-drug network
model by combining the predictions from the individual
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layers. Reader could refer to [7, 9, 21] for grasping more
computational approaches.
Although achieving promising results for certain

drugs, most models focused on predicting three types of
responses, i.e., ‘old drug to old cell line’, ‘old drug to new
cell line’ and ‘new drug to old cell line’ (here ‘old’ means
tested or existed, and ‘new’ means untested), but paid
less attention to the response prediction of ‘new drug to
new cell line’. As we all know, updating an existing can-
cer screen with the latest available drugs and cell lines is
not a trivial issue, because it always requires the same
expertise, infrastructure and conditions as when the
screen was accomplished the first time around. In
addition, comprehensive prediction might make poten-
tial cancer screen more accurate and experimental de-
sign more flexible, as well as accelerate early drug
evaluation. Such efforts should be greatly aided by accur-
ate preclinical computational methods.
To predict the response of ‘new drug to new cell line’,

we should take advantage of all observed (tested or
existed) cell line-drug response values. Importantly, two
questions need to be asked. The first is whether observed
response values have statistical power to predict the re-
sponse of ‘new drug to new cell line’. The second is how
to evaluate the prediction performance of the proposed
model. We aim to answer the above two questions.
Shivakumar et al. found that structural similarity be-

tween drug pairs in the NCI-60 dataset highly correlates
with the similarity between their activities across the can-
cer cell lines [22]. Zhang et al. showed that genetically
similar cell lines may also respond very similarly to a given
drug, and structurally related drugs may have similar re-
sponses to a given cell line [20]. We are wondering
whether their ideas could be extended to a more general
circumstance, that is, genetically similar cell lines always
exhibit higher response correlations to structurally related
drugs. If it is true, we aim to construct a cell line-drug
complex network (CDCN) model which incorporates cell
line similarity and drug similarity information, as well as
cell line-drug responses. To answer the second question,
we executed CDCN model on the Cancer Cell Line
Encyclopedia (CCLE) [23] and the Genomics of Drug Sen-
sitivity in Cancer (GDSC) [24] datasets respectively, and
obtained the satisfactory prediction result. Besides input-
ting missing values of drug response data, we also classi-
fied cell lines into sensitive group and resistant group
according to the observed response to a given drug. The
prediction accuracy, sensitivity, specificity and goodness of
fit further justified the good performance of our model.

Methods
Data and preprocessing
Cancer Cell Line Encyclopedia (CCLE) [23] and Genom-
ics of Drug Sensitivity in Cancer (GDSC) project [24]

are two most important resources of publicly available
data for investigating anticancer drug response. They are
benchmark compilations of gene expression, gene copy
number and massively parallel sequencing data. We se-
lected 491 cancer cell lines from CCLE, downloaded the
chemical structure files of 23 drugs from PubChem
Compound, and then obtained a cell line-drug response
matrix consisting of 11,293 entries, of which 423 (3.75%)
are missing values. We also selected 655 cancer cell lines
from GDSC and 129 drugs in the PubChem database.
The resulting drug response matrix has 84,495 entries,
out of which 15,763 (18.66%) are missing. The given
drug responses were measured by activity area for CCLE
and IC50 for GDSC. Higher Activity area or lower IC50
value indicates a better sensitivity of the cell line to a
given drug. To eliminate the differences in susceptibility
of different drugs, we normalized the drug response data
such that all cell line susceptibility data have the same
baseline and the same range (see Fig. 1 as an example).

Generalized observation
For the first question, we want to know whether avail-
able drug-cell line response values have the statistical
power to predict the response of ‘new drug to new cell
line’. Motivated by [20, 22], we first examined the re-
sponse correlations between genetically similar cell lines
and structurally similar drugs.
Cell line similarities are measured by Pearson correl-

ation coefficients between their corresponding gene ex-
pression profiles. The correlations of most cell line pairs
(around 92% for CCLE, 70% for GDSC) are larger than
0.8. We divided all possible cell line pairs with correl-
ation coefficients higher than 0.9 into high similar group
‘Hc’, and other pairs into low similar group ‘Lc’.
Next, we used Open Babel to obtain molecular finger-

prints of selected drugs [25]. Fingerprint-based Tanimoto
coefficient is often used as a molecular similarity indicator
in cheminformatics literature [22, 26, 27]. Define the dis-
tance between two drugs as d(Di, Dj) = 1 −T(Di, Dj), where
T(Di, Dj) is the Tanimoto coefficient between drugs Di and
Dj. Based on the drug distance matrix (see Additional file 1:
Table S1 and Additional file 2: Table S2), we clustered all
drugs using “complete” method in R. Drugs with high dis-
tances tend to be in different clusters, while drugs with
similar structure are expected to be clustered together
(see Fig. 2a and c). For CCLE dataset, we extracted such
drug pairs from Fig. 2a with Tanimoto coefficient greater
than 0.5 and distance less than 0.49 into high similar
group ‘Hd’: {17-AAG, Paclitaxel, AZD6244, PD-0325901,
Nilotinib, PD-0332991, AEW541, PF2341066, Erlotinib,
ZD-6474, AZD0530, TAE684, Lapatinib, PLX4720,
PHA-665752, Irinotecan, Topotecan}. Other drug pairs
were divided into low similar group ‘Ld’. For GDSC
dataset, we extracted such drug pairs from Fig. 2c with
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a b

Fig. 1 Normalization of drug response data for CCLE dataset. (a) The primary data. (b) Normalized data

a b

c d

Fig. 2 Model assumption. (a) A cluster of 23 drugs in CCLE. (c) A cluster of 32 drugs in GDSC. (b) and (d) show a general observation: similar cell lines
have higher response correlations to similar drugs. The X-axis shows four combinations of two cell line groups and two drug groups. The Y-axis
shows the correlations of drug responses between cell line pairs
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Tanimoto coefficient greater than 0.5 and distance less
than 0.45 into high similar group ‘Hd’: {Tipifarnib,
PLX4720, Dasatinib, Sunitinib, PHA-665752, AZ628, Ima-
tinib, AMG-706, BMS-754807, PF-02341066, Bosutinib,
A-770041, PD-173074, AZD6244, CI-1040, PD-0325901,
Erlotinib, AZD-0530, Gefitinib, BIBW2992, NVP-TAE684,
WH-4023}. Other drug pairs were divided into low similar
group ‘Ld’. From Fig. 2b and d we found that more similar
Cell lines always show higher response correlations to
more similar drugs, it holds for both CCLE and GDSC
data sets.

Construction of cell line-drug complex network model
We use Ω to represent the set of all possible cell
line-drug pairs. Denote ρ(C, Ci) as the Pearson correl-
ation coefficient between cell lines C and Ci, T(D, Dj) as
the Tanimoto coefficient between drugs D and Dj. Mean-
while, we use R(C, D) to represent the observed response
value of the pair (C, D) ∈Ω. Define Ci and Cj as adjacent
if ρ(Ci, Cj) ≠ 0, and the weight of this edge as ρ(Ci, Cj).
Similarly, Di and Dj are called adjacent if their weight
T(Di, Dj) > 0. Define Ci and Dj as adjacent if R(Ci, Dj) is
available. Obviously, the resulting network involves cell
line similarity and drug similarity information, as well as
cell line-drug response situations, so we call it the cell
line-drug complex network (CDCN). In fact, this net-
work is the dual-layer integrated cell line-drug network
in [20]. Figure 3b showed a CDCN corresponding to the
cell line-drug response matrix described in Fig. 3a.

Define wðC;CiÞ ¼ e−
ð1−ρðC;CiÞÞ2

2α2 as a weight function of
cell lines. It increases with respect to ρ(C, Ci), where the
parameter α measures the decay rate with the decrease

of ρ(C, Ci). Similarly, define a weight function of drugs w

ðD;D jÞ ¼ e−
ð1−TðD;D jÞÞ2

2τ2 with decay parameter τ.

For a given pair (C, D), let Ω\{(C, D)} be the set of all
other pairs (Ci, Dj) besides (C, D). Based on the general-
ized observation we are able to make a prediction by
dealing with all possible observed response values R(Ci,
Dj) as the following,

R̂ðC;DÞ ¼
P

ðCi;D jÞ∈Ω∖fðC;DÞgwðC;CiÞwðD;D jÞRðCi;D jÞP
ðCi;D jÞ∈Ω∖fðC;DÞgwðC;CiÞwðD;D jÞ

ð1Þ
where R̂ðC;DÞ is the predicted response value for the
pair (C, D). The product w(C, Ci)w(D, Dj) reflects the
contribution of R(Ci, Dj) to R̂ðC;DÞ.
It is worth mentioning that formula (1) is applicable to

all types of pairs (C, D). Even if C and D are both new (it
means that R(C, Dj) and R(Ci, D) are not known for any
existing drug Dj and any existing cell line Ci). In this cir-
cumstance, the cell line-drug response matrix and the
corresponding cell line-drug complex network showed
in Fig. 3 would be changed into ones depicted in Fig. 4.
Formula (1) also has a ‘little variation’ in the assignment
of the pair (Ci, Dj), that is

R̂ðC;DÞ ¼

P
ðCi;D jÞ∈Ω

Ci≠CandD j≠D

wðC;CiÞwðD;D jÞRðCi;D jÞ

P
ðCi;D jÞ∈Ω

Ci≠CandD j≠D

wðC;CiÞwðD;D jÞ

ð2Þ

The ‘little variation’ is crucial for accomplishing the re-
sponse prediction of ‘new drug to new cell line’. To
highlight the difference between two formulas, we called
formula (1) as CDCN model I and formula (2) as CDCN
model II.

a b

Fig. 3 Example of CDCN. (a) A cell line-drug response matrix. (b) The corresponding cell line-drug complex network. The dotted red line denotes
the edge of the pair c and d on which we focused. Different color lines represent edges of different types of cell line-drug pairs
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The decay parameter pairs (α, τ) could be optimized
by minimizing the following overall error function

α̂; τ̂ð Þ ¼ argmin α;τð Þ
X

C;Dð Þ∈Ω R̂ C;Dð Þ−R C;Dð Þ� �2
ð3Þ

where α and τ are ranged from 0 to 1 with increment
0.01, respectively, and the pair (α, τ) takes all possible
combinations.
We conducted leave-one-out cross-validation by sin-

gling out each cell line-drug pair as the test dataset, and
used Pearson correlation coefficients between predicted
and observed response values to evaluate the predictive
power of the proposed model. Root mean square error
(RMSE) and normalized root mean square error (NRMSE)
of each drug D were also calculated to assess the model.

RMSE Dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

C R̂ C;Dð Þ−R C;Dð Þ� �2
n

s
ð4Þ

NRMSE Dð Þ ¼ RMSE Dð Þ
maxCR C;Dð Þ− minCR C;Dð Þ ð5Þ

Where C ranges over all cell lines for which R(C, D)
are known, and n is the number of such cell lines.

Results
We executed the following four experiments. (1) Using
CDCN model I to predict general responses for the
CCLE and GDSC datasets and comparing with six popu-
lar computational models. (2) Taking each existed
drug-cell line pair as a ‘new drug-new cell line’ pair, we
used CDCN model II to predict special responses of
these ‘new pairs’, and then compared with the general
prediction of model I. (3) Using two models to impute
missing data in GDSC independently. (4) Evaluating the

model accuracy, sensitivity, specificity and goodness of
fit by classifying cell lines into sensitive and resistant
groups to some given drug.

General response prediction
We first applied CDCN model I to the CCLE dataset
with the optimized parameters ðα̂; τ̂Þ ¼ ð0:02; 0:18Þ. The
mean of Pearson correlation coefficients between pre-
dicted and observed response values is 0.63 (the mini-
mum is 0.51, the maximum is 0.88). From Fig. 5a, it is
evident that our prediction is significantly better than
the results by random forest (RF), support vector regres-
sion (SVR) and Elastic Net models. Figure 5b showed
that CDCN model I is much better than the CSN model
(using the cell line similarity network) for all 23 drugs
(100%), and DSN model (using the drug similarity net-
work) for 17 drugs (73.91%), also higher than Integrated
model (integrating CSN and DSN) for 10 drugs
(43.48%). It is anticipated because both CSN and DSN
models use less information compared with our model.
Meanwhile, Integrated model is an optimal weighted
combination of CSN and DSN, which enhanced the pre-
diction performance but greatly restricted its application.
In fact, CSN model works for old drugs, and DSN model
works for old cell lines. Therefore, Integrated model only
works for prediction of old drugs to old cell lines.
Next, we conducted CDCN model I for the GDSC data-

set with the optimized parameters ðα̂; τ̂Þ ¼ ð0:03; 0:18Þ .
Here we focused on 32 drugs targeting genes in the ERK
pathways, and compared with CSN, DSN and Integrated
models. As can be seen from Fig. 6, Pearson correlations
between observed and predicted response values of our
model is higher than 0.5 for nearly half of 32 drugs. It is
much better than CSN model for 29 drugs (87.88%), DSN
for 21 drugs (65.63%), and also than Integrated model for
9 drugs (28.13%).

a b

Fig. 4 Example of reduced CDCN. (a) A reduced cell line-drug response matrix. (b) The corresponding reduced cell line-drug complex network
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Special response prediction
We used CDCN model II to make a special prediction,
i.e. the response prediction of ‘new cell line-new drug’.
Fig. 7 summarized Pearson correlation coefficients between
predicted and observed response values for the drugs in
CCLE with the optimized parameters ðα̂; τ̂Þ ¼ ð0:03; 0:16Þ.
The correlation coefficients of 9 drugs (39.13%) are higher
than 0.4. Specificly, four drugs (Irinotecan, PD-0325901,

Panobinostat and Topotecan) exhibit good correlations
greater than 0.5.
We also performed special response prediction for

32 drugs in GDSC with the optimized parameters
ðα̂; τ̂Þ ¼ ð0:04; 0:18Þ , As can be seen from Fig. 8, cor-
relations of seven drugs (21.88%) are greater than 0.4.
Four drugs, PD-0325901, RDEA119, CI-1040 and
BIBW2992, show higher correlations than 0.45.

a b

Fig. 5 Performance comparisons of seven methods for 23 drugs in CCLE based on Pearson correlations between the predicted and observed
activity areas. (a) Bar graph showing the prediction performances of RF, SVR, Elastic Net and CDCN I. (b) Bar graph showing the prediction
performances of CSN, DSN, Integrated and CDCN I

Fig. 6 Comparisons of four methods for 32 drugs in GDSC
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Scatter plots in Figs. 9 and 10 suggested that the good cor-
relations are not caused from a small number of outliers.
Here, outliers might arise from different aspects. For ex-
ample, we only used gene expression profile and chemical
structures of drugs to build model. Although they are the
most widely used sources and powerful features for the drug
response investigations, our model still neglected several im-
portant information including mutation and copy number
variation. Meanwhile, as reported by many researches drug

response values are highly inconsistent for some drugs be-
tween CCLE and GDSC [11, 28, 29]. These technical noises
might be a possible reason for the outliers.
Obviously, the model II is inferior to model I due to

the loss of crucial values such as R(Ci, D) and R(C, Dj)
(see Fig. 11). However, their prediction tendencies are
completely consistent except for a few drugs, so model
II is a reliable tool for predicting response of ‘new
drug-new cell line’.

Fig. 7 Pearson correlation coefficients between predicted and observed response values for 23 drugs in CCLE using CDCN model II

Fig. 8 Pearson correlation coefficients between predicted using CDCN model II and observed response values for 32 drugs in GDSC
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Inputting missing data in drug response matrix
The estimation of missing data is considered to be reli-
able if they exhibit the same or consistent distribution
pattern as that by existing data. Following this definition,

we first focused on three MEK inhibitors AZD6244,
RDEA119, and PD-0325901 in GDSC dataset. Nearly 7%
of response values of these three drugs are missing. We
found that the predicted missing response values using

aa

bb

cc

dd

Fig. 9 Performance comparisons of CDCN models I and II for 4 drugs in CCLE. (a, b, c, d) showing scatter plots of observed and predicted drug responses
based on CDCN model I. (A*, B*, C*, D*) showing scatter plots of observed and predicted drug responses based on CDCN model II
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CDCN models both have a consistent pattern with the
existed (observed) response values. We used fold-change
and P-value by t.test to illustrate the “consistent pattern”
statistically. As is shown in Fig. 12, the observed

response values of wild type cell lines are significantly
higher than that of BRAF mutated cell lines to three
MEK inhibitors AZD6244 (fold-change = 1.26 and
P= 3.75e-6), RDEA119 (fold-change = 2.02 and P= 3.02e-11)

a a

b b

c c

d d

Fig. 10 Performance comparisons of CDCN models I and II for 4 drugs in GDSC. (a, b, c, d) showing scatter plots of observed and predicted drug
responses based on CDCN model I. (A*, B*, C*, D*) showing scatter plots of observed and predicted drug responses based on CDCN model II
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and PD-0325901 (fold-change = 1.40 and P= 1.61e-9). Con-
sistently, the predicted response values of wild type cell lines
are also higher than that of BRAF mutated cell lines to
AZD6244 (fold-change = 1.09 and P= 6.64e-5 for CDCN
model I; fold-change = 0.98 and P= 6.07e-7 for CDCN

model II), RDEA119 (fold-change = 1.10 and P= 4.79e-3 for
CDCN model I; fold-change = 1.29 and P= 2.91e-5 for
CDCN model II) and PD-0325901 (fold-change = 1.35 and
P= 9.41e-6 for CDCN model I; fold-change = 1.17 and
P= 3.90e-3 for CDCN model II). In summary,

a b

Fig. 11 Performance comparison of CDCN models I and II for two datasets. (a) Two correlation (between predicted and observed response
values) lines based on the CCLE datasets. (b) Two correlation (between predicted and observed response values) lines based on the GDSC dataset.
The red broken line is the correlation line based on CDCN model I, and the green broken line is the correlation line based on CDCN model II

a

b

Fig. 12 Comparisons between predicted and observed IC50 values for BRAF mutant and wild-type cell lines to three MEK1/2-inhibitors. (a)
Consistence between the predicted response values by CDCN model I and the observed response values. (b) Consistence between the predicted
response values by CDCN model II and the observed response values
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BRAF-mutated cell lines are more sensitive to MEK inhibi-
tors, which is in accordance with the previously published
work [20]. Similarly, we also looked at the response differ-
ence of the dual kinase inhibitor Lapatinib between EGFR
mutated and wild type cell lines. More than half of response
values are missing. We found that EGFR-mutated cell
lines are more sensitive to Lapatinib (see Fig. 13)
which is in agreement with the study [6]. All above
results proved that our model could correctly predict
drug responses of missing data in GDSC dataset.
We further compared our method with the nearest

neighbor (NN) algorithms in filling up the missing data
[30] to justify the performance of our method. In detail,
we randomly deleted 10% of response values in CCLE
dataset, and performed the CDCN I and kNN models
with k = 1, 3, 5 and 7 respectively on the remaining data.
Here, the distance between two drugs Di and Dj is de-
fined as 1- T(Di, Dj). We repeated above procedure five
times, and used the mean of five Pearson correlation co-
efficients between predicted and observed response
values as the model accuracy. As is shown in Fig. 14a,
our model significantly outperforms kNN methods at
different values of k. To further verify the robustness of
our model, we also randomly deleted 20% of response
values in CCLE dataset and obtained similar result as
the 10% case (see Fig. 14b).

Prediction accuracy, sensitivity, specificity and goodness
of fit
We used a similar method as [11, 31] to evaluate the
performance of our model. In detail, for each drug in
CCLE, selected the top 200 cell lines with the largest re-
sponse activity areas to this drug and defined them as
the “sensitive” group (if not available, we selected all cell
lines with activity area greater than zero as the sensitive
group). In contrast, we selected 200 cell lines with the
lowest drug responses and defined them as “resistant”

group (if not available, we selected all cell lines with ac-
tivity area less than zero as resistant group). The rest cell
lines were considered to be intermediate and eliminated
from our analysis. For the prediction results obtained
from CDCN I model, we took the same measure as
above to assess sensitive and resistant cell lines to the
given drug. Figure 15 shows that our model achieved the
accuracy of over 60% for 7 of 23 drugs, and over 50% for
19 drugs of 23 drugs. Sensitivity and specificity are over
0.5 for 20 of 23 drugs. Goodness of fit is over 0.2 for 13
of 23 drugs. Additional file 3: Table S3 lists the detail
information.
For GDSC dataset, our model accuracy is over 60% for

15 of 32 drugs, and over 50% for 27 drugs (see Fig. 16).
Sensitivity and specificity are over 0.5 for 29 of 32 drugs.
Goodness of fit is over 0.2 for 16 of 32 drugs, especially
for the drug CI.1040 whose goodness of fit is 0.6 and the
drug PD-0325901 is 0.64. Additional file 4: Table S4 lists
the detail information.
Here we should point out that the goodness of fit is

relatively small (lower than 0.2) for around half of drugs
in both CCLE and GDSC. It is possible even if our
model is satisfactory, because CCLE and GDSC are both
cross-section datasets, the goodness of fit may be lower
because of the variation between the observed values.
We further tested our model for Irinotecan in CCLE

dataset and Dasatinib in GDSC dataset. As is shown in
Fig. 17, our model achieved the AUC values of 0.786 for
Irinotecan and 0.818 for Dasatinib.

Discussion
There are two key steps for network-based method, i.e.,
the construction of cell line and drug similarity networks
by different types of data and an effective model to exe-
cute the prediction. Our method improved the above
two steps through an intuitive weighted model which
captured different contributions of all available cell

a b

Fig. 13 Comparisons between predicted and observed IC50 values for EGFR mutant and wild-type cell lines to Lapatinib. (a) Consistence between
the predicted response values by CDCN model I and the observed response values. (b) Consistence between the predicted response values by
CDCN model II and the observed response values
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line-drug responses. Instead of selecting large plenty of
genomic features and making prediction for each drug
independently, our model used only two parameters to
predict responses for all drugs. This not only decreases
the risk of overfitting, but also significantly reduces the
computational consumption.
As we all know, a main challenge of computational predic-

tion models is how to achieve good performance with low
computational consumption. One may take the following ef-
forts to further improve the performance of the model. First,
we can integrate other important information, such as copy

numbers, gene mutations, drug resistance and transcriptomic
signatures of drug sensitivity into the cell line-drug network
to get new knowledge. Second, we could further decrease
the computational cost by selecting a few informative genes
with respect to drug response to construct cell line similarity
network instead of using all genes.

Conclusion
We built a simple computational model to comprehen-
sively predict anticancer drug responses. One of the
main contributions is to provide a technique to predict

a b

Fig. 14 The comparison of predictive performances between CDCN I and kNN methods. (a) showing the result on the CCLE dataset with 10%
random missing data, and (b) showing the result on the CCLE dataset with 20% random missing data

Fig. 15 The predicted accuracy for the CCLE dataset
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Fig. 16 The predicted accuracy for the GDSC dataset

Fig. 17 Boxplot and ROC curve (the bottom curve indicates drug response) for Irinotecan in CCLE and Dasatinib in GDSC. The left for Irinotecan,
p-value by T test is 1.296e-15 and AUC is 0.786. The right for Dasatinib, p-value by T test is 2.470e-11 and AUC is 0.818
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the response of “new drug to new cell line”. Moreover,
besides inputting missing values of drug response data,
our model could also predict responses of a new drug to
existing patients (cell lines), available drugs to a new pa-
tient, or even new drugs to new patients. These are
more helpful in real clinical practice.

Additional files

Additional file 1: Table S1. The distance matrix of drugs in CCLE
dataset. (XLSX 37 kb)
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