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Abstract

Background: Samples pooling is a method widely used in studies to reduce costs and labour. DNA sample pooling
combined with massive parallel sequencing is a powerful tool for discovering DNA variants (polymorphisms) in large
analysing populations, which is the base of such research fields as Genome-Wide Association Studies, evolutionary and
population studies, etc. Usage of overlapping pools where each sample is present in multiple pools can enhance the
accuracy of polymorphism detection and allow identifying carriers of rare-variants. Surprisingly there is a lack of tools
for result interpretation and carrier identification, i.e. for “depooling”.

Results: Here we present s-dePooler, the application for analysis of pooling experiments data. s-dePooler uses the
variants information (VCF-file) and the pooling scheme to produce a list of candidate carriers for each polymorphism.
We incorporated s-dePooler into a pipeline (dePoP) for automation of pooling analysis. The performance of the
pipeline was tested on a synthetic dataset built using the 1000 Genomes Project data, resulting in the successful
identification 97% of carriers of polymorphisms present in fewer than ~ 10% of carriers.

Conclusions: s-dePooler along with dePoP can be used to identify carriers of polymorphisms in overlapping pools,
and is compatible with any pooling scheme with equivalent molar ratios of pooled samples. s-dePooler and dePoP
with usage instructions and test data are freely available at https://github.com/lab9arriam/depop.
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Background
The investigation of DNA polymorphisms is a corner-
stone of modern genetics research. Next generation se-
quencing (NGS) is widely used for the determination of
polymorphisms and estimation of their frequency, yet
the cost of large-scale DNA sequencing remains prohibi-
tively high. Sample pooling (i.e., mixing DNA samples
into pools for library preparation) substantially reduces
the costs of such projects.
Dividing specimens into multiple pools yields additional

benefits over using a single pool containing all the speci-
mens. The smaller the pool, the lower is the required se-
quencing depth per specimen [1]. Furthermore, multiple
pools can be used for the correction of sequencing errors

[2]. Another strategy for enhancing the accuracy of poly-
morphism detection is to use overlapping pools, a strategy
in which each sample is added to multiple pools. Overlap-
ping pools make it possible to identify carriers of polymor-
phisms; thus, this strategy is extremely valuable for some
applications, such as clinical trials.
Carrier identification is possible only if for each pair of

analysed specimens, there is at least one pool containing
only one of them (‘separating pool’) [3]. Several types of
pooling scheme satisfying this requirement have been
developed. One type of such pooling scheme is multi-
dimensional pooling strategy [4] in which samples are
allocated in N-dimensions space and are pooled for each
“coordinate” in each axis. The approximate number of
pools (k) can be estimated as u ≈ N � ffiffiffi

nN
p

, where n – is
the number of specimens and N – is the number of
dimensions. Another pooling scheme is “logarithmic sig-
nature” [5] for which the minimal required number of
pools is k ≈ log2 n + 1 [3].

* Correspondence: AZhernakov@arriam.ru
1Research Department of Non-Coronary Heart Diseases, Almazov National
Medical Research Center, Ministry of Health of Russia, 2 Akkuratova St., St.
Petersburg 197341, Russia
2All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 3
Podbelsky Ch., St. Petersburg - Pushkin 196608, Russia

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhernakov et al. BMC Bioinformatics           (2019) 20:45 
https://doi.org/10.1186/s12859-019-2616-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2616-9&domain=pdf
http://orcid.org/0000-0001-8961-9317
https://github.com/lab9arriam/depop
mailto:AZhernakov@arriam.ru
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Both pooling strategies above need pools of great size
up to a half of the analysing population, resulting in the
need for deep sequencing coverage. Partially this can
be amended by using the “transversal shift” scheme.
This strategy is focused on two main parameters:
minimization of co-occurrence between specimens
and construction of pools of constantly sized intersec-
tions [6, 7].
The success of allele carrier identification depends on

the frequency of an allele in the population. If the
analysed population contains more than one specimen
carrying the minor allele, unambiguous identification
might become impossible, since any pooling strategy
inevitably leads to information loss. The larger the ana-
lysed population and the longer the analysed region, the
more labour-intensive and computationally demanding
identification of the carriers becomes, exacerbated by
the possibility of there being multiple carriers of each
polymorphism.
We developed s-dePooler, an application for the deter-

mination of minor allele carriers (depooling) using the re-
sults of NGS sequencing of overlapping pools, the first
application developed for this specific purpose. s-dePooler
(i) estimates the most probable numbers of the minor al-
lele copies in each pool (Allele–Pool distribution) based
on the numbers of reference and alternative reads and (ii)
determines subsets of specimens carrying that minor allele
(Allele–Sample distribution) that satisfy the pooling
scheme. We incorporated s-dePooler into dePoP (depool-
ing pipeline) that we developed, which fully automates the
analysis of large-scale pooling experiments.

Modelling
The proportion of DNA strands containing a minor al-
lele in a pool (θ) can be determined primarily by the ra-
tio of minor allele copies (m) to all the allele copies in
the pool (k). We assume θ as a beta-distributed random
variable with parameters M and R:

θ � Beta M;Rð Þ;

where M =m ∙ α, R = (k −m) ∙ α, (α is the mixing preci-
sion coefficient, α ≥ 1).
Beta distribution is derived from the Dirichlet distribu-

tion used for the modelling of pool mixing. A pool com-
prising DNA of k/p samples of a p-ploid organism
contains k individual allele copies. If equimolar sample
mixing is assumed, the fraction of each individual allele
in the pool can be modelled by the Dirichlet distribution
of order k with equal-in-value parameters αi = α.
The number of observed minor allele reads (rm) is

assumed to be a binomial random variable with pa-
rameters η (the probability of getting a minor read)

and rt (the total number of reads mapped to the
locus):

rm � Bin rt ; ηð Þ:

The probability of getting a minor read (η) is connected
to the proportion of minor allele DNA strands in a pool
(θ) through correction by sequencing error rate (Es):

η ¼ θ∙ 1−Esð Þ þ 1−θð Þ∙Es
3
:

We define the discrete distribution (Allele–Pool distri-
bution) specifying the probability of getting rm minor al-
lele reads among rt given the numbers of minor allele
copies in a pool (m) using a Bayesian approach. The prob-
ability mass function value at each m is determined as:

P rmjrt;mð Þ ¼
P rmjrt;Es3
� �

;m ¼ 0
Z 1

0
P rmjrt; η θð Þð Þ∙P θjM;Rð Þdθ; 0 < m < k

P rmjrt; 1−Esð Þ; m ¼ k

8>>>><
>>>>:

Implementation
S-dePooler
Using the result of SNP-calling, namely the values of the
AD vector (designated in VCF –specification, https://
samtools.github.io/hts-specs/VCFv4.2.pdf ) that repre-
sents the numbers of reads of the reported genetic vari-
ants, and Allele–Pool distribution, s-dePooler for each
pool calculates the confidence interval with a given con-
fidence level that most probably contains the minor al-
lele copy number. Analysing the different combinations
of the minor allele numbers in all pools, from the most
likely combinations to the least likely, varying the num-
bers inside confidence intervals, s-dePooler defines the
variants of the Allele-Sample distribution that could give
a certain combination according to the pooling scheme.
To calculate the Allele-Sample distribution satisfying a

certain combination of minor allele copy numbers in all
pools, s-dePooler uses brute force search. It recursively
permutes minor alleles distribution between specimens
within a pool, pool by pool keeping only the distribu-
tions that satisfy the pre-set combination of allele copy
numbers in all pools and the results of the function on
higher levels, thereby cutting off erroneous branches
after the first inconsistency. The recursion depth is equal
to the number of pools (u). So the running time for each
SNV lies within a factor OðQu

i C
2∙ni
mi

Þ , where ni – is the
number of specimens in i-th pool, mi – is the number of
minor allele copies in i-th pool. Parallel execution is im-
plemented. Since each variant of Allele-Sample distribu-
tion can be processed independently, as can each SNV,
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the algorithm should scale linearly with the increase of
execution threads.
The computational complexity increases with the

Pu
i

mi and achieves maximum when 50% of the alleles are
“minor”. In order to keep the computational time rea-
sonable, the program can be set to limit execution by
time or by the number of steps. Although more efficient
algorithms can be developed for specific pooling
schemes this algorithm was developed specifically for
use with any pooling scheme.
One of the coefficients present in the Allele-Pool dis-

tribution formula is α - the mixing precision coefficient.
We propose two approaches allowing estimation of α in
practice. The first is the estimation of instrument errors
(pipettes, DNA concentration measuring devices, etc.)
and the following calculation of possible variations of
specimen percentages in mixed pools. The second ap-
proach is possible if tested specimens were already partly
genotyped. Comparison of observed fractions of SNVs in
known region with the expected values will make it pos-
sible to estimate the accuracy of specimen mixing. This
task should be solved individually for any particular case
based among other things on the purposes of the study
as higher α value could lead to the increase of
false-negative results, whereas underestimation of α
could lead to false-positive results and/or enlargement of
candidate lists.

dePoP
dePoP is a pipeline designed for the automation of
depooling process starting from raw NGS data. dePoP
automatizes de-multiplexing, trimming, mapping of
NGS-reads, SNP-calling of resulting mapped alignment
and finally depooling of discovered genetic variants with
s-dePooler. The pipeline requires Perl (v.5) and the
Bowtie2, Cutadapt and samtools tools to be accessible in
the Perl-script runtime environment. Default SNP-caller
integrated into the pipeline is Genome Analysis Toolkit
(GATK) but it should be compatible with any SNP-caller
that outputs VCF-files with AD-vector. s-dePooler and
dePoP along with usage instructions and test data are
available at https://github.com/lab9arriam/depop [8].

Results
To test the application, Illumina reads of 104 individuals
belonging to chromosome 11 of the human genome
were downloaded from the 1000 Genomes project web-
site [9]. A total of 24 pools were formed according to
the ‘transversal shift’ scheme, with 13 samples per pool,
so that each sample was present in three pools (see table
in Additional file 1: Table S1). Reads were assigned ran-
domly to each pool, so that for each of the 12 emulated
pools, the number of reads was approximately 300

million (the expected number of high-quality reads from
one lane of Illumina HiSeq 2000). To emulate the mix-
ing of sequencing libraries and the sample pooling, the
proportions of pool reads in an emulated lane were gen-
erated according to the Dirichlet distribution with all pa-
rameters equalling 4; proportions of sample reads in
each pool were generated according to the Dirichlet
distribution with all parameters equalling 3 (see table in
Additional file 2: Table S2).
A region 17,463-bp long with a combined average

coverage of more than 7739 for all libraries was selected
for the testing of s-dePooler. SNP-calling for each speci-
men was performed using Samtools [10]; the results
were used to benchmark s-dePooler. SNP calling of
emulated pools was performed using GATK [11] and the
resulting VCF file was analysed by s-dePooler (see table
in Additional file 3: Table S3). Individual SNP calling de-
tected 79 distinct polymorphic sites among 104 speci-
mens in the investigated region. For 77 polymorphic
sites present in fewer than ~ 10% of specimens (a thresh-
old chosen for rare allele variants), s-dePooler success-
fully predicted all of the carriers 68 times, one or two
carriers were missed for five sites, one site was not
identified, and for the remaining three sites the Allele–
Sample distribution was not calculated in the set time.
The total run time for this with 6 threads was 22m 16 s.
Run time for the same task with 50 treads was 4 min 4 s,
5.5 times faster.
In order to determine the influence of sequencing

depth on the tool we decided extract subsets of reads
from the analyzed region. Since the dataset presented
highly uneven coverage, we decided to filter out all the
SNVs with coverage less than 200x for the lowest cover-
age. Resulting coverages were in range between 14x per
single pool (approximately 1x coverage per specimen in
a pool) to 329x per single pool (approximately 25x per
specimen), the latter using all the available reads from
the test dataset. The results of the tests are presented in
Fig. 1 and Additional file 3: Table S3). The coverage af-
fects the accuracy of the carrier detection, but we did
observe that coverage of about 10x per specimen in a
pool (third column from the left) was sufficient to confi-
dently determine 85% of SNVs with a single carrier (91%
for 25x coverage) and 50% of SNVs with two (80% for
25x coverage).

Discussion
The test dataset example shows applicability of the chosen
pooling scheme for a case when the polymorphic site is
present in fewer than ~ 10% of specimens. If the frequency
of a minor allele is higher than 10% another pooling
scheme including greater number of pools and/or more
frequent appearance of specimens in pool (e.g. each speci-
men in four different pools) might be more useful. We
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showed, that for our test data, that average coverage of
about 10x allows to determine 85% of carriers of unique
SNVs. This shows a possible application of such pool-
ing schemes in TILLING (i.e., screening of mutant
collections), since the majority of important SNVs in
these specimens should be unique. This pooling

strategy reduces the costs of library preparation by
four and may allow easier sample multiplexing, an
important factor to consider, since single lane output
for Illumina platforms has increased in recent years.
The question of choosing the optimal pooling scheme

should be considered for any particular case taking into

Fig. 1 Average numbers of candidate carriers identified at different coverage. Legend: The average number of candidate carriers was calculated
for all the SNVs in the analyzed region. Green color signifies the number of confidently identified carriers, yellow – the number of carriers among
candidates, white – the number of false candidates, blue – the number of wrongly identified carriers, red – the number of unidentified carriers.
The y axis represents the number of candidates for each SNV. Columns represent different coverages tested; the coverages (per pool, per
specimen) are displayed under the axis
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account background knowledge on the object and ex-
pected genetic variability. Although the pooling
scheme used in this study can easily be scaled for a
bigger analysing population, the scaling leads to incre-
ment of pool sizes, which will require an exponential
increase of sequencing depth in order to maintain the
same confidence level. s-dePooler requires about 200
Mb of RAM per single thread, but the computational
resources needed to solve an Allele-Pool distribution
combination depends on the number of minor allele
copies in the analysed population. So a single carrier
may be quickly found in a pool set compiled from a
thousand specimens, but if a half the analysed sam-
ples carry a “minor” allele, the computational time
becomes unreasonable, even if the number of speci-
mens is relatively small.

Conclusions
s-dePooler is the first program developed for the
depooling of highly complex experiments. s-dePooler
can identify carriers of polymorphisms in pools of large
sizes and potentially in across a whole eukaryotic
genome, a task not achievable with manual labour.
s-dePooler requires (i) the pooling scheme to be in the
form of a tsv-formatted file and (ii) a VCF file with an
AD field for each pool (https://samtools.github.io/
hts-specs/VCFv4.2.pdf ). s-dePooler was incorporated
into a Perl-based pipeline dePoP that we developed
for the automation of depooling. Both tools are com-
patible with any pooling scheme in which specimens
are pooled in equimolar ratios. This pipeline performs
all of the necessary steps (read transformation, map-
ping and SNP calling) in a streamlined fashion.
s-dePooler and dePoP along with usage instructions
and test data are available at https://github.com/
lab9arriam/depop [8].

Availability and requirements
Project name: s-dePooler, dePoP.
Project home page: https://github.com/lab9arriam/

depop
Operating system(s): Platform independent.
Programming language: s-dePooler – Java; dePoP –

Perl.
Other requirements: Java Runtime Environment 8 or

higher, Perl 5 (for dePoP only).
License: GNU GPL version 3.
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: Table S1. Pooling scheme. (XLSX 16 kb)

Additional file 2: Table S2. Pooling emulation. (XLSX 16 kb)

Additional file 3: Table S3. Specimens carrying SNPs and results of
depooling. (DOCX 16 kb)
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