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Abstract

Background: Gene co-expression studies can provide important insights into molecular and cellular signaling
pathways. The GeneNetwork database is a unique resource for co-expression analysis using data from a variety of
tissues across genetically distinct inbred mice. However, extraction of biologically meaningful co-expressed gene sets
is challenging due to variability in microarray platforms, probe quality, normalization methods, and confounding
biological factors. In this study, we tested whether literature derived functional cohesion could be used as an
objective metric in lieu of ‘ground truth’ to evaluate the quality of probes and microarray datasets.
Results: We examined Sirtuin-3 (Sirt3) co-expressed gene sets extracted from either liver or brain tissues of BXD
recombinant inbred mice in the GeneNetwork database. Depending on the microarray platform, there were as many
as 26 probes that targeted different regions of Sirt3 primary transcript. Co-expressed gene sets (ranging from
100–1000 genes) associated with each Sirt3 probe were evaluated using the previously developed literature-derived
cohesion p-value (LPv) and benchmarked against ‘gold standards’ derived from proteomic studies or Gene Ontology
classifications. We found that the maximal F-measure was obtained at an average window size of 535 genes. Using set
size of 500 genes, the Pearson correlations between LPv and F-measure as well as between LPv and mitochondrial
gene enrichment p-values were 0.90 and 0.93, respectively. Importantly, we found that the LPv approach can
distinguish high quality Sirt3 probes. Analysis of the most functionally cohesive Sirt3 co-expressed gene set revealed
core metabolic pathways that were shared between hippocampus and liver as well as distinct pathways which were
unique to each tissue. These results are consistent with other studies that suggest Sirt3 is a key metabolic regulator
and has distinct functions in energy-producing vs. energy-demanding tissues.
Conclusions: Our results provide proof-of-concept that literature cohesion analysis is useful for evaluating the
quality of probes and microarray datasets, particularly when experimentally derived gold standards are unavailable.
Our approach would enable researchers to rapidly identify biologically meaningful co-expressed gene sets and
facilitate discovery from high throughput genomic data.
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Background
The amount of genome-wide gene expression data
available in public repositories is accumulating rapidly.
Increasing evidence suggests that genes in related metabolic
pathways and cellular processes are coordinately expressed
[1, 2]. Recent studies using co-expression analysis have
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provided important insights into complex traits and
diseases and have enabled researchers to reverse engineer
molecular pathways [3, 4]. TheGeneNetwork database is a
web resource that contains a large amount of gene expres-
sion data from a variety of tissues across panels of recom-
binant inbred (RI) mice, which have been derived through
inbreeding of progeny from distinct inbred parental lines
[5–7]. Co-expression studies using RI mice have iden-
tified gene networks associated with alcohol and stress
responses [8], fear conditioning [9], liver fibrosis [10],
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retinal ganglion cell function [11], and many other com-
plex traits.
Although co-expression analysis can be quite use-

ful, there are major challenges when using microarray-
based gene expression data. Microarrays are highly
sensitive to biological and technical variability, which
often result in noisy data [12]. In addition, differ-
ent microarray platforms have variable technical repro-
ducibility [13]. Moreover, although microarray platforms
often include several probes for each target transcript,
the probes produce inconsistent results due to tar-
geting error or differences in hybridization proper-
ties [14]. It is therefore necessary to develop scalable
objective methods that can identify problematic probes
and datasets.
Our group has developed various literature-based

semantic approaches to derive implicit functional asso-
ciations between genes, transcription factors, or microR-
NAs [15–19]. We have demonstrated that the semantic
similarity scores can be used to calculate a literature
p-value (LPv) representing the functional cohesion of
gene sets [20]. The method was shown to be both accu-
rate and robust when evaluated against Gene Ontol-
ogy (GO) classifications. Subsequently, we used LPv
to compare different microarray normalization pro-
cedures [21]. More recently, an extension of this
method, called Literature Based Functional Signifi-
cance (LBFS), was used to evaluate statistical meth-
ods for determining differentially expressed genes from
microarrays [22].
The goal of this study is to apply literature-based

functional cohesion analysis to quantitatively evalu-
ate co-expressed gene sets derived from the GeneNet-
work database. In particular, we used this method
to evaluate inconsistencies between probes that tar-
get the same transcript by benchmarking our method
against three proteomic datasets focused on Sirtuin-3
signaling pathway. Sirtuin-3 (Sirt3) belongs to a fam-
ily of NAD(+)-dependent deacetylases and plays an
important role in regulation of cellular metabolism
and aging [23, 24]. Sirt3 is a mitochondrial pro-
tein that is highly expressed in energy-demanding tis-
sues such as brain, heart, skeletal muscle and kidney,
as well as in energy-producing tissue such as liver.
Sirt3 deficiency in mice results in a reduction of ATP
production through inhibition of oxidative phosphory-
lation [25]. In addition, Sirt3 regulates key enzymes in
fatty acid oxidation, amino acid metabolism and anti-
oxidant defenses [24]. In liver, acetyl proteomic stud-
ies have demonstrated that Sirt3 is involved in global
metabolic reprogramming during calorie restriction [26].
In neurons, Sirt3 is required for adaptive responses to
excitotoxicity as well as oxidative and mitochondrial
stress [27].

Methods
Gene document collection and gene-gene similarity
calculation
Medline citations for 21,027 mouse genes were col-
lected based on the PubMed identifiers (PMIDs) in the
gene2pubmed repository [28] available at NCBI, and
concatenated to construct a gene-document for each
gene. Gene-Gene similarity scores were calculated by
Latent Semantic Indexing (LSI) as previously described
[15–17]. Briefly, a term-by-gene matrix was created,
where the entries of the matrix were the log-entropy
weighted frequencies of terms in the document col-
lection. Then, a truncated singular value decomposi-
tion (SVD) of that matrix was performed to produce
a lower dimension (reduced rank) concept-by-gene
matrix with 500 concepts. Genes were then repre-
sented as concept vectors in the reduced rank matrix
and the similarity between genes was calculated as the
cosine of the vector angles. A graphical representa-
tion of the procedure is shown in Additional file 1:
Figure S1.

Literature Cohesion P-value (LPv) calculation
Literature cohesion p-values (LPv) for a given gene set
were calculated based on LSI derived gene-gene sim-
ilarities using a slightly modified version of the pro-
cedure previously described [20]. LPv is derived by
using Fisher’s exact test to determine whether the
number of pair-wise literature similarity associations
above a pre-calculated threshold in a given gene set
are significantly higher than that expected by chance.
The pre-calculated threshold was set at 95th per-
centile of all pairwise similarities among the 21,027
genes. For clarity, the procedure is briefly described
below.
Let S be the set of all pairwise cosines for the set of all

21,027 genesG, |S| = (|G|
2

)
. Let T represent 95th percentile

of all pairwise cosine similarities in S . For a given subset
G′ of G for which LPv needs to be calculated, let S′ be
the set of all pairwise cosines for the set G′, |S′| = (|G′|
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The literature cohesion p-value (LPv) is calculated using
a right tailed Fisher’s exact test [29]:

p =
(A+B

A
)(C+D

C
)

(A+B+C+D
A+C

) = (A + B)! (C + D)! (A + C)! (B + D)!
A!B!C!D! (A + B + C + D)!

(1)

We essentially calculate the probability of observing by
random chance, cosines as high as observed in the input
gene set. Lower p-value indicates higher cohesion. We
transform the metric slightly by taking− log10(p-value) so
that the higher value indicates higher cohesion. Additional
file 1: Figure S2 demonstrates the LPv calculation proce-
dure with a scaled down representative example.

Workflow
The workflow for our approach is shown in Fig. 1. For
a given tissue and dataset in GeneNetwork database, all
Sirt3 probes were evaluated. For each Sirt3 probe in the
dataset, 10 different Sirt3 co-expressed gene sets, contain-
ing 100 to 1000 highest correlated genes, were selected.
LPv was calculated for each Sirt3 co-expressed gene set.
In addition, the F-measure (F-score) of the gold standard

gene sets was calculated for each Sirt3 co-expressed gene
set. Lastly, the Pearson correlation coefficient was calcu-
lated for the LPvs and F-scores of all Sirt3 co-expressed
gene sets.

Microarray datasets
Three genome-wide gene expression datasets pertaining
to liver (2) and brain (1) tissues across BXD recombi-
nant inbred mice were identified from GeneNetwork. The
datasets were derived from different microarray platforms
and normalization methods. From each dataset, sets of
100–1000 genes whose expression patterns were maxi-
mally correlated with Sirt3 expression were extracted. The
following datasets were used:

1 DS1: SUH BXD Liver CCl4-treated Affy Mouse Gene
1.0 ST (Jun11) RMA : 10568997 [10]

– Strains: 33 strains including 30 BXD strains,
both parental strains (C57BL/6J, DBA/2J), and
B6D2 F1 hybrids

– Platform: Affy Mouse Gene 1.0 ST (GPL6246)
– Normalization: RMA

Fig. 1Workflow
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– Probes: 10
– Tissue: Liver

2 DS2: EPFL/LISP BXD CD+HFD Liver Affy Mouse
Gene 1.0 ST (Apr13) RMA Exon Level [30]

– Strains: 40 strains of the BXD family (BXD43 –
BXD103) and both parental strains (C57BL/6
and DBA/2)

– Platform: Affy Mouse Gene 1.0 ST (GPL6246)
– Normalization: RMA
– Probes: 10
– Tissue: Liver

3 DS3: UMUTAffy Hippocampus Exon (Feb09) RMA
Database

– Strains: 93 strains including 70 BXD inbred
strains, 2 parental strains (C57BL/6J and
DBA/2J), B6D2 F1, and 20 other inbred strains
(129S1/SvImJ, A/J, AKR/J, BALB/cByJ,
BXSB/MpJ, C3H/HeJ, CAST/EiJ, FVB/NJ,
KK/HlJ, LG/J, MOLF/EiJ, NOD/LtJ, NZB/BlNJ ,
NZO/HlLtJ, NZW/LacJ, PWD/PhJ, and
WSB/EiJ)

– Platform: Affy Mouse Exon 1.0 ST (GPL6193)
– Normalization: RMA
– Probes: 26
– Tissue: Hippocampus

Results
Gold standards gene sets used for benchmarking
microarray datasets
Selection of an appropriate gold standard for evalua-
tion of microarray data and gene co-expression networks
is a challenging task due to a lack of ‘ground truth’.
Rather than using other gene expression data, which
can have overlapping confounds, we used a more func-
tional approach for selection of gold standards. Based on
the premise that co-expressed genes function together
in closely linked signaling pathways, we expect that co-
expressed genes directly interact with one another and are
localized in the same cellular compartment. In this study,
we focused on Sirtuin-3 (Sirt3) which is a mitochon-
drial NAD-dependent deacetylase that broadly controls
cellular metabolism and has been implicated in a vari-
ety of diseases and aging-related processes [23, 24]. For
benchmarking purposes, we used two different proteomic
studies, which identified direct targets of Sirt3 by compar-
ing the acetylomes in different tissues of Sirt3 knock-out
and wild-type control mice. Rardin et al. [31] identified
248 proteins whose acetylation levels were significantly
(p < 0.05) increased in Sirt3 knock-out livers (Gold Stan-
dard 1, GS1). Using a similar approach, Dittenhafer-Reed
et al. [32] identified 203 Sirt3 targets (Golds Standard

2, GS2) in liver. Between the two studies, 140 Sirt3 tar-
gets were common in liver tissue (Fig. 2). To benchmark
Sirt3 co-expression networks in the hippocampus, only
one acetyl proteomic dataset could be found. Dittenhafer-
Reed et al. [32] identified 171 proteins whose acetylation
levels were significantly changed in Sirt3 KO brains. Inter-
estingly, 93 and 79 out of the 171 Sirt3 target proteins
in brain were also found in liver according to Rardin
et al. and Dittenhafer-Reed et al., respectively (Fig. 2).
As an alternative functional benchmarking approach, we
examined mitochondrial enrichment of various Sirt3 co-
expressed gene sets.

Literature cohesion of Sirt3 co-expressed gene sets in liver
We initially focused on two liver datasets in GeneNet-
work that used Affymetrix Gene 1.0 ST arrays, which
contained 10 different Sirt3 probes. While each of the
probes appropriately targeted Sirt3 exons, we found that
the correlation values among the 10 Sirt3 probes across
the panel of BXD RI mice were highly variable (Additional
file 1: Figure S3). Only 6 Sirt3 probes showed a Pear-
son correlation > 0.5 for GS1, and 4 probes showed a
Pearson correlation > 0.5 for GS2. These results suggest
that using probe-to-probe correlations may not neces-
sarily be a good metric to evaluate probe quality as a
whole, since the same probes showed different corre-
lation structure in different datasets (Additional file 1:
Figures S3A and S3B).

Fig. 2 Overlap between Sirt3 targets identified in proteomic studies
by Rardin et al. [31] and Dittenhafer-Reed et al. [32], henceforth
referred to as Gold Standard set 1 (GS1) and 2 (GS2), respectively
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We next examined the correlated gene sets produced by
the different Sirt3 probes. We found that the co-expressed
gene sets associated with highly inter-correlated Sirt3
probes (e.g., PID1056899) were dramatically different
from the Sirt3 probes which were uncorrelated (PID
10569006; Additional file 1: Figure S4). Whereas the
strongly inter-correlated Sirt3 probes identified robust
gene sets with high connectivity (Pearson correlation >

0.8 or < −0.8) among themselves (Additional file 1:
Figure S4A), the weakly correlated Sirt3 probes produced
gene sets that were weakly connected (Additional file 1:
Figure S4B).
To evaluate which Sirt3 probes produced biologically

meaningful co-expressed gene sets, we benchmarked the
top 100 to 1000 correlated genes associated with each
Sirt3 probe using the two proteomic Gold Standard gene
sets described above. As expected, the recall of gold stan-
dard genes increased with increasing window sizes (larger
co-expressed gene sets), whereas the precision decreased
(Additional file 1: Figures S5 and S6). Using F-measure
(weighted harmonic mean of precision and recall), we

found that some probes consistently performed better
across all window sizes (Fig. 3).
To evaluate if the Sirt3 correlated gene sets represent

functionally related genes, we compared the literature
derived cohesion p-values (LPvs) as described previously
by our group [20]. LPv was calculated for gene sets rang-
ing from 100 to 1000 genes that were associated with
each Sirt3 probe in the two datasets. In general, we found
that the most highly correlated genes (smaller window
size) to Sirt3 probes were more functionally cohesive
and that − log10(LPv) decreased (less significant) with
increasing window size. Interesting, in DS1, only five out
of the 10 Sirt3 probes produced significant (LPv < 0.05)
functional cohesion (Fig. 4). The Sirt3 co-expressed gene
sets produced from four of these five probes exhibited
the highest F-scores for the two gold standard gene sets
(GS1 and DS2).
Next, we examined the correlation between F-

measure and LPv across various window sizes of
Sirt3 co-expressed gene sets. Whereas the correlation
between F-measure and LPv improved with increasing

a b

c d

Fig. 3 Relationship between gold standard F-measure and gene co-expression window size. The F-scores were calculated for the top 100–1000
co-expressed genes obtained from each Sirt3 probe in two different liver datasets (DS): 1) SUH BXD CCL4 Affymetrix Gene 1.0 ST treated (a, b) and 2)
EFPL/LISP BXD CD+HFD Affymetrix Gene 1.0 ST (c, d). F-measure values were calculated using two different Sirt3 gold standard gene sets: GS1, [31],
(a, c) and GS2, [32], (b, d)
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a

b

Fig. 4 Literature derived cohesion p-values (LPv) for various gene
co-expression window sizes. LPv was calculated for gene set sizes
ranging from 100–1000 for each Sirt3 probe on the Affymetrix Gene
1.0 ST array for two different liver datasets: DS1, SUH BXD CCL4
Affymetrix Gene 1.0 ST treated (a) and DS2, EFPL/LISP BXD CD+HFD
Affymetrix Gene 1.0 ST (b)

window size for DS1, the correlation decreased for DS2
(Fig. 5).

Literature cohesion of Sirt3 co-expressed gene sets in brain
hippocampus
Multi-tissue proteomic experiments performed by [32]
suggested that although Sirt3 targets a set of core
mitochondrial proteins, it targets different proteins in
energy-producing tissues compared to energy-demanding
tissues. Therefore, we compared Sirt3 co-expressed gene
sets derived from brain hippocampus in addition to liver
tissues. The hippocampal study (DS3) utilized Affymetrix
Exon array platform to measure transcript levels across
a panel of 93 inbred mouse strains. There is a total of

26 Sirt3 probes represented in the mouse Affymetrix
Exon Array; 12 probes that target intronic regions and 14
probes that target exonic regions of Sirt3 as annotated by
the manufacturer. This is useful for evaluation, enabling
us to use the intronic probe correlated gene sets as neg-
ative controls. For this analysis, only one proteomic gold
standard dataset specific to brain tissue could be obtained
[32]. In general, the F-scores of the Sirt3 exonic probe cor-
related gene sets were much higher than those obtained
from the intronic probes (Fig. 6). This result was consis-
tent with the LPv for the exonic probe correlated gene
sets, although a few exonic probes produced insignifi-
cant literature cohesion and several intronic probes pro-
duced significant literature cohesion (Fig. 7). The highest
F-scores were obtained with an average window size of
535 genes across all Sirt3 exonic probes. Focusing on
a window size of 500 transcripts, we found that the
majority (78%) of Sirt3 co-expressed gene sets obtained
from exonic probes were significantly (LPv< 0.05) cohe-
sive (Table 1). Surprisingly, 6 out of 12 intronic Sirt3
probes produced significant literature cohesion although
their F-scores were very low 0–0.042 (Table 1). Overall,
the Pearson correlation between gold standard F-measure
and − log10(LPv) was greater than 0.79 for all Sirt3 cor-
related gene set sizes ranging from 100 to 1000 (Fig. 8).
For example, the Pearson correlation between F-score and
− log10(LPv) for 500 Sirt3 co-expressed genes was 0.90
(R2 = 0.81). Examination of the scatter plot of the data
showed that only the Sirt3 exonic probe correlated gene
sets produced the highest F-scores and literature cohe-
sion significance (Fig. 9a). Indeed the LPv of Sirt3 exonic
probe correlated genes were significantly (p < 0.0145,
Wilcoxon/Kruskal-Wallis Rank Sum test) higher than the
LPv of Sirt3 intronic probes (Fig. 9b).
As an alternate functional benchmarking approach,

we examined the correlation between LPv and enrich-
ment p-value of mitochondrial genes annotated in GO
database. Consistent with the proteomic benchmark-
ing results, we found a very high correlation of 0.93
(R2 = 0.80) between LPv and mitochondrial gene enrich-
ment for Sirt3 co-expressed genes (Fig. 9c). Notably,
not all Sirt3 exonic probe correlated genes and none
of the intronic probe correlated genes were enriched
for the Mitochondrion GO category (Fig. 9c). The LPv
for the mitochondrial enriched Sirt3 correlated genes
was significantly (p < 0.0003, Wilcoxon/Kruskal-Wallis
Rank Sum test) higher than the LPv for Sirt3 correlated
genes which were not enriched for mitochondrial genes
(Fig. 9d). Moreover, the correlation between LPv and all
mitochondrial GO categories for Sirt3 correlated gene
sets was significantly (p < 10−25, Wilcoxon/Kruskal-
Wallis Rank Sum test) higher than the correlation of
LPv and all other GO categories (Additional file 1:
Figure S7).
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a b

c d

Fig. 5 Correlation between literature derived cohesion p-values (LPv) and F-measure across various gene co-expression set sizes. Correlations were
calculated using two gold standard sets (GS1 and GS2) and two different liver datasets (DS1 and DS2). DS1, SUH BXD CCL4 Affymetrix Gene 1.0 ST
treated; DS2, EFPL/LISP BXD CD+HFD Affymetrix Gene 1.0 ST; GS1, [31]; GS2, [32]

Fig. 6 Relationship between F-measure and gene co-expression set
sizes ranging from 100 to 1000 for 14 exonic (yellow/orange) and 12
intronic (blue/green) Sirt3 probes on Affymetrix Murine Exon Array

Fig. 7 Literature derived cohesion p-values (LPv) for gene
co-expression set sizes ranging from 100 to 1000 for 14 exonic
(yellow/orange) and 12 intronic (blue/green) Sirt3 probes on
Affymetrix Murine Exon Array
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Table 1 LPv and F-measure values for the top 500 Sirt3 correlated genes using different Sirt3 probes and datasets

Dataset Probe ID Probe target GS1 F-measure GS2 F-measure LPv

DS1: SUH BXD Liver CCl4-treated Affy Mouse Gene 1.0 ST (Jun11) RMA : 10568997

10569001 Exon 0.027 0.037 1.85E-07

10568998 Exon 0.067 0.074 9.81E-07

10569000 Exon 0.078 0.077 1.36E-06

10568999 Exon 0.048 0.046 2.12E-04

10569002 Exon 0.008 0.009 6.02E-04

10569007 Exon 0.003 0.006 1.66E-01

10569006 Exon 0.011 0.003 2.12E-01

10569005 Exon 0.045 0.040 2.95E-01

10569003 Exon 0.005 0.003 3.59E-01

10569004 Exon 0.003 0.006 8.30E-01

DS2: EPFL/LISP BXD CD+HFD Liver Affy Mouse Gene 1.0 ST (Apr13) RMA Exon Level

10569001 Exon 0.016 0.014 3.24E-03

10569003 Exon 0.013 0.020 7.77E-03

10568998 Exon 0.029 0.017 2.54E-02

10568999 Exon 0.037 0.034 2.54E-02

10569000 Exon 0.029 0.020 4.33E-02

10569005 Exon 0.003 0.003 9.58E-02

10569002 Exon 0.016 0.006 1.11E-01

10569007 Exon 0.005 0.009 1.66E-01

10569004 Exon 0.019 0.020 1.88E-01

10569006 Exon 0.003 0.003 2.66E-01

DS3: UMUTAffy Hippocampus Exon (Feb09) RMA Database

5499567 Exon - 0.057 2.17E-25

4907923 Exon - 0.051 3.00E-22

4495913 Exon - 0.045 1.15E-19

5121237 Exon - 0.063 1.15E-19

4643366 Exon - 0.048 2.05E-18

5406945 Exon - 0.051 1.09E-13

4731401 Exon - 0.048 2.09E-12

5102588 Exon - 0.045 2.27E-08

4328784 Intron - 0.042 1.36E-06

5237727 Exon - 0.021 3.54E-06

4651363 Intron - 0.012 1.62E-04

5463214 Exon - 0.012 6.02E-04

4593342 Exon - 0.006 7.74E-04

5216427 Intron - 0.006 4.06E-03

4320391 Intron - 0.006 1.74E-02

4704662 Intron - 0.009 1.74E-02

5290133 Intron - 0.000 2.54E-02

5287872 Intron - 0.000 1.11E-01

5321074 Exon - 0.003 1.66E-01

5240866 Intron - 0.003 2.12E-01

5553357 Exon - 0.021 2.66E-01

5433908 Intron - 0.000 3.26E-01

4519614 Intron - 0.012 6.10E-01

4489481 Intron - 0.003 7.13E-01

4798276 Intron - 0.000 7.13E-01

4601230 Exon - 0.012 8.30E-01

Probes that produced co-expressed gene sets with significant (p < 0.05) literature cohesion are in bold font
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Fig. 8 Correlation between literature derived cohesion p-values (LPv)
and F-measure across various Sirt3 co-expression set sizes in the
hippocampus

Functional analysis of Sirt3 co-expressed gene sets in brain
and liver
Having identified the most functionally cohesive Sirt3
co-expressed gene sets in liver (using PID# 10569000 in
Affymetrix Mouse Gene 1.0 ST array) and hippocampus
(using PID# 5499567 in AffymetrixMouse Exon array) tis-
sues, we performed functional enrichment analysis on the
top 500 Sirt3 correlated transcripts. The most enriched
categories were the UniProt Keywords Acetylation and
Mitochondrion cellular compartment (Table 2). The Sirt3
co-expressed gene sets in both liver and Hippocam-
pus were enriched for core metabolic processes such as
oxidation-reduction process and oxidative phosphoryla-
tion. Interestingly, Sirt3 co-expressed genes in both tissues
were associated with focal adhesion,myelin sheath, Hunt-
ington’s disease, Parkinson’s disease and Alzheimer’s dis-
ease. However, in the liver, the Sirt3 co-expressed genes
were involved in tricarboxylic acid cycle and nucleotide
binding, as well as amino acid, lipid, and cholesterol
metabolism. In contrast, the Sirt3 co-expressed gene sets
in the hippocampus were enriched for ribosomal pro-
teins, translation regulation, proteasome regulation as well
as non-alcoholic fatty liver disease and vesicle-mediated
transport pathways.

Discussion
In this study, we demonstrated that using a literature-
based method to determine functional cohesion of gene
sets is an effective approach to evaluate the quality of spe-
cific microarray probes and their correlated gene expres-
sion. Using two different proteomic gold standard gene
sets, we found that the literature derived p-values of Sirt3
co-expressed genes were highly correlated with F-scores

across different window sizes (Figs. 5, 8 and 9). In addition,
the LPv of Sirt3 co-expressed genes was highly corre-
lated with enrichment of mitochondrial genes (Fig. 9).
These results suggest that LPv may be used as a proxy
benchmarking tool when gold standards are not available.
We found that not all probes targeting the same gene on

a microarray platform produced meaningful co-expressed
gene sets based on LPv, F-measure, or GO enrichment
analysis (Figs. 3, 4, 6, 7, and 9). These results suggest that
a considerable number of microarray probes may produce
erroneous results. Our results are consistent with various
other studies which have documented non-specific probe
hybridization and other factors that affect the quality
of expression analysis using Affymetrix GeneChip arrays
[12, 14, 33]. Importantly, based on probe level analysis
of the Hippocampus Affymetrix Exon Arrays, we found
three Sirt3 exonic probes with non-significant LPv (Fig. 9,
Table 1). Further analysis revealed that two of these probes
(PID# 5553357 and PID# 5321074) actually target Sirt3
introns rather than exons, revealing annotation errors by
the manufacturer. In addition, the third Sirt3 probe (PID#
4601230) targeted other regions in the genome in addition
to Sirt3. In contrast, some Sirt3 intronic probe correlated
gene sets showed significant LPv (Table 1). While the rea-
sons for this result is unclear, it does indicate that a metric
other than LPv cutoff of p < 0.05 is needed to iden-
tify high quality probes. Based on the distribution of LPv
for exonic and intronic Sirt3 probes, we found that the
mean − log10(LPv) (6.42) may be adequate to distin-
guish high quality probes from intronic controls (Fig. 9b).
Applying this metric to DS1 and DS2, which used
Affymetrix Gene 1.0 ST array, identified five Sirt3 probes
with greater than average LPv (Additional file 1: Figure
S8). Four out of the five ‘high’ quality Sirt3 probes were
consistent between the two datasets, suggesting that some
differences in literature cohesion may be caused by exper-
imental differences. Further study using a larger number
of datasets for a given array platform will be needed to
develop a global probe quality metric based on LPv.
In general, the F-scores across all probes and datasets

were low (<0.04) although some co-expressed gene sets
exhibited highly significant literature cohesion. The low
F-measure is a result of both low recall and precision of
the gold standard genes, which is likely due to a number
of factors. First, low F-scores may simply be due to tech-
nical or experimental variation in the proteomic studies
that we used to define the gold standards. Only 140 (56%
of GS1 and 69% of GS2) Sirt3 target protein/genes in the
liver were common between the two proteomic studies
(Fig. 2). Second, low F-scores may be explained by the
fact that not all Sirt3 co-expressed genes are expected
to be direct deacetylation targets of Sirt3, yet they may
play important roles in Sirt3 signaling pathways. Third,
gene expression is not expected to tightly correlate with



Roy et al. BMC Bioinformatics 2019, 20(Suppl 2):104 Page 40 of 149

protein levels nor post-translational modification. Fourth,
the liver samples used for our co-expression analysis were
from treated animals, whereas the gold standard genes
were identified from untreated Sirt3 knock-out and wild-
type animals. Therefore, it is possible that many of the
Sirt3 co-expressed genes in the liver datasets may be
confounded by the treatment. Finally, since the gold stan-
dard experiments utilized Sirt3 KO animals, some of the
acetylation changes may be a result of indirect affects
or compensatory mechanisms caused by Sirt3 deficiency

during development. Nevertheless, using two different
sets of proteomic gold standards as well as benchmarking
with mitochondrial enrichment analysis enabled us to
validate LPv performance across multiple tissues and
datasets. As noted above, we consistently found high
correlation between LPv and the different benchmarks
(Figs. 5, 8 and 9).
Large-scale acetyl proteomic studies have reported

that Sirt3 regulates a wide range of metabolic enzymes
and is responsible for global metabolic reprogramming

Fig. 9 a Relationship between literature cohesion p-value (LPv) and gold standard F-measure using the top 500 Sirt3 correlated genes obtained
from 14 exonic (red circles) and 12 intronic (blue circles) Sirt3 probes. b Distribution of LPv for Sirt3 exonic (red circles) and intronic (blue circles)
probes, p-values were determined using Wilcoxon/Kruskal-Wallis Rank Sum test. c Relationship between LPv and GO:Mitochondrion enrichment
p-value using the top 500 Sirt3 correlated genes obtained from 14 exonic (red circles) and 12 intronic (blue circles) Sirt3 probes. d Distribution of LPv
for Sirt3 probe co-expressed gene sets which were or were not enriched for GO:Mitochondrion category, p-values were determined using
Wilcoxon/Kruskal-Wallis Rank Sum test. e Bar plot showing the LPv, F-Measure and Mitochondrial enrichment for each Sirt3 probe
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Table 2 Enriched functional categories for the top 500 Sirt3 correlated genes obtained from two different datasets

Dataset Database_category Term Gene count % of input genes p-value Adj p-value

DS1: SUH BXD Liver CCl4-treated Affy Mouse Gene 1.0 ST (Jun11) RMA : 10568997 (263 Gene IDs)

UP_KEYWORDS Acetylation 102 0.39 8.29E-24 2.11E-21
GOTERM_CC_DIRECT GO:0005739 mitochondrion 76 0.29 1.47E-21 4.79E-19
GOTERM_BP_DIRECT GO:0055114 oxidation-

reduction
process

31 0.12 1.68E-08 2.50E-05

KEGG_PATHWAY mmu00280:Valine leucine
and isoleucine degradation

10 0.04 3.80E+00 3.81E-04

GOTERM_MF_DIRECT GO:0000166 nucleotide
binding

49 0.19 1.80E-05 5.13E-03

KEGG_PATHWAY mmu05016:Huntington’s
disease

16 0.06 1.84E-05 1.81E-03

GOTERM_BP_DIRECT GO:0006629 lipid
metabolic process

20 0.08 2.14E-05 6.37E-03

KEGG_PATHWAY mmu00190:Oxidative
phosphorylation

13 0.05 3.65E-05 1.79E-03

GOTERM_BP_DIRECT GO:0006099 tricarboxylic
acid cycle

6 0.02 4.31E-05 9.15E-03

GOTERM_CC_DIRECT GO:0043209 myelin sheath 12 0.05 4.69E-05 1.69E-03
GOTERM_CC_DIRECT GO:0005925 focal adhesion 17 0.06 6.08E-05 1.80E-03
KEGG_PATHWAY mmu05012:Parkinson’s disease 13 0.05 7.23E-05 2.83E-03
GOTERM_BP_DIRECT GO:0042632 cholesterol

homeostasis
7 0.03 2.26E-04 3.68E-02

KEGG_PATHWAY mmu05010:Alzheimer’s
disease

13 0.05 3.68E-04 1.20E-02

DS3: UMUTAffy Hippocampus Exon (Feb09) RMA Database (307 Gene IDs)
UP_KEYWORDS Acetylation 156 0.51 1.33E-50 3.21E-48
GOTERM_CC_DIRECT GO:0005739 mitochondrion 85 0.28 3.49E-22 1.19E-19
GOTERM_MF_DIRECT GO:0003735 structural

constituent of ribosome
30 0.10 4.17E-19 1.80E-16

GOTERM_BP_DIRECT GO:0006412 translation 36 0.12 1.76E-18 1.72E-15
KEGG_PATHWAY mmu05016:Huntington’s

disease
26 0.08 1.17E-12 6.36E-11

KEGG_PATHWAY mmu05012:Parkinson’s disease 20 0.07 8.29E-11 3.01E-09
KEGG_PATHWAY mmu00190:Oxidative

phosphorylation
19 0.06 3.81E-10 1.04E-08

KEGG_PATHWAY mmu03050:Proteasome 13 0.04 4.95E-10 1.08E-08
KEGG_PATHWAY mmu05010:Alzheimer’s

disease
20 0.07 7.75E-09 1.41E-07

KEGG_PATHWAY mmu04932:Non-alcoholic
fatty liver disease (NAFLD)

18 0.06 5.30E-08 8.25E-07

GOTERM_BP_DIRECT GO:0055114 oxidation-
reduction
process

29 0.09 6.55E-06 1.29E-03

GOTERM_BP_DIRECT GO:0016192 vesicle-
mediated
transport

14 0.05 6.26E-05 1.02E-02

GOTERM_CC_DIRECT GO:0043209 myelin sheath 13 0.04 6.97E-05 1.48E-03
GOTERM_CC_DIRECT GO:0005925 focal adhesion 16 0.05 0.0017766 2.71E-02

The gene count, % of input gene list, raw p-value, and Benjamini-Hochberg adjusted p-value are shown for each functional category. Categories that are unique to one
dataset are bolded

[26, 31, 32]. Consistent with these studies, our functional
enrichment analysis of Sirt3 co-expressed genes in BXD
recombinant inbredmice revealed that Sirt3 participate in
core metabolic pathways involved in oxidative phospho-
rylation, however the specific targets in this biochemical
pathway were different in the hippocampus compared to

liver. For example, out of 31 liver genes and 19 brain
genes involved in oxidative phosphorylation pathway, only
3 were common between liver and hippocampus. This
suggest that although Sirt3 generally regulates oxidative
phosphorylation, it may mediate its effects through dis-
tinct target proteins in different tissues. Also, consistent
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with previous proteomic studies, our analysis showed that
Sirt3 regulates distinct metabolic pathways in an energy
producing tissue such as liver compared to an energy
demanding tissue such as brain hippocampus. In the liver,
we found that Sirt3 co-expressed genes are involved in
fatty acid and amino acid metabolism, whereas in the
brain Sirt3 co-expressed genes are involved in regulation
of protein synthesis and vesicle mediated transport. This
result is consistent with recent studies that reported Sirt3
is critical for adaptive responses to exercise and metabolic
challenges in neurons [27].
Using a literature-based approach such as LPv is impor-

tant because gold standard sets (despite their limitations
discussed above) are not readily available for the vast
majority of genes. In the absence of gold standards, it
is difficult to assess the quality of different probes for a
given gene represented on various microarray platforms.
Lack of appropriate quality benchmarking will lead to
false discovery and hinder biological interpretation of the
data. Thus, we posit that the LPv approach would enable
researchers to focus on the best probes and datasets
and ultimately facilitate genomic discovery. The Gene-
Set Cohesion Analysis Tool (GCAT) [20] which calculates
literature derived functional cohesion p-values is readily
available in GeneNetwork.org.

Conclusions
Taken together, we have demonstrated that literature
derived functional cohesion provides for a robust, auto-
mated and objective metric for evaluating the quality
of probes and co-expressed genes. This makes the LPv
metric a viable probe quality indicator substitute in the
absence of ‘ground truth’ or experimentally derived gold
standards, which is the case for most genes.

Additional file

Additional file 1: ’Roy_et_al_Additional_file_1.pdf’ contains
Figures S1-S8. (PDF 8187 kb)
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