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Abstract

Background: We previously reported on CERENKOV, an approach for identifying regulatory single nucleotide
polymorphisms (rSNPs) that is based on 246 annotation features. CERENKOV uses the xgboost classifier and is
designed to be used to find causal noncoding SNPs in loci identified by genome-wide association studies (GWAS). We
reported that CERENKQV has state-of-the-art performance (by two traditional measures and a novel GWAS-oriented
measure, AVGRANK) in a comparison to nine other tools for identifying functional noncoding SNPs, using a
comprehensive reference SNP set (0SU17, 15,331 SNPs). Given that SNPs are grouped within loci in the reference SNP
set and given the importance of the data-space manifold geometry for machine-learning model selection, we
hypothesized that within-locus inter-SNP distances would have class-based distributional biases that could be
exploited to improve rSNP recognition accuracy. We thus defined an intralocus SNP “radius” as the average data-space
distance from a SNP to the other intralocus neighbors, and explored radius likelihoods for five distance measures.

Results: We expanded the set of reference SNPs to 39,083 (the 0SU18 set) and extracted CERENKOV SNP feature
data. We computed radius empirical likelihoods and likelihood densities for rSNPs and control SNPs, and found
significant likelihood differences between rSNPs and control SNPs. We fit parametric models of likelihood distributions
for five different distance measures to obtain ten log-likelihood features that we combined with the 248-dimensional
CERENKOV feature matrix. On the 0SU18 SNP set, we measured the classification accuracy of CERENKOV with and
without the new distance-based features, and found that the addition of distance-based features significantly
improves rSNP recognition performance as measured by AUPVR, AUROC, and AVGRANK. Along with feature data for
the OSU18 set, the software code for extracting the base feature matrix, estimating ten distance-based likelihood
ratio features, and scoring candidate causal SNPs, are released as open-source software CERENKOV2.

Conclusions: Accounting for the locus-specific geometry of SNPs in data-space significantly improved the accuracy
with which noncoding rSNPs can be computationally identified.
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Background

The rSNP detection problem

Human genome-wide association studies (GWAS) have
led to the discovery of genetic variant-to-trait associations
in thousands of studies collectively involving millions of
individuals [1]. Functional interpretation of genetic loci
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identified through GWAS has primarily focused on cod-
ing regions in which single nucleotide polymorphisms
(SNPs) can be mapped to consequence predictions based
on amino acid changes [2]; however, 90% of human
GWAS-identified SNPs are located in noncoding regions
[3]. Within a noncoding trait-associated region, it is dif-
ficult to pinpoint the regulatory SNP (or rSNP) that is
causal for trait variation [4]. Various types of SNP anno-
tations that correlate with functional rSNPs are known
[5], for example, phylogenetic sequence conservation [6]
and expression quantitative trait locus (expression QTL,
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or eQTL) association [7]. But the general problem of
how to integrate various types of genomic, phylogenetic,
epigenomic, transcription factor binding site (TFBS), and
chromatin-structural rSNP correlates in order to iden-
tify rSNPs is a fundamental challenge in computational
biology. Progress on this problem has been spurred by
the growth of literature-curated databases of experimen-
tally validated rSNPs such as the Human Gene Mutation
Database [8] (HGMD), ORegAnno [9] or ClinVar [10].
While various approaches to the rSNP recognition prob-
lem have been proposed that do not involve training based
on an example set of experimentally validated rSNPs (we
call such methods “unsupervised” approaches) [11-21],
converging lines of evidence from our work [22] and
others’ [23-26] suggest (but are not entirely consistent
on this point [21]) that approaches that are supervised
by example sets of experimentally validated rSNPs sig-
nificantly improves accuracy with which rSNPs can be
discriminated from nonfunctional noncoding SNPs.

Many types of genomic data have been used to derive
SNP annotation features that have proved useful in super-
vised models for rSNP recognition [22]. The picture
emerging from dozens of studies over the past ten years
is that increasing the breadth and diversity of such SNP
annotation features improves rSNP detection, and thus
there has been a steady increase in the number of fea-
tures that are used in machine-learning approaches for
this problem, from 23 features [23], to 28 features [27],
to 158 features [28], to 175 features [24], to 246 fea-
tures in our previous work [22]. The dimensionality of
feature-spaces has rapidly increased in the last few years,
with reports of rSNP recognition models that incorpo-
rate 919 features [16, 26, 29] derived from epigenomic
data from the Encyclopedia of DNA Elements (ENCODE)
project [30] and 2132 features [25] derived from the
Gene Ontology [31]. However, in our previous work
[22] we found that a model with a 246-dimensional
feature space clearly outperformed models [25, 26, 29]
with significantly higher-dimensional feature spaces. This
suggests that feature-feature correlation within, and spar-
sity of, high-dimensional feature-sets may lead to dimin-
ishing returns in terms of improving rSNP detection
accuracy.

A variety of supervised classification algorithms have
been proposed for identifying functional noncoding
SNPs, including the support vector machine (SVM)
[17, 19, 23, 32], naive Bayes [27], ensemble deci-
sion tree algorithms [24, 25, 28], probabilistic graphi-
cal models [18, 33], deep neural networks [20, 26, 29],
weighted sum of feature ranks [34], and our work
using regularized gradient boosted decision trees [22]
and deep residual networks [35]. Recently, there have
been several proposals of hybrid methods such as com-
bining recurrent and convolutional neural networks

Page 2 0f 13

[26] and integrating deep neural networks with reg-
ularized gradient boosted decision trees [29]. Beyond
binary classification, regression-based approaches have
been proposed for detecting rSNPs, including linear
regression [36] and a mixture-of-regressions model
[37]. Overall, there has been a shift toward mod-
els with higher parametric complexity as the sizes of
example sets of experimentally validated rSNPs has
increased [22].

Novelty and performance of our previous CERENKOV
method

In our previous work [22], we described CERENKOV
(Computational Elucidation of the REgulatory NonKOd-
ing Variome), a machine-learning approach for rSNP
recognition that incorporated four key innovations.
First, CERENKOV incorporated a within-group-rank-
based measure of classification accuracy, which we called
AVGRANK. AVGRANK more realistically models the
costs associated with incorrect predictions in post-GWAS
SNP analysis than typical measures of accuracy like area
under the receiver operating characteristic (AUROC)
curve or area under the precision-vs-recall (AUPVR)
curve. We found that optimizing a model to maximize
AUPVR does not guarantee optimality for AVGRANK,
and thus, that both measures should be taken into
account in evaluating the performance of a computational
model for rSNP recognition. Second, in CERENKOV we
used a state-of-the-art regularized gradient boosted deci-
sion tree (xgboost) classification algorithm [38], which
improved upon the rSNP recognition performance that
could be achieved (on an identical feature-set) using the
previously-proposed classification algorithms Random
Forest and Kernel Support Vector Machine [22]. Third, for
CERENKOV we engineered 246 SNP-level features from
phylogenetic, genomic, epigenomic, chromatin struc-
tural, cistromic, population genetic, replication-timing,
and functional genomic datasets. Fourth, we trained,
validated, and performance-benchmarked CERENKOV
using a reference set of 15,331 SNPs (the 0SU17 SNP
set) comprising 1659 experimentally validated human
rSNPs and 13,672 neighboring “control” SNPs (cSNPs)
that are each in strong linkage disequilibrium with at
least one rSNP. We selected the 0SU17 SNPs to rep-
resent noncoding loci that would be expected to be
encountered in a post-GWAS analysis, based on pop-
ulation minor allele frequency [22]. We compared the
accuracy of CERENKOV to nine other published rSNP
recognition models (DeltaSVM [19], RSVP [25], DANN
[20], fitCons [18], CADD ([17], DeepSEA [29], DANQ
[26], Eigen [21], and GWAVA [24]) and found that
CERENKOV’s performance significantly improved upon
the current state-of-the-art, by AUPVR, AUROC, and
AVGRANK.
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Introducing CERENKOV2

In this work we report on CERENKOV2, a next-
generation machine-learning approach for rSNP recog-
nition that improves upon our previous approach,
CERENKOV [22] in terms of accuracy and insights into
the data-space geometry of the problem. In addition
to using a significantly expanded reference set of SNPs
[the 0SU18 SNP set (see “The 0SU18 reference SNP
set” section), which has 39,083 SNPs for model bench-
marking], we have incorporated new engineered features
into CERENKOV?2 that are based on likelihood ratios of
average SNP-to-neighboring-SNPs distances for various
types of distance measures, as described below. By tak-
ing account geometric properties of the distribution of
SNPs in data space (as described in detail in the next
section), CERENKOV?2 achieves significantly better rSNP
recognition performance than CERENKOV.

The importance of data-space geometry

It is a well-established principle in machine-learning that
understanding the manifold structure of cases in data-
space can help guide appropriate selection of a classifi-
cation model and/or geometric features that enable more
accurate classification [39, 40]. Data-space inter-sample
distance measures are fundamental to many machine-
learning algorithms such as k-Nearest-Neighbors [41]
(k-NN), and in the case of k-NN, the choice of distance
measure can be a key determinant of the accuracy of
the classifier [42]. Given that (1) rSNPs and cSNPs are
grouped into genetic loci in which the within-locus SNPs
are in linkage disequilibrium with one another (making
rSNP recognition a grouped machine-learning problem),
and (2) in the reference SNP set, each associated locus has
at least one rSNP in it and usually many cSNPs (such that
the problem has a “sparse positive bag” structure [43, 44]),
we hypothesized that within-locus SNP-SNP distances in
data space may be informative for discriminating rSNPs
from cSNPs. But despite the importance of the choice of
data-space metric in many machine-learning applications
and in clustering [45], the potential utility of data-space
metric-based features for improving accuracy of compu-
tational recognition of rSNPs has not to our knowledge
been systematically explored. Here we report on the first
effort (of which we are aware) to improve rSNP detection
performance by systematically incorporating data-space
geometric features, specifically, intralocus SNP-SNP dis-
tances in feature space.

Data-space geometric features for rSNP recognition

Based on our initial observation that SNPs within the
same locus tend to be clustered in data space, we inves-
tigated whether there are class label-specific biases in
the locus-based average SNP-to-neighboring-SNPs dis-
tances that could be exploited to improve accuracy for
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discriminating rSNPs from cSNPs. In mathematical terms,
for a SNP s, we denote by L(s) the set of SNPs within
the same locus as s (for details on the selection of cSNPs
that are within the same locus as an rSNP, see “Methods”
section). Then, for a given locus s and a given distance
metric d(-,-), we define an intralocus average SNP-to-
neighboring-SNP distance or “intralocus radius” Agy by

1

Aol = ———
47 L) — 1

Z d(s,s). (1)

s'€L(s),s'#s

One such metric would be the Pearson distance defined as
d(s,s’) =1 —r(s,s"), where r(s,s') is the Pearson correla-
tion coefficient [46] between the feature vectors of SNPs
s and s'. With Pearson distance being applied, we found
that the distribution of intralocus radii for rSNPs were
markedly different from cSNPs, with rSNPs often hav-
ing higher intralocus radii than c¢SNPs, i.e., A, pearson >
AcPearson- Given the sparsity of rSNPs in the genome
(cSNPs outnumber rSNPs 14.5 to one in the 0SU18 SNP
set) and the typically large linkage disequilibrium-defined
locus sizes in the human genome [47], the locus neigh-
borhood for any given s in general mostly contains cSNPs.
Together, these observations suggest that in feature-space,
the SNPs of a given locus have an “atom”-like struc-
ture with respect to Pearson distance—a core rSNP and a
“cloud” of ¢SNPs with higher average distance from the it
(Fig. 1).

Based on this initial observation, we systematically cal-
culated intralocus radii for each SNP in the 0SU1 8 reference
SNP set, using five different distance measures (Canberra [48],
Euclidean [49], Manhattan [50], cosine [51], and Pear-
son) applied to both scaled and unscaled feature data (for
a total of ten combinations). We found significant dif-
ferences between the distributions of the ten intralocus
radius values conditioned on the two classes (rSNPs and
cSNPs). Based on this, we parametrically modeled the
intralocus radius distributions (see “Analysis of intralo-
cus radius distributions for rSNPs and ¢SNPs” section)
and thereby obtained log-likelihood ratios that we incor-
porated into the feature set for CERENKOV2 (see “Using
data-space geometric features in CERENKOV2” section).
We quantified the relative importance of the distance
based features in the context of the CERENKOV2
base feature-set (see “CERENKOV2 feature impor-
tance” section). Finally, we compared the classifica-
tion performance of CERENKOV2—including the new
distance-based features—with that of CERENKOV on
the 0SU18 reference SNP set (see “Comparison of
CERENKOV2 vs. CERENKOYV performance” section) and
found that CERENKOV2 had significantly better per-
formance than CERENKOV, by AUROC, AUPVR, and
AVGRANK. The complete feature data for the 0OSU18
training and validation SNP set are available online and
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Fig. 1 The geometric idea behind the intralocus distance features that are used in CERENKOV2. Top panel, SNPs from the same locus form a
data-space “cloud.” Triangles and circles, SNPs; black lines, distances between a central SNP and the other SNPs within the locus. Bottom panel, SNPs

shown in their chromosomal context

the software code for CERENKOV?2 is freely distributed
to the scientific community online under an open-source
license (see “Availability of data and materials” section).

Results

Analysis of intralocus radius distributions for rSNPs and
cSNPs

We computed intralocus radii for each of the 0SU18 SNPs
(see “Computing the geometric features” section) using
ten combinations of distance measures and data matrices:
Canberra distance, Euclidean distance (L?> norm), Man-
hattan distance, cosine distance (defined as 1.0 minus the
cosine similarity) and Pearson distance, each on unscaled
data and min-max scaled data (the latter set of distance
measures will be designated with the suffix “(scaled)” in
each case). We first analyzed the intralocus SNP-SNP
radius distributions for the two SNP classes (rSNPs and
c¢SNPs) within 248-dimensional feature-space using ker-
nel density estimation for radius values conditioned on the
class label (rSNP or cSNP) of the reference SNP. As seen in
Fig. 2 (see also Additional file 1: Table S2), there are class
label-dependent differences in the skewness and kurtosis,
indicting that geometric biases exist between rSNPs and
¢SNPs in data-space.

For cosine and Pearson distances, the intralocus radius
distributions for rSNPs are slightly more skewed to
the left and more platykurtic than the distributions
for ¢SNPs; in terms of Euclidean and Manhattan dis-
tances, the intralocus radius distributions for rSNPs are
left-skewed and more leptokurtic, while the cSNPs’ are
right-skewed and less leptokurtic; for the rest distances,
the intralocus radius distributions for cSNPs are slightly
more skewed to the right and more leptokurtic than
the distributions for rSNPs (see also Additional file 1:
Table S2).

Analysis of intralocus radius likelihood ratios (rSNP vs.
cSNP)

The intralocus radius distribution analysis suggested that
taking account of the intralocus radius likelihood for the
SNP conditioned on a possible class label (rfSNP or cSNP)
would be useful for discriminating rSNPs from cSNPs. To
visualize the potential class-label discriminating power of
each of the ten methods for computing intralocus radii,
we empirically estimated the rSNP/cSNP log-likelihood
ratios (LLRs) for the ten different methods for computing
intralocus radii using binned counts of SNPs for posterior
probability estimation (Fig. 3). Consistent with the differ-
ences seen in the density distributions (Fig. 2), we found
that log-likelihood ratios were significantly different from
zero for the majority of bins for intralocus radii computed,
for each of the ten distance measures except for cosine
(unscaled) and Pearson (unscaled).

Next, we extracted features from intralocus radii for
use in the CERENKOV classifier, using sets of SNPs that
were reserved for training within a cross-validation frame-
work (see “Gradient boosted decision trees” section). In
order to avoid issues with zero-count bins associated with
the limited number of SNP loci within a single cross-
validation fold, we used a parametric approach: instead of
empirically estimating likelihood ratios, for each of the ten
methods for computing intralocus radii we fit parametric
distributions to the radius values (conditioned on the class
label of the reference training SNP). We then applied the
fitted parametric models to compute log-likelihood ratios
for both the training and validation sets of SNPs and inte-
grated those ten log-likelihood ratios as feature vectors,
yielding a 258-column feature matrix input for classifi-
cation which we compared to performance (using the
same classification algorithm) of the original 248-column
feature matrix.
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Using data-space geometric features in CERENKOV2

On an identical starting set of reference SNPs (0SU18,
see “The 0SU18 reference SNP set” section) and iden-
tical assignments of SNPs to cross-validation folds, we
compared the performance of the CERENKOV classifi-
cation algorithm incorporating the 248-column feature
matrix (without intralocus radii-based features) with the
performance of the CERENKOV algorithm incorporating
a 258-column feature matrix (including intralocus radii-
based features). Using ten independent replications of
five-fold cross-validation with grouped sampling based
on locus (“locus-based sampling’, see “Gradient boosted
decision trees” section) and using three metrics (AUPVR,
AUROC, and AVGRANK [22]), we measured perfor-
mance separately for classification using the two feature
matrices and using xgboost hyperparameters selected to
maximize training-set AUPVR (see “Hyperparameter tun-
ing” section). For the classification algorithm we used
a high-performance implementation of regularized gra-
dient boosted decision trees (xgboost [38], hereafter,
xgboost-GBDT). For the two models, the inputs to
xgboost were thus a 39,083x248 feature matrix and
a 39,083x258 feature matrix, respectively. We trained
and tested xgboost-GBDT (using ten independent
replications of five-fold [52] cross-validation with locus-
based sampling [22]) with the optimal xgboost hyper-
parameters (see “Hyperparameter tuning” section).

Comparison of CERENKOV2 vs. CERENKOV performance

Within the above-described cross-validation framework,
we found that the inclusion of the ten geometric fea-
tures improved validation-set AUPVR from 0.358 to 0.402
(p < 1072%), AUROC from 0.830 to 0.839 (p < 10718),

Page 6 of 13

and AVGRANK from 11.172 to 10.994 (lower is better for
AVGRANK [22]; p < 0.004) (Fig. 4 and Additional file 1:
Table S1). From these results, we concluded that the addi-
tion of the ten geometric features based on the intralocus
radius of SNPs in data-space significantly improved per-
formance for rSNP recognition.

CERENKOV?2 feature importance

In order to better understand the contributions of
different categories of features—particularly geometric
features—to rSNP recognition accuracy, we separately
trained a Random Forest algorithm on the 258-column
feature matrix for the 0SU18 reference SNP set (see “The
0SU18 reference SNP set” section) and then obtained
permutation [53] and Gini impurity [54]-based esti-
mates of the importance of each of the 258 features
(Fig. 5). Consistent with findings from the Peterson et al.
study [25], SNP annotations based on replication tim-
ing experimental measurements (“repliseq”) had high-
est overall feature importance; however, the ten log-
likelihood-ratio features that were based on data-space
geometry strongly contributed to accuracy for rSNP
recognition.

Application of CERENKOV?2 to identify trait-associated
noncoding SNPs

To illustrate the biological utility of CERENKOV2, we
used CERENKOV2 to compute rSNP prediction scores
for noncoding SNPs in the Genome-Wide Repository of
Associations Between SNPs and Phenotypes (GRASP)
database. We identified two noncoding SNPs that are
trait-associated in GRASP and that have CERENKOV2
rSNP prediction scores greater than 0.7: rs2239633
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Fig. 4 Performance of GWAVA, CERENKOV and CERENKOV?2 on the 0SU18 reference SNP set, by three performance measures. Marks, sample
arithmetic mean of validation-set performance; bars, estimated 95% confidence intervals (see “Gradient boosted decision trees” section); GNAVA,
based on the GWAVA's Random Forest model with 174 features [24]; CERENKOV, our previous model with the base 248-column feature matrix;
CERENKOV2, our current model consisting of the base feature matrix plus ten log-likelihood features derived from intralocus radii and fitted using
training data only; AUPVR, area under the precision-vs-recall curve (higher is better); AUROC, area under the receiver operating characteristic curve
(higher is better); AVGRANK, intralocus average score rank (lower is better [22])
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(associated with acute lymphoblastic leukemia), and
rs11071720 (associated with mean platelet volume in cir-
culation, and with gene expression of TPM1 in blood. This
illustrates how CERENKOV can be used to filter GWAS
summary results to identify noncoding SNPs that have
high potential to have a mechanistic (gene regulatory)
interpretation.

Discussion

We anticipate that CERENKOV2’s performance may be
improved through several possible enhancements. An
appealing extension would be to combine deep neu-
ral network-based approaches based on the local 1 kbp
sequence haplotype (recognizing that the local haplotype
provides important correlates of functional SNP alleles
[55]), with CERENKOV2’s current set of 258 SNP features.
Our previous work [35] has demonstrated that a classifier
(Res2s2am) based on a deep residual network architecture
has state-of-the-art performance on the related prob-
lem of discriminating trait-associated noncoding SNPs
from control noncoding SNPs. While the present work
significantly improves rSNP recognition accuracy, the
validation-set AVGRANK performance values (averag-
ing nearly 11) clearly demonstrate that further gains in
accuracy are needed in order to fully realize the poten-
tial of integrative, data-driven computational approaches
to substantially accelerate the search for causal noncod-
ing GWAS variants. Undoubtedly, precision values are
dampened by “latent positives” in the training dataset, i.e.,
high-scoring ¢SNPs that are simply undiscovered rSNPs.

Using machine learning techniques that are specifically
designed to address “positives-plus-unlabeled” problems
[56] (such as the rSNP detection problem studied here)
or semi-supervised learning algorithms [57] would seem
to offer a principled approach to handling the issue of
latent positives among the cSNPs. Given the extent to
which common features (e.g., replication timing, local GC
content, phylogenetic sequence conservation, chromatin
accessibility, and transcription factor binding sites [22])
are used by many supervised tools for rSNP recogni-
tion, the results from our analysis of the performance of
CERENKOV2 suggest that accounting for the intralocus
data-space geometry of SNPs may be broadly useful for
advancing bioinformatics for post-GWAS SNP analysis.

Conclusion

CERENKOV?2 significantly improves upon our previous
framework and classifier, CERENKOV, in its ablity to
score noncoding SNPs based on their regulatory potential.
CERENKOV2—by virtue of its training-set construction
criteria (locus-based, MAF > 0.05) and its novel fea-
ture set including geometric ones—is specifically designed
for the problem of identifying candidate causal non-
coding SNPs in GWAS summary regions. We have
demonstrated, using side-by-side comparisons on iden-
tical assignments of SNPs to cross-validation folds, that
CERENKOV?2’s performance exceeds that of our previous
CERENKOV, by both classical global rank-based mea-
sures (AUPVR and AUROC) and by the GWAS-oriented
performance measure (AVGRANK) that we previously
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proposed. In particular, CERENKOV2’s validation-set
AUPVR performance, 0.404, is a significant improvement
over CERENKOV’s AUPVR of 0.359 on the same refer-
ence SNP set (0SU18). The results reported in this work
are based on a significantly expanded reference SNP set
(0su18, which has more than double the number of SNPs
in the OSU17 reference set), which should increase the
generalizability and robustness of the performance results
reported herein.

The source code, feature data files, and instructions for
installing and running CERENKOV?2 are freely available
online (see “Availability of data and materials” section).
By making the software, the data files, and in particular
the 0SU18 SNP set (with benchmark results) available,
we hope to accelerate development of methods for func-
tional analysis of noncoding SNPs and ultimately increase
the yield of molecular insights from GWAS.

Methods

The 0SU18 reference SNP set

We obtained minor allele frequencies (M AFs) for all SNPs
from the dbSNP-based [58] snp146 SQL table hosted at
the UCSC Genome Browser [59] site. For the represen-
tative set of rSNPs for training/evaluation, we obtained
2,529 rSNPs in total from HGMD (Rel. 2017.2), ORe-
gAnno (Rel. 2015.12.22) and ClinVar that satisfied all
of the following criteria: (i) for all SNPs from HGMD,
they were marked as regulatory in HGMD and the
disease field did not contain cancer; the other SNPs
from ORegAnno or ClinVar were of GRCh37 (hgl9)
assembly; (i) MAF > 0.05; (iii) the SNP was not an
indel and not contained within a coding DNA sequence
(CDS; based on the complete set of transcripts from the
Ensembl 75 gene annotation build); and (iv) the SNP was
not exclusively mapped to the Y chromosome (due to the
lack of phased haplotype data available for proxy SNP
searching). For each of these rSNPs, we used the SNP
Annotation and Proxy Search (SNAP) tool [60] to identify
SNPs that are in LD (r> > 0.8 in 1,000 Genomes (1KG)
Phase 1 [61], with data from the International HapMap
Project [62] used instead of 1KG for chromosome X),
and we filtered to include only SNPs within 50 kbp of an
rSNP, that were not contained within a CDS, that have
MAF > 0.05, and that are not themselves on the list of
rSNPs. Overall, this filtering procedure produced a list of
36,554 ¢SNPs. The combined set of 39,083 SNPs (which
we call the OSU18 reference SNP set) was thus designed
as an appropriate reference set for the application of
post-GWAS SNP analysis. Overall, the class imbalance of
0SU18 is ~14.454 (cSNP/rSNP).

Extracting the nongeometric features
The CERENKOV feature extraction software is based on
Python and SQL. We extracted 248 SNP features for each
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of the 0SU18 SNPs, using information and measure-
ments from SNP annotation databases, epigenomic and
chromatin datasets and phylogenetic conservation scores
(Table 1).

Features extracted from UCSC

We used the snpl146 UCSC SQL table as the initial
source for SNP annotations (GRCh37 assembly coor-
dinate system). We extracted additional SNP annota-
tion information by (i) coordinate-based joins to other
genome annotation tracks in the UCSC database; and
(ii) by joining with non-UCSC data sources using the
SNP coordinate. For triallelic and quadrallelic SNPs, we
used the two most frequent alleles, for the purpose
of obtaining features that depend on allele-dependent
scores. We derived DNase I hypersensitive site (DHS)
features from data tracks from published genome-wide
assays with high-throughput sequencing-based detection
(DNase-seq) from the ENCODE project [63] (the master
peaks are summary peaks combining data from DHS
experiments in 125 cell types; the uniform DHS peaks
are from DHS experiments in individual cells, processed
using the ENCODE uniform peaks analysis pipeline [64]).
The ENCODE_TFBS feature is presented in Table 1 as a
single feature for conciseness, but in fact it is 160 sep-
arate binary features, one for each transcription factor
(TF) for which genome-wide TFBS data (from chromatin
immunoprecipitation with high-throughput sequencing
readout, or ChIP-seq) and peak data (from the ENCODE
Uniform Peaks analysis) are available [64]. For replica-
tion timing features, we processed track-specific BigWig
files for Repli-seq [65] and Repli-chip [66] experiments
from UCSC to obtain the timing scores at individual SNP
positions. For ChromHMM [67], Segway [68] and lamina-
associated domains (LAD) [69] annotations, we used the
SQL tables from UCSC. We used BED file downloads to
obtain annotations for DNA repeat elements predicted
by RepeatMasker [70], DNA repeat elements predicted
by Tandem Repeats Finder [71], epigenome-based CpG
island predictions produced by the Bock et al. software
pipeline [72], and VISTA enhancer predictions [73].

Features extracted from Ensembl

We used the BioMart tool to download (i) TFBS motif
occurrences (based on the 2014 release of the Jaspar
database [74]) and ChromHMM chromatin segmentation
labels from Ensembl Regulation 75 and (ii) GENCODE
transcription start sites (TSS; from Ensembl Genes 75)
with which we computed signed TSS distances.

GTEx feature

We obtained SNP-to-gene associations for 13 tissues
(adipose, artery/aorta, artery/tibial, esophagus/mucosa,
esophagus/muscularis, heart left ventricle, lung, skeletal
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Table 1 The 248 SNP features used in CERENKOV

Feature(s) Feature type Raw data src. Feature description

normChromCoord continuous ucsc the SNP coordinate (normalized to chrom. length)

majorAlleleFreq continuous UCSC/TKG the major allele frequency (1KG)

minorAlleleFreq continuous UCSC/TKG the next-to-major allele frequency (1KG)

phastCons continuous ucsc 46-way placental mammal phastCons score [6]

GERP++ continuous ucsc bp-level GERP++- [80] score

avg_GERP continuous ucsc avg. GERP score [81] in £100 bp window

avg_daf continuous 1KG average derived allele frequency in &1 kbp region

avg_het continuous 1KG average heterozygosity rate in £1 kbp region

maflkb continuous UCSC/TKG average of the MAF values for all SNPs in 41 kbp window

egtlPvalue continuous GTEx -log1p min(p) for GTEx eQTL for the SNP, across 13 tissues [75]

GC5Content integer (0-5) ucsc GC contentin a 5 bp window

GC7Content integer (0-7) ucsc GC content in a 7 bp window

GCllContent integer (0-11) ucsc GC contentina 11 bp window

local purine integer (0-11) Ucsc number of purine bases in local 11 bp window

local CpG integer (0-10) Ucsc number of CpG dinucleotides in 11 bp window

ss_dist integer Ucsc signed distance to nearest exon boundary

tssDistance integer Ensembl75 signed distance to nearest Ensembl TSS

gencode_tss integer GENCODE signed distance to nearest GENCODE TSS

tfCount integer ucsc sqgrt(count) of ENCODE ChlIP-seq TFBS overlap. SNP

uniformDhsScore integer ucsc sum scores of ENCODE uniform DHS peaks overlap. SNP

uniformDhsCount integer ucsc count of ENCODE uniform DHS peaks overlap. SNP

masterDhsScore integer Ucsc sum scores of ENCODE master DHS peaks overlap. SNP

masterDhsCount integer Ucsc count of ENCODE master DHS peaks overlap. SNP

chrom categorical (23) ucsc the chromosome to which the SNP maps

nestedrepeat categorical (2) ucsc SNP is in a RepeatMasker [70] DNA repeat

simplerepeat categorical (2) ucsc SNP is in a Tandem Repeats Finder [71] repeat

cpg_island categorical (2) Ucsc SNP is in an epigenome-predicted CpG island [72]

geneannot categorical (4) ucsc classifies SNP location as CDS, intergenic, UTR, or intron

majorAllele categorical (4) UCSC/1KG the major allele for the SNP

minorAllele categorical (4) UCSC/1KG the next-to-major allele for the SNP

pwm categorical (22) Ensembl75 ID of the Jaspar 2014 [74] motif in which SNP is a match

chromhmm 6xcateg. (26) ucsc ChromHMM label in Gm 12878, H1hesc, HelaS3, HepG2,
HUVEC and K562 cells

segway 6xcateg. (26) ucsc Segway label in Gm12878, H1hesc, Hel.aS3, HepG2, HUVEC
and K562 cells

ch comb_ WEAKENH categorical (4) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ch comb_ ENH categorical (6) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ch comb REP categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ch comb TSSFLANK categorical (5) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ch_comb_TRAN categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ch_comb_TSS categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ch comb_ CTCFREG categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build

ENCODE_TFBS 160x categ. (2) ucsc 160 features for SNP being in an ENCODE TFBS [84] peak

FsuRepliSeq 16 x continuous ucsc Replication Timing by Repli-chip [66] from ENCODE/FSU

UwRepliSeq 16xcontinuous ucsc Replication Timing by Repli-seq [65] from ENCODE/UW
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Table 1 The 248 SNP features used in CERENKOV (Continued)

Page 10 0of 13

Feature(s) Feature type Raw data src. Feature description

SangerTfbsSummary50kb continuous Ensembl75 Summary of Ensembl TFBS peaks from 18 human cell
types

NkiLad categorical (2) UCsc SNP is in a Lamina Associated Domain (NKI study [85],
Tig-3 cells)

vistaEnhancerCnt categorical (2) ucsc count of VISTA [73] HMR-Conserved Non-coding
Human Enhancers [86] overlap. SNP

vistaEnhancerTotalScore categorical (2) ucsc sum scores of VISTA [73] HMR-Conserved
Non-coding Human Enhancers [86]

eigen continuous (2) Eigen Eigen & Eigen-PC v1.1 raw scorea [21]

Abbreviations are as follows: UCSC, UC Santa Cruz Genome Browser portal; 1KG, 1,000 Genomes Project; Ensembl75, Ensembl Release 75 [82]; GENCODE, the GENCODE
project release 19 [83]; ENCODE, Encyclopedia of DNA Elements [30]; FSU, Florida State University; UW, University of Washington; NKI, Netherlands Cancer Institute; GTEX, the
genotype tissue-expression project; GERP, the Genomic Evolutionary Rate Profiling score; CDS, coding DNA sequence; UTR, untranslated region; MAF, minor allele frequency;

HMR, human-mouse-rat; TSS, transcription start site

muscle, tibial nerve, sun-exposed skin, stomach, thyroid,
and whole blood) from the Genotype Tissue Expression
(GTEx) Project [75] Analysis Version 4 from the GTEx
project data portal. For each SNP, we selected the mini-
mum association p-value across genes and tissues.

Computing the geometric features

For each distance metric d(-,-), we first computed the
intralocus radius A4 for each SNP s in our OSU18 dataset,
in the data-space of all the 248 features (categorical data
were binary-encoded which expanded the dimension of
the data space to 587); then we separated those intralocus
radii according to SNP classes, making two sets A,; =
{ArjglrisanrSNP} and A;y; = {AgglcisacSNP}. For
empirical estimation of likelihoods, we used the R hist
function with 11 bins on A,; and A4 and then gathered

. (1) (11) (1) (11)
the bin counts, [erd, . ..,erd } and {Ncld""’Ncld }

respectively. The empirical likelihood ratio for bin i can
0)
be computed with formula LR;(i) = N’(‘i‘f. For fitting

cld
parametric density distributions for intralocus radii, we

used the fitdistrplus package (version 1.0.9) [76]
in R and we used the normal distribution for cosine
and Pearson distances and the log-normal distribution
for the other eight combinations of distance function
and data scaling/non-scaling. Akaike information crite-
rion was leveraged (AIC) [77] for distribution selection.
Then for each distance metric d(-,-), 2 probability den-
sity functions, p,j4(-) and p¢4(-), can be estimated from
Ayq and Agg. And for any given SNP s, its likelihood
ratio is defined as the ratio of its probability densities,
i.e. LR;y(s) = %. This likelihood can be interpreted
as the extent to which SNP s inclines to be an rSNP,
observing its intralocus radius.

For loci where only one SNP (rSNP in all cases) was
located, we set its likelihood ratio to 1. For each of
the 0SU18 SNPs, and using the parametric distributions

fitted as described above, we computed log-likelihood-
ratio scores for each of the ten combinations of distance
metric and scaled/unscaled data listed in “Data-space
geometric features for rSNP recognition” section. [The
rationale for using min-max scaling for the data matrix
for Canberra, Euclidean, and Manhattan distances was to
reduce the impact of high-variance continuous features].
The ten columns of log-likelihood-ratio data were then
appended to OSU18 dataset as ten new features during
our machine learning processes.

Machine learning

The feature extraction and distance computation were
done in Python 3 under Ubuntu 16.04 and would take
about two hours with a single core of an Intel Core i7-4790
CPU. Peak RAM usage was approximately 12 GB.

For the machine learning framework, we used the R
statistical computing environment (version 3.4.4) [78],
also under Ubuntu 16.04. The complete machine-learning
process required 25 min in total for the three models
(GWAVA, CERENKOV and CERENKOV?2).

Random forest

In order to compare CERENKOV2 with GWAVA [24],
we annotated OSU18 dataset with the GWAVA program
and then applied Random Forest algorithm to the gained
GWAVA feature matrix. Specifically, we used the R pack-
age ranger [79] version 0.6.0 with the published hyper-
parameters. To make a fair comparison, we adapted the
same cross-valiation settings and performance measure-
ments to CERENKOV2’s (see “Gradient boosted decision
trees” section below). In addition, Random Forest is also
applied to illustrate CERENKOV2 feature importances
(see “CERENKOV?2 feature importance” section).

Gradient boosted decision trees
For the gradient boosted decision trees
classifier, we used the R API for xgboost

(GBDT)
(38]
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version 0.6.4.1. We wused gradient boosted trees
(booster=gbtree) and binary logistic classifica-
tion as the objective, with the default loss function
(objective=binary:logistic). We used ten-fold
cross-validation [52] with locus-based sampling, in which
we assigned rSNPs to folds (stratifying on the number of
cSNPs per rSNP), and then assigned cSNPs to the same
fold to which it's LD-linked rSNP was assigned. Thus, in
the case of locus-based sampling, an rSNP and its linked
c¢SNPs are always assigned to the same cross-validation
fold. Especially for those 10 geometric features, distribu-
tion parameters were estimated only on training data to
prevent data leakage. For every prediction performance
metric we report, the fold composition was exactly the
same across all of the rSNP recognition models studied.
We set base score = 0.06918531 (the rSNP/cSNP
class imbalance). We estimated 95% confidence intervals
on the sample mean using 1,000 iterations of bootstrap
resampling [52].

Hyperparameter tuning

We tuned the xgboost-GBDT classifier with a hyper-
parameter septuple grid size of 3,888, with locus-based
sampling. The tuning hyperparameter tuple that maxi-
mized the validation AUPVR was: n = 0.1, y = 10,
nrounds = 30, max_depth = 7, subsample = 1.0
and scale pos weight = 1; we used these hyper-
parameter values for all subsequent analyses using
xgboost-GBDT. (In contrast, the hyperparameter tuple
that minimized the validation AVGRANK was: n =
0.1, y = 100, nrounds = 30, max_depth = 6,
subsample = 0.85, colsample bytree = 0.85, and
scale pos weight =8).

GRASP database

We downloaded the full GRASP 2.0.0.0 catalog in tab-
delimited value (TSV) format and joined the GRASP data
with the CERENKOV?2 prediction matrix using the dbSNP
refSNP ID as the join key. We then filtered the resulting
data matrix to include only SNPs whose GRASP trait-
association P-values were less than the accepted human
genome-wide significance level (5 x107%) and whose
CERENKOV rSNP prediction score was at least 0.7.

Additional file

Additional file 1: Supplementary Tables. This PDF file contains 2
supplementary tables. The first one provides a view of comparison of
validation-set performance measures between GWAVA, CERENKOV and
CERENKOV2 on the 0sU18 reference SNP set. The second one lists the
skewnesses and kurtoses of intralocus radii computed using Canberra,
Euclidean, Manhattan, cosine, and Pearson distances, applied to scaled and
unscaled feature data, and conditioned on the type of reference SNP (rSNP
or cSNP). (PDF 90 kb)
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