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Abstract

Background: It is possible to predict whether a tuberculosis (TB) patient will fail to respond to specific antibiotics by
sequencing the genome of the infecting Mycobacterium tuberculosis (Mtb) and observing whether the pathogen carries
specific mutations at drug-resistance sites. This advancement has led to the collation of TB databases such as PATRIC
and ReSeqTB that possess both whole genome sequences and drug resistance phenotypes of infecting Mtb isolates.
Bioinformatics tools have also been developed to predict drug resistance from whole genome sequencing (WGS) data.
Here, we evaluate the performance of four popular tools (TBProfiler, MyKrobe, KvarQ, PhyResSE) with 6746 isolates
compiled from publicly available databases, and subsequently identify highly probable phenotyping errors in the
databases by genetically predicting the drug phenotypes using all four software.

Results: Our results show that these bioinformatics tools generally perform well in predicting the resistance status for
two key first-line agents (isoniazid, rifampicin), but the accuracy is lower for second-line injectables and
fluoroquinolones. The error rates in the databases are also non-trivial, reaching as high as 31.1% for prothionamide, and
that phenotypes from ReSeqTB are more susceptible to errors.

Conclusions: The good performance of the automated software for drug resistance prediction from TB WGS data
shown in this study further substantiates the usefulness and promise of utilising genetic data to accurately profile TB
drug resistance, thereby reducing misdiagnoses arising from error-prone culture-based drug susceptibility testing.
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Background
While the prevalence of tuberculosis (TB) worldwide has
been decreasing, the emergence of drug-resistance forms
of TB (DR-TB) poses a new public health crisis in nu-
merous parts of the world, with multidrug-resistant TB
(MDR-TB) alone being responsible for 480,000 deaths
annually [1]. The World Health Organisation (WHO)
has recommended that all TB patients should be tested
for drug resistance [2], although conventional drug sus-
ceptibility testing (DST) can take more than 6 weeks and
requires a laboratory equipped for strict biosafety [3].
These infrastructural and time requirements mean the

majority of treatment-seeking TB patients in lower- and
middle-income countries are started on first-line TB
drugs regardless of their drug-resistance status, as there
are inadequate resources and capacity to screen every
TB patient [1].
Drug resistance fundamentally develops through the ac-

crual of specific mutations in the genome of the infecting
pathogen Mycobacterium tuberculosis (Mtb) [4]. By per-
forming whole genome sequencing (WGS) of infecting
Mtb isolates which have undergone conventional DST, the
mutations that confer drug resistance to specific antibi-
otics can be identified [5]. Sufficiently large databases pos-
sessing both WGS and DST information have allowed the
drug resistance to several antibiotics to be accurately pre-
dicted, to the extent that rapid diagnostics that target
these mutations have been developed [6–8]. GeneXpert
MTB/RIF is one of these rapid diagnostic tests that
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predicts rifampicin resistance by querying specific posi-
tions in the Mtb genome [9].
One of the key advantages these diagnostics possess

over conventional DST is the speed at which the drug re-
sistance profile can be obtained. For example, GeneXpert
MTB/RIF can detect MTB and the genetic determinants
of RR-TB in 2 h [10], and this allows the timely identifica-
tion of optimal treatment regimens. The premise is sim-
ple: if a patient is diagnosed early to suffer from a form of
TB that is resistant to rifampicin, the physician will pre-
scribe an alternate rifampicin-free regimen in order to en-
sure efficacious treatment, instead of maintaining a
standard but ineffective first-line regimen for 6months.
While the premise is straightforward, the majority of

present diagnostics are however confined to screening
for resistance to a limited range of antibiotics. What this
means is that a positive result from GeneXpert may indi-
cate rifampicin resistance, but does not provide any in-
sights towards the resistance profiles to other anti-TB
agents. Physicians escalate to second-line agents except
this is again unsupported by whether the patient is re-
sistant to any of the second-line agents.
The ability for WGS to simultaneously infer the

resistance profiles to numerous anti-TB agents is thus
attractive, since the physician can be guided to prescribe
a combination of antibiotics that is more likely to be
effective. Operationally, this relies on having a
well-curated knowledge of the range of genetic muta-
tions that confer resistance to the different anti-TB
agents, as well as bioinformatic tools that translate the
genomic sequence to drug resistance information that
can be understood by physicians.
Several databases such as PATRIC [11–13] and

ReSeqTB [14, 15] possessed both the genomic sequences
and DST phenotypes of thousands of infecting Mtb iso-
lates from different parts of the world, and these have fa-
cilitated the identification of genomic sites associated
with drug-resistance. Drug-resistance prediction soft-
ware such as TBProfiler [16], MyKrobe [17]. KvarQ [18],
and PhyResSE [19], rely on these genomic sites to pre-
dict the drug resistance profile of a Mtb genome to the
range of anti-TB agents. Oftentimes, the phenotypes
from conventional DST are assumed to be free from er-
rors, and this can invariably confound the identification
of resistance-conferring genomic sites especially for
anti-TB drugs such as streptomycin, ethambutol and
pyrazinamide where the DST error rates have been re-
ported to be higher [3].
Here, we aim to benchmark the sensitivity and specifi-

city of the four prediction software, and to evaluate the
fidelity of the reported DST phenotypes in 6746 Mtb
isolates compiled from the PATRIC [11–13] and
ReSeqTB [14, 15] databases, and 10 other studies. The
evaluation is achieved by comparing the reported

phenotypes against the genetically inferred phenotypes,
and this consequently allowed the identification of the
anti-TB drugs where laboratory-determined DST results
are more likely to be erroneous.

Materials and methods
Genome sequences and drug-susceptibility phenotypes
for Mtb isolates
We focused on two databases hosting Mycobacterium
tuberculosis (Mtb) isolates with complete genomic se-
quences and drug-susceptibility phenotypes: (1) PATRIC
– which hosts nearly 150,000 genomes belonging to
more than 20 bacterial genera with drug resistance sta-
tus for nearly 100 antibiotics [12, 13]; and (2) ReSeqTB
– which is a specific database for driving the develop-
ment of novel rapid diagnostic tests and personalised
treatment of TB [14, 15]. The drugs that our study con-
sidered include five first-line agents: rifampicin (RIF),
isoniazid (INH), pyrazinamide (PZA), ethambutol
(EMB), streptomycin (STM); 3 second-line injectables:
amikacin (AMK), capreomycin (CAP), kanamycin
(KAN); three oral second-line drugs: ethionamide
(ETO), prothionamide (PTO), p-aminosalicyclic acid
(PAS); and three fluoroquinolones: ciprofloxacin (CIP),
moxifloxacin (MFX), ofloxacin (OFX).
Data from PATRIC was obtained by querying all Mtb

contributions with resistance profiles for anti-TB drugs,
and whose genome sequences were also contributed to
the Sequencing Reads Archive (SRA) and BioProject ac-
cessions (accessed Jan 5, 2018). This yielded a set of
5035 isolates. For ReSeqTB, we considered the samples
available from the repository in the folder Databases/
ReSeqTB/fullExportDb-1254-External-CSV/msf.xls
(accessed Jan 18, 2018) with available SRA accessions,
which yielded a set of 3568 isolates.
In addition, we included another set of 5471 isolates

identified from a literature review by querying PUBMED
for “whole genome sequencing drug resistant tubercu-
losis”, retaining only samples with both whole genome se-
quences and conventional DST phenotypes that are
available online publicly and conforming to the following
inclusion criteria: (1) isolates should be from clinical sam-
ples; (2) there should be at least 10 samples from each
study; (3) DST must be performed on at least four of the
five first-line drugs; and (4) the study must possess at least
one drug-resistant TB isolate (see Additional file 1). This
set is subsequently referred to as the “LitRev” set.
For the three datasets that we considered, comprising

of PATRIC, ReSeqTB, and LitRev, we highlight there are
samples that are found in more than one dataset, includ-
ing with conflicting DST results for specific drugs. Fur-
ther details on harmonising the datasets for our analyses
can be found in the next section.

Ngo and Teo BMC Bioinformatics           (2019) 20:68 Page 2 of 9



Data quality control
The mapping quality of the genome sequences for all
samples were assessed to identify samples with poor
quality sequencing, as well as samples that were incor-
rectly classified as Mtb (see Additional file 2). There are
samples with multiple DST outcomes for a specific drug,
either due to the sample being located in more than one
dataset, or because there are multiple DST results from
within one dataset. For these samples, we retained only
one final DST outcome according to the following cri-
teria: (i) if the multiple DST outcomes are consistent,
then assigning the final outcome is trivial; (ii) if the sam-
ple is located in more than one dataset and there is a
discordance in the multiple DST outcomes, we discard
the outcomes from ReSeqTB and/or PATRIC, and either
assign the outcome from LitRev or discard the sample
entirely; (iii) if the sample belongs uniquely to PATRIC
and contains multiple outcomes, the results obtained
from an WHO-endorsed protocol were retained.

Bioinformatics tools for inferring drug-resistance
We considered four bioinformatics software that are de-
signed to infer the resistance profiles of anti-TB drugs
using the Mtb genome sequence: TBProfiler [16], MyK-
robe [17], KVarQ [18], and PhyResSE [19]. All four soft-
ware take in raw WGS data such as fastq or bam files,
and produce results in varying interfaces that are specif-
ically designed to aid interpretation by clinical microbi-
ologists. These four software predict resistance to all five
first-line drugs and most of the key second-line agents,
by considering the genetic alleles on different panels of
curated mutations that are associated with drug resist-
ance (see Additional file 3). The different software utilise
different bioinformatics algorithms and may refer to a
dissimilar panel of mutations to predict resistance,
thereby producing outcomes that may differ between the
four tools. Specifically, TBProfiler maps input sequence
to a truncated version of the H37Rv reference genome
(GenBank accession number: NC_000962.3), which con-
tains only the regions of interest to drug resistance pre-
diction, before identifying the presence of genetic
markers of resistance. On the other hand, MyKrobe
compares the de Bruijn graph of the input sequence with
the graph built from a collection of resistant and suscep-
tible alleles on diverse genetic backgrounds to determine
resistance profile. In KVarQ, each read from the input is
queried against a series of target sequences constructed
from known mutations or regions associated with drug
resistance, with each match increasing the confidence of
the presence of the genetic markers in the sample. In
contrast, PhyResSE follows a more traditional route of
mapping the fastq input to the complete reference gen-
ome and then calling all single nucleotide polymor-
phisms (SNPs) and small indels before comparing them

to its mutations panel. All four tools however allow the
panel of mutations to be updated whenever new markers
of drug resistance are discovered, and allow the infer-
ence of the lineage of the Mtb samples. Among the four
tools, MyKrobe possesses the additional capability to
identify species in situations of mixed infections, while
PhyResSE additionally allows stringent pre-processing
and quality control of sequencing data. In our evalu-
ation, we used TBProfiler version 0.3.2, MyKrobe
v0.5.6–0-gbd7923a-dirty, KvarQ version 0.12.3a1, and
PhyResSE pipeline version metaphyresse.v7 implemented
locally with SNP catalogue version 29.

Calculating sensitivity and specificity of bioinformatics
tools and DST credibility of the samples
All sequencing reads sets were used as inputs to each of
the TB resistance prediction algorithms. In case of no
calls or if there were discordant results among the reads
sets of a sample for a drug, the prediction for the sample
for that particular drug was treated as missing. In our
sensitivity and specificity calculation and parameter esti-
mation for DST credibility computation, which are sub-
sequently described in detail, we omitted those samples
clearly indicated to have been used to train the tools.
The sensitivities and specificities of the four algorithms
for each drug were first calculated together with their
95% confidence interval, with the corresponding pheno-
types in the data collection as the gold standard, except
for the case of fluoroquinolones, where the performance
was benchmarked to CIP, MFX, and OFX individually;
the case of PTO, where the performance was bench-
marked against ETO; and the case of KVarQ’s Kanamy-
cin/Amikacin prediction, which was benchmarked
against KAN and AMK individually. The DST credibility
score for each sample was calculated as the probability
that the phenotype of the sample is correctly specified
given the prediction results from the four programs.
Specifically, for a drug i, let the prevalence of drug re-
sistance be Pi, and the true sensitivity, the true specifi-
city, the proportion of no-call predictions among truly
resistant samples and the proportion of no-call predic-
tions among truly susceptible samples of each program
be Sensij, Specij, NoRij, and NoSij, for j in {TBProfiler,
KVarQ,MyKrobe, PhyResSE}. We denote the predictions
of the four algorithms as

predictions ¼ Y j
� �� j∈ TBProfiler;KVarQ;MyKrobe; PhyResSEf g;

where Yj = 1 if the sample is predicted resistant, 0 if sus-
ceptible, and NA otherwise. The probability of the sam-
ple being resistant given the predictions of the four tools
is as follows:
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P sample is resistantð j predictionsÞ
¼ P predictionsð jsample is resistantÞ:Pi

Likelihood predictionsð Þ ;

with Likelihood(predictions) calculated as

P predictionsð jsample is resistantÞ:
Pi þ P predictionsð jsample is susceptibleÞ:
1−Pið Þ ¼

Y
j
P Y j
� ��sample is resistantÞ

h i
:

Pi þ
Y

j
P Y j
� ��sample is susceptibleÞ

h i
: 1−Pið Þ;

where

P Y j
� ��sample is resistantÞ ¼

Sensij if Y j ¼ 1
1−Sensij−NoRij if Y j ¼ 0

NoRij if Y j is NA

8<
: ;

and

P Y j
� ��sample is susceptibleÞ ¼

1−Specij−NoSij if Y j ¼ 1
Specij if Y j ¼ 0
NoSij if Y j is NA

8<
:

The DST credibility score of a sample thus equals
P(sample is resistant | predictions) if its reported pheno-
type is resistant, or 1 – P(sample is resistant | predictions)
if the reported phenotype is susceptible. The quantities
Pi, Sensij, Specij, NoRij, and NoSij were maximum likeli-
hood estimates (MLE) obtained from an EM algorithm.
We chose to use the MLE estimates, as opposed to in-
corporate informative prior distributions and obtain
maximum a posteriori (MAP) estimates, due to the lack
of prior knowledge to select meaningful prior distribu-
tion for these parameters. The EM algorithm was initial-
ized with the set of parameters derived by assuming the
conventional DST results for the samples were impec-
cable. The sensitivity and specificity estimates obtained
from this model are subsequently called the adjusted sen-
sitivity and specificity. Proxy for the rate of misclassifica-
tion of phenotypic DST results for each drug in a
database, either individual or merged database, is calcu-
lated as the proportion of samples with DST credibility
score smaller than 0.5 to the total number of valid sam-
ples. Proxy for the rate of non-utilizable data for a drug is
calculated as the proportion of samples removed from the
database due to discordant phenotypic results to the total
number of samples with good mapping quality WGS data
and drug resistance results for that drug in the database.

Results
The total number of samples across the three databases
with both WGS and drug resistance phenotypes for at
least one drug is 6756, of which 2302 samples are

present in all three databases (see Additional file 4:
Figure S1, Additional file 5). After excluding samples
with poor sequencing quality (10 samples, see
Additional file 2) and discordant DST phenotypes, the
number of unique isolates ranges from 4831 to 6694 for
first-line agents (STM, RIF respectively), and from 457
to 2424 for second-line and third-line agents (CIP, OFX
respectively, see Additional file 6). After excluding sam-
ples used in the training of the software, the figure ranges
from 4357 to 5026 for first-line agents (STM, PZA re-
spectively) and from 191 to 2424 for second- and
third-line agents (CIP and OFX respectively, see Table 1).

Benchmarking performance of drug-resistance inference
software
We considered four bioinformatics software (TBProfiler,
KVarQ, MyKrobe, PhyResSE) capable of inferring resist-
ance to a spectrum of antibiotics based on the genomic
sequence of the infecting Mtb agent. For each software,
we calculated the empirical sensitivity and specificity
using the isolates from the databases by comparing the
genetically-inferred phenotypes for each drug against the
reported DST phenotypes, under the assumption that
the latter are accurate.
We observed that the sensitivity of TBProfiler was

consistently higher than those of the other three predict-
ing software for the majority of the 14 drugs considered
(see Table 1). However this came at a marginal com-
promise on the specificity, which was lower for TBProfi-
ler across most of the drugs when compared to the
other three software. For example, in the case of amika-
cin (AMK) with data from 1649 isolates, the sensitivity
from TBProfiler was the highest at 90% whereas those
from MyKrobe, KVarQ and PhyResSE were at 75, 75
and 79% respectively; conversely, the specificity of
TBProfiler was the lowest at 75% whereas those from
the other three software were at 99%. Overall, there were
specific drugs whose resistance profiles (whether suscep-
tible or resistant) were better predicted by each software.
At the drug-level, the common first-line agents such

as isoniazid (INH) and RIF can be predicted with sensi-
tivities and specificities in excess of 90% by all four soft-
ware; whereas the resistance status for antibiotics such
as pyrazinamide (PZA), ethionamide (ETO), prothiona-
mide (PTO), and para-aminosalicylic acid (PAS) re-
ported sensitivities lower than 60%.

Identifying misspecified DST results and re-evaluating
software performance
We have assumed the reported DST phenotypes in the
public databases are accurate in assessing the perform-
ance of the predicting software. However, laboratory-
ascertained DST results can contain errors due to the
semi-qualitative nature of the assessment. As such, we
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used a combination of all four predictors to probabil-
istically assess the likelihood that each reported
phenotype is an error, after accounting for the degree
of confidence in ascertaining the accuracy of the gen-
etically inferred phenotype.
We observed the error rates were less than 5% for CIP,

RIF, INH and AMK, although two of the remaining
three first-line agents (EMB, STM) yielded error rates in
excess of 10% (see Fig. 1, Additional file 6). The rates of
misclassification were considerably higher for the
second-line agents such as ETO, PTO and PAS, al-
though the uncertainty of these estimates were consider-
ably larger given the smaller sample sizes and poorer
sensitivities of the software in inferring isolates with
genuine resistance to these drugs.
In assessing the errors, we also evaluated which

database was more prone to erroneous phenotypes.
We observed similar trends across the three databases
(PATRIC, ReSeqTB, LitRev) for most of the drugs ex-
cept for PAS, where the misclassification rate was
considerably lower at 2.6% in ReSeqTB compared to
20.8% in PATRIC and 10.8% in LitRev (see Table 2).
However, we observed that the rate of non-utilizable
data was generally highest in ReSeqTB (except for
KAN, CIP, ETO and PAS).
While inferring the likely erroneous laboratory-based

DST phenotypes by their genetically-inferred pheno-
types, we also obtained a calibrated performance of the
four software as part of the model output. In theory this
provides a better indication of the performance of these
software, except there is the possibility of overfitting (see
Discussion later). In general, the estimated sensitivity

and specificity figures were higher after adjusting the
phenotypes (see Table 3), although surprisingly there
were some decreases in sensitivity (PAS) and specificity
(AMK, INH) for TBProfiler.
Despite the adjustment, the ability to predict the pres-

ence of drug-resistance remains poor for ETO, PAS, PTO
and PZA. However, the recalibration indicated that the
majority of the software were able to deliver sensitivity in
excess of 90% for INH, RIF, EMB, STM, AMK, CAP,
KAN, CIP, MFX, and OFX. The trends in the relative per-
formance between the four software remained unchanged
after the recalibration, with TBProfiler being the most sen-
sitive software in the detection of resistance in most of the
14 drugs at the expense of marginally lower specificities
compared to MyKrobe, KVarQ and PhyResSE.

Discussion
The ability to rapidly identify which are the viable drugs
for treating a TB infection is likely to be increasingly ur-
gent, given the proliferation of drug-resistant strains of the
Mtb pathogen. The use of whole-genome sequencing to
replace conventional laboratory-based drug-susceptibility
testing reduces the time taken to culture and test against
individual drugs, but requires sophisticated bioinformatics
algorithms to be designed and validated to translate the
genetic information into drug susceptibility phenotypes. In
this paper, we have evaluated four bioinformatic software
for predicting TB drug resistance from Mtb genome se-
quences, using the largest set of isolates available and for
14 antibiotics. Using latent class modeling, we have identi-
fied which isolates in the existing databases are likely to
present erroneous DST phenotypes and recalibrated the

Table 1 Empirical sensitivities and specificities of four software for predicting anti-TB drug resistance

Drug Number
of samples

Sensitivity Specificity

TBProfiler MyKrobe KVarQ PhyResSE TBProfiler MyKrobe KVarQ PhyResSE

INH 4840 0.92 (0.91, 0.93) 0.91 (0.89, 0.92) 0.89 (0.88, 0.90) 0.91 (0.89, 0.92) 0.94 (0.93, 0.95) 0.98 (0.97, 0.98) 0.98 (0.98, 0.99) 0.97 (0.96, 0.98)

RIF 4843 0.91 (0.89, 0.92) 0.92 (0.91, 0.94) 0.92 (0.90, 0.93) 0.94 (0.93, 0.95) 0.95 (0.94, 0.96) 0.97 (0.96, 0.97) 0.97 (0.96, 0.97) 0.96 (0.95, 0.97)

EMB 4585 0.91 (0.89, 0.92) 0.83 (0.81, 0.86) 0.65 (0.62, 0.67) 0.76 (0.73, 0.78) 0.83 (0.81, 0.84) 0.86 (0.85, 0.87) 0.91 (0.90, 0.92) 0.88 (0.87, 0.89)

PZA 5026 0.59 (0.55, 0.63) 0.38 (0.34, 0.42) 0.54 (0.50, 0.58) 0.58 (0.54, 0.61) 0.92 (0.91, 0.93) 0.98 (0.98, 0.99) 0.94 (0.93, 0.94) 0.97 (0.97, 0.98)

STM 4357 0.82 (0.80, 0.84) 0.79 (0.77, 0.81) 0.75 (0.73, 0.77) 0.76 (0.74, 0.78) 0.86 (0.85, 0.87) 0.93 (0.92, 0.94) 0.92 (0.91, 0.93) 0.92 (0.91, 0.93)

AMK 1649 0.90 (0.86, 0.93) 0.75 (0.70, 0.80) 0.75 (0.69, 0.79) 0.79 (0.74, 0.83) 0.75 (0.73, 0.78) 0.99 (0.98, 1.00) 0.99 (0.98, 0.99) 0.99 (0.98, 0.99)

CAP 1830 0.71 (0.66, 0.76) 0.67 (0.62, 0.73) NA 0.71 (0.65, 0.75) 0.95 (0.93, 0.96) 0.93 (0.92, 0.95) NA 0.96 (0.94, 0.97)

KAN 1578 0.87 (0.83, 0.90) 0.75 (0.71, 0.80) 0.72 (0.67, 0.76) 0.82 (0.77, 0.86) 0.96 (0.94, 0.97) 0.98 (0.97, 0.99) 0.99 (0.98, 0.99) 0.97 (0.96, 0.98)

CIP 191 0.87 (0.75, 0.94) 0.83 (0.71, 0.92) 0.82 (0.70, 0.90) 0.88 (0.77, 0.95) 0.97 (0.92, 0.99) 0.98 (0.93, 1.00) 0.97 (0.92, 0.99) 0.98 (0.93, 1.00)

MFX 1086 0.68 (0.61, 0.75) 0.61 (0.53, 0.68) 0.58 (0.50, 0.65) 0.67 (0.60, 0.74) 0.93 (0.91, 0.94) 0.95 (0.94, 0.97) 0.93 (0.91, 0.94) 0.95 (0.93, 0.96)

OFX 2424 0.81 (0.78, 0.84) 0.74 (0.71, 0.78) 0.72 (0.68, 0.75) 0.81 (0.77, 0.84) 0.96 (0.95, 0.97) 0.98 (0.97, 0.98) 0.96 (0.95, 0.97) 0.97 (0.97, 0.98)

ETO 835 0.41 (0.35, 0.48) NA NA 0.07 (0.04, 0.11) 0.82 (0.79, 0.85) NA NA 0.97 (0.95, 0.98)

PTO 540 0.30 (0.24, 0.37) NA NA 0.02 (0.01, 0.05) 0.92 (0.89, 0.95) NA NA 1.00 (0.98, 1.00)

PAS 469 0.14 (0.08, 0.24) NA NA 0.00 (0.00, 0.04) 0.97 (0.95, 0.98) NA NA 1.00 (0.99, 1.00)

Numbers in brackets represent the corresponding 95% confidence intervals. An NA is assigned when the software does not predict the resistance
profile for the specific drug
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Fig. 1 Misclassification rates of laboratory-based DST results by drugs. The solid circles represent the point estimates of the misclassification rates
upon comparing the laboratory-based DST phenotypes with genetically-inferred drug-resistant phenotypes. The genetically-inferred phenotypes
were probabilistically ascertained using all four software. The vertical lines represent the corresponding 95% confidence intervals

Table 2 Summary of isolates in the three TB databases according to the 14 anti-TB drugs

Drug PATRIC ReSeqTB LitRev

Nclean Rerror Nfull Rmissing Nclean Rerror Nfull Rmissing Nclean Rerror Nfull Rmissing

INH 5018 0.043 5018 0.000 3503 0.045 3555 0.015 5451 0.043 5451 0.000

RIF 4979 0.028 4981 0.000 3459 0.038 3521 0.018 5416 0.034 5416 0.000

EMB 4739 0.075 4787 0.010 3497 0.098 3546 0.014 5335 0.092 5335 0.000

PZA 3633 0.054 3633 0.000 3298 0.095 3346 0.014 4752 0.082 4752 0.000

STM 3367 0.141 3380 0.004 1951 0.129 2008 0.028 3716 0.129 3716 0.000

AMK 1131 0.034 1131 0.000 983 0.040 993 0.010 1256 0.037 1256 0.000

CAP 1100 0.055 1101 0.001 1158 0.076 1167 0.008 1587 0.059 1588 0.001

KAN 1348 0.056 1350 0.001 716 0.031 716 0.000 1095 0.031 1095 0.000

CIP 340 0.018 340 0.000 358 0.031 358 0.000 313 0.016 313 0.000

MFX 726 0.059 726 0.000 874 0.071 885 0.012 993 0.057 993 0.000

OFX 836 0.065 851 0.018 1163 0.070 1188 0.021 1818 0.052 1818 0.000

ETO 559 0.370 562 0.005 252 0.159 252 0.000 321 0.265 321 0.000

PTO 52 0.115 52 0.000 410 0.337 431 0.049 498 0.301 498 0.000

PAS 375 0.208 375 0.000 78 0.026 78 0.000 74 0.108 74 0.000

Nclean refers to the number of isolates with valid DST results and genetically-inferred credibility scoring; Rerror refers to the misclassification rate in each database,
defined as the proportion of the Nclean isolates with DST credibility scores < 0.5; Nfull is defined as the summation of Nclean and the number of good mapping
quality isolates with no genetically-inferred credibility scoring; and Rmissing refers to the proportion of Nfull isolates that presented unusable laboratory-based DST
phenotypes due to either inconsistent results (across multiple DST phenotype entries for the same isolate) or documentation errors across the databases
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performance of these bioinformatics software adjusting for
errors in the existing databases.
All four software present considerably accurate predic-

tions for the majority of the 14 antibiotics, although the
ability to correctly detect resistance tends to be lower
than the ability to correctly detect the absence of resist-
ance. These results concur with the findings of a previ-
ous comparison study [20], as well as that of a recent
study where genetic sequencing was established to be
sufficiently accurate for drug resistance surveillance in
place of laboratory-based DST phenotyping [21]. How-
ever, we still observe low sensitivity in detecting resist-
ance to ETO, PAS, PTO, and PZA. This could be
attributed to the lack of information around which genetic
polymorphisms are responsible in resisting the drugs,
especially since the sample sizes for isolates with DST
phenotypes at these drugs (except for PZA) are corres-
pondingly lowest. Without a clear understanding to the
genetic biomarkers of drug resistance or to their pene-
trance, or at least more powerful algorithms that can pick
up additional intricacies of resistance across multiple
drugs, such as what have been done for HIV and cancer
[22–24], the ability to successfully predict the presence of
drug-resistance is reduced. Thus, even though our infer-
ence on the accuracy of laboratory-based DST indicated
there were higher rates of misclassification at these drugs,
it should be highlighted that the estimation of the mis-
classification rates is itself subject to considerable errors.
Our evaluation of the performance of the bioinformat-

ics predictors differed from previous reports, since we
also calibrated the performance as we probabilistically

determined the likely erroneous phenotype entries in the
Mtb databases. These errors are adjusted to the (highly)
probable correct phenotypes, inferred using the com-
bined power of the four software with the assumption
that the outputs of all four software are independent
conditional on the genome sequence. This can, however,
lead to the problem of over-fitting the recalibrated per-
formance of the four software, as each software contrib-
utes partly to adjust the phenotypes with overlapping
sets of genetic markers. For drugs that can be predicted
with high levels of sensitivity and specificity, the likeli-
hood of over-fitting is expected to be negligible. For
drugs where either the sensitivity or specificity are com-
paratively lower, the recalibrated accuracy still serves as
an upper bound to the performance of these software,
while the unadjusted accuracy serves as the lower bound
by calibrating the performance against a database with
erroneous entries.
Our study has quantified the credibility of laboratory-

based DST phenotypes for a large number of isolates
with publicly available WGS data. The ability to perform
in silico TB drug-resistance profiling provides the oppor-
tunity for a consistent, standardised, and accredited
model to obtain DST phenotypes, one that is independ-
ent of variations in laboratory quality control. While
there are still infrastructural limitations to the wide-
spread adoption of WGS for identifying DR-TB in
resource-poor settings, the availability of accurate bio-
informatics predictors will undoubtedly be valuable for
translating genetic sequences into clinically actionable
information to guide efficacious drug prescription.

Table 3 Calibrated sensitivities and specificities of four software for predicting anti-TB drug resistance

Drug Number
of samples

Sensitivity Specificity

TBProfiler MyKrobe KVarQ PhyResSE TBProfiler MyKrobe KVarQ PhyResSE

INH 4840 0.99 0.99 0.99 1.00 0.94 0.99 1.00 0.99

RIF 4843 0.96 0.97 0.96 0.99 0.98 1.00 1.00 1.00

EMB 4585 0.99 0.93 0.69 0.84 0.96 1.00 1.00 0.99

PZA 5026 0.83 0.40 0.79 0.66 0.97 1.00 0.99 1.00

STM 4357 1.00 0.91 0.99 0.99 0.90 0.94 1.00 0.99

AMK 1649 1.00 0.96 0.97 1.00 0.75 1.00 1.00 0.99

CAP 1830 0.99 0.95 NA 0.99 0.99 0.98 NA 1.00

KAN 1578 1.00 0.89 0.84 1.00 0.96 1.00 1.00 1.00

CIP 191 0.95 0.95 0.93 1.00 0.98 1.00 0.99 1.00

MFX 1086 0.97 0.87 0.85 0.99 0.98 1.00 0.97 1.00

OFX 2424 0.97 0.89 0.87 0.99 0.98 1.00 0.98 1.00

ETO 835 0.95 NA NA 0.21 0.94 NA NA 1.00

PTO 540 0.80 NA NA 0.05 0.99 NA NA 1.00

PAS 469 0.14 NA NA 0.00 0.97 NA NA 1.00

An NA is assigned when the software does not predict the resistance profile for the specific drug
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