Xiao et al. BMC Bioinformatics (2019) 20:76

https://doi.org/10.1186/512859-019-2665-0 B M C Bl o) | nfo rm atl cS

SOFTWARE Open Access

ADS-HCSpark: A scalable HaplotypeCaller ® e
leveraging adaptive data segmentation to
accelerate variant calling on Spark

Anghong Xiao, Zongze Wu and Shoubin Dong”

Abstract

Background: The advance of next generation sequencing enables higher throughput with lower price, and as the
basic of high-throughput sequencing data analysis, variant calling is widely used in disease research, clinical
treatment and medicine research. However, current mainstream variant caller tools have a serious problem of
computation bottlenecks, resulting in some long tail tasks when performing on large datasets. This prevents high
scalability on clusters of multi-node and multi-core, and leads to long runtime and inefficient usage of computing
resources. Thus, a high scalable tool which could run in distributed environment will be highly useful to accelerate
variant calling on large scale genome data.

Results: In this paper, we present ADS-HCSpark, a scalable tool for variant calling based on Apache Spark
framework. ADS-HCSpark accelerates the process of variant calling by implementing the parallelization of
mainstream GATK HaplotypeCaller algorithm on multi-core and multi-node. Aiming at solving the problem of
computation skew in HaplotypeCaller, a parallel strategy of adaptive data segmentation is proposed and a variant
calling algorithm based on adaptive data segmentation is implemented, which achieves good scalability on both
single-node and multi-node. For the requirement that adjacent data blocks should have overlapped boundaries,
Hadoop-BAM library is customized to implement partitioning BAM file into overlapped blocks, further improving
the accuracy of variant calling.

Conclusions: ADS-HCSpark is a scalable tool to achieve variant calling based on Apache Spark framework,
implementing the parallelization of GATK HaplotypeCaller algorithm. ADS-HCSpark is evaluated on our cluster and
in the case of best performance that could be achieved in this experimental platform, ADS-HCSpark is 74% faster
than GATK3.8 HaplotypeCaller on single-node experiments, 57% faster than GATK4.0 HaplotypeCallerSpark and 27%
faster than SparkGA on multi-node experiments, with better scalability and the accuracy of over 99%. The source
code of ADS-HCSpark is publicly available at https://github.com/SCUT-CCNL/ADS-HCSpark.git.

Keywords: Variant calling, Spark, Adaptive data segmentation, Hadoop-BAM

* Correspondence: sbdong@scut.edu.cn

Communication & Computer Network Lab of Guangdong, School of
Computer Science & Engineering, South China University of Technology,
Wushan Road, Guangzhou 510641, China

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2665-0&domain=pdf
https://github.com/SCUT-CCNL/ADS-HCSpark.git
mailto:sbdong@scut.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Xiao et al. BMC Bioinformatics (2019) 20:76

Background

In the past decade, next generation sequencing (NGS)
technology has made great progress and personal gen-
ome sequencing has also been widely used in human
disease research, clinical treatment and new drug re-
search [1]. In the genome analysis process, variant
calling is significant step to discover and obtain vari-
ants relative to reference genome, which is also the
basis for subsequent analysis. GATK [2, 3] from the
Broad Institute is one of the mainstream NGS gen-
ome data analysis toolkits, which focuses on process-
ing variant discovery and genotyping of both exomes
and whole genomes generated by Illumina sequencing
machines. In GATK, HaplotypeCaller is the most
prevalent variant calling approach applied to the dis-
covery of short variant in germ cells. Its capability of
calling SNPs and indels simultaneously through local
de-novo assembly of haplotypes in an active region,
which makes the HaplotypeCaller much better at call-
ing indels [4] than other position-based callers such
as Samtools [5] and GATK UnifiedGenotyper.

However, with the dramatic increasing of genome data,
it will take a long time to perform variant calling. GATK
HaplotypeCaller runs on a single node with serious scal-
ability bottleneck, which leads to inefficient use of the
computing resources, especially dealing with large scale
genome data. The calculation of HaplotypeCaller is com-
plex, mainly including four steps: identifying active re-
gions, local reassembly, likelihood calculation and
assigning genotypes. In the study [6], the time consump-
tion of various parts of HaplotypeCaller is counted as
shown in Table 1. Among them, “Assembly” is the second
step, local reassembly of HaplotypeCaller, and “PairHMM”
is the third step, likelihood calculation. “Traversal + Geno-
typing” includes traversing alignment sequence data, iden-
tifying active regions and assigning genotypes. It could be
seen that the most time-consuming step in HaplotypeCal-
ler is the calculation of PairHMM, which takes up to 70%
of the total time.

It is reported [7] that there is a serious problem of
computation skew in HaplotypeCaller, meaning that
though the size of input file is the same, the running
time of variant calling is still significantly different.
This is mainly caused by some difference in sequence
data. This problem poses a great challenge to the
parallelization of HaplotypeCaller, which easily causes
long tail tasks and leads to poor scalability.

Recently, cloud computing and big data technology
have become increasingly popular. A couple distributed
frameworks such as Hadoop and Apache Spark [8] have
emerged to provide excellent solutions for addressing
the scalability problem of variant calling. Hadoop/Spark
are big data frameworks that provide highly parallel dis-
tributed computing environment using multiple ordinary

Page 2 of 13

Table 1 The runtime for each step of HaplotypeCaller [6]

Stage Runtime Percentage
Assembly 25985 13%
PairHMM 14,2255 70%
Traversal + Genotyping 33795 17%

machines to store and analyze large datasets faster and
more efficiently. Spark could achieve higher performance
than Hadoop due to its memory-based computing. A
growing number of genome analysis tools based on dis-
tributed framework have been proposed [9, 10].
GATK-Queue [11] is an extension of GATK that uses
Sun Grid Engine to run tasks in a distributed cluster in
Scatter-gather mode, but its parallel approach is
command-based, whose task segmentation is large and
cannot be fine-grained. Halvade [12] implements gen-
ome analysis process using Hadoop MapReduce based
approach, in which the variant calling tasks are divided
by chromosome. This division is likely to cause load im-
balance due to the obvious difference in the length of
human chromosomes. Churchill [13] is a tightly-inte-
grated DNA analysis pipeline and can implement variant
calling using FreeBayes [14] or HaplotypeCalller. Its par-
allel strategy is to divide the data by the same size and
perform variant calling in parallel on each segment,
which can overcome the load imbalance caused by un-
even chromosome length to some extent. Nevertheless,
it does not solve the problem of computation skew.
SparkGA [15] is a parallel implementation of a genome
analysis pipeline based on Spark, in which the parallel
strategy of the variant calling is relatively simple and
does not consider the overlap of adjacent blocks. In
addition, the official version of the latest GATK4.0 [16] was
released and many analysis tools are redeveloped based on
Spark framework. GATK4.0s multi-node variant caller
HaplotypeCallerSpark also implements parallelization of
variant calling on multi-node and multi-core based on
Spark framework, but it has a high demand for computing
resources. When HaplotypeCallerSpark runs on large scale
datasets, huge memory overhead and time-consuming shuf-
fle operators have become a bottleneck.

Thus, in order to accelerate variant calling on large
scale genome data, a high scalable tool which could run
in distributed environment is demanded. In this paper,
we proposed ADS-HCSpark, a scalable tool to accelerate
the stage of variant calling based on Spark framework,
which implements the parallelization of GATK3.8
HaplotypeCaller algorithm on the cluster of multi-core
and multi-node. The source code and usage document
of ADS-HCSpark are respectively described in the
Additional files 1 and 2. The main contributions of our
work are as follows:

Xiao et al. BMC Bioinformatics (2019) 20:76

o A parallel strategy of adaptive data segmentation is
proposed and a variant calling algorithm based on adaptive
data segmentation (ADS-HC) is implemented to address
the problem of computation skew in HaplotypeCaller.

« For the requirement that adjacent data blocks should
have overlapped boundaries, Hadoop-BAM library is cus-
tomized to implement partitioning BAM file into over-
lapped blocks, improving the accuracy of variant calling.

Implementation
Overview of ADS-HCSpark
Current variant caller is relatively inefficient which takes
lots of time to perform variant calling, and ADS-
HCSpark is proposed to achieve parallelization of Haplo-
typeCaller to accelerate the process of variant calling. In
the distributed environment, the input BAM file is usu-
ally segmented into equal-sized original data blocks for
parallel processing by default on HDES. Due to the com-
putation skew of HaplotypeCaller, the processing of
some data blocks may take a very long time. To address
the problem of computation skew in HaplotypeCaller,
we propose a parallel strategy of adaptive data segmenta-
tion. Adaptive data segmentation aims to divide the ori-
ginal time-consuming blocks into multiple new blocks
and keep the rest in their original partitions, to ensure
all the blocks would be processed in almost same execu-
tion time ideally. Due to the scheduling mechanism (that
the next task in the task queue is performed when there
is an idle core) of Spark framework, if the number of
data blocks is reasonable and there is no obvious long
tail task, the whole program is generally load balanced.
Therefore, our target is to find the original
time-consuming data blocks and apply appropriate seg-
mentation. According to the Table 1, the third step
PairHMM takes up most of running time, so if runtime
of PairHMM could be estimated, the runtime of the data
block also could be estimated roughly. The time com-
plexity of PairHMM is O(N x M x R x H) [6], in which N
is the number of reads, M is the number of candidate
haplotypes, R is total length of reads and H is total
length of candidate haplotypes. In order to estimate the
time consumption of PairHMM, the first two steps of
HaplotypeCaller have to be performed, which will in-
crease the time by at least 20%. Accurately estimating the
running time of variant calling for a data block is complex
and time-consuming, so for further simplifying the calcu-
lation, in ADS-HCSpark, above task is converted to use
the sequence features to determine whether it takes long
execution time to process the data block. The parallel
strategy of adaptive data segmentation is implemented by
combining the file partitioning mechanism of HDFS and
the scheduling mechanism of Spark based on the se-
quence features of input file. The flow-process diagram of
ADS-HCSpark is shown in Fig. 1.

Page 3 of 13

ADS-HCSpark is divided into two parts: the data pre-
processing to mining sequence features of input file and
the variant calling based on adaptive data segmentation
(ADS-HC). ADS-HC includes targeted data partitioning,
overlapped processing, variant calling and output merge.
Among them, variant calling consists of four main steps
of GATK HaplotypeCaller: identifying active regions,
local reassembly, likelihood calculation and assigning

genotypes.

Data preprocessing

According to the previous analysis of HaplotypeCaller, it
can be inferred that accurately predicting the execution
time of variant calling for a data block is quite complex
and time-consuming. In order to simplify the calcula-
tion, the above task is converted to use the sequence fea-
tures to determine whether it takes long execution time
to process the data block in ADS-HCSpark. As described
above, the time complexity of most time-consuming part
PairHMM of HaplotypeCaller is O(N x M x R x H),
which means that the execution time is related with se-
quence and candidate haplotypes. However, to obtain
features of candidate haplotypes, the first two steps of
HaplotypeCaller have to be performed, which will in-
crease the runtime of preprocessing stage. To simplify
calculations and reduce extra time, we select relevant se-
quence features which could be counted and retrieved
by scanning the original input file once. The relevant se-
quence features are demonstrated in Table 2.

Above sequence features intuitively reflect the charac-
teristics and variation situation of sequence. Their differ-
ences could affect the execution time of variant calling. In
order to obtain these sequence features, the data prepro-
cessing is required. First of all, the input BAM file should
be uploaded to HDFS where the BAM file is partitioned
into several fix size data blocks (eg.128 MB by default). In
the data preprocessing stage, ADS-HCSpark reads each
block in parallel and counts sequence features of each
block according to the corresponding field of every record
in the block. Among sequence features, Interval and
RecordNum can be obtained by separately counting the
number of bases and the number of records in the data
block. CIGAR_I and CIGAR_R could be calculated from
the field CIGAR of every record in the block. Finally, all
the sequence features are saved into the preprocessing re-
sult file. The algorithm description and specific implemen-
tation details are described in the Additional file 3.

Adaptive data segmentation

In the variant calling stage based on adaptive data seg-
mentation, we need to predict and divide the
time-consuming data blocks according to the sequence
features. Therefore, the first step is to determine the

Xiao et al. BMC Bioinformatics (2019) 20:76 Page 4 of 13
g
BAM file
________________________ -
Upload | Original Original Original Original | |
to HDFS block block block IT1I block |
_____________ .
Adaptive data segmentation j
— — |
Original Original |
block block .|
43—

Overlapped Overlapped Overlapped Overlapped
processing processing processing processing
—~—

- |~ 1
ADS-HC I Identifying Identifying Identifying Identifying |
| active regions active regions | | active regions active regions | |
| ¥ ¥ ¥ |
Local Local Local Local

| reassembly](reassembly] (reassembly](reassembly] I

| T £ F2
| (Likelihood](Likelihood] (Likelihood](Likelihood] :

calculation calculation calculation calculation

Haplotype/—: - - - |
Caller | Assigning Assigning Assigning Assigning |
| genotypes genotypes genotypes genotypes ||
—_——==—== F——————= === F———-

VCF file

Fig. 1 The flow-process diagram of ADS-HCSpark. The figure shows the execution flow of ADS-HCSpark. First the BAM file needs to be uploaded
to HDFS. ADS-HCSpark includes two parts: the data preprocessing and the variant calling based on adaptive data segmentation (ADS-HC). ADS-
HC includes targeted data partitioning, overlapped processing, variant calling and output merge. Among them, variant calling consists of four
main steps of GATK HaplotypeCaller: identifying active regions, local reassembly, likelihood calculation and assigning genotypes

number of data blocks to be segmented and how to se-
lect these data blocks.

In order to determine which block needs to be seg-
mented, we select an input BAM file to analyze the exe-
cution time of each original block. The variant caller
HaplotypeCaller is separately executed on every original
blocks of the BAM file on HDFS and their respective
running time is recorded. Then data blocks are sorted

Table 2 Relevant sequence features obtained in the
preprocessing stage

Sequence features Comment

Index ID Index number of data block

Interval Interval length of all the alignment sequence
in the data block

Record Num Number of all the alignment sequence in the
data block

CIGAR_I Sum of the insertion lengths of all the alignment
sequence in the data block

CIGAR_D Sum of the deletion lengths of all the alignment

sequence in the data block

by their execution time from high to low and it could be
concluded that the running time of top n% of data
blocks is obviously longer than that of others by statis-
tics (The value of n will be discussed in the later experi-
mental part). Thus, we consider this top n% of data
blocks as the long time-consuming blocks and our target
is to predict and segment them.

The sequence features obtained in preprocessing
stage could reflect the computational complexity of
variant calling to some extent. Generally, the reads
could be mapped to the reference sequence, but when
there are more insertions and deletions in the
alignment reads, more candidate haplotypes are easily
generated, which leads to more subsequent time-con-
suming analysis. CIGAR_I and CIGAR D in the pre-
processed result file reflect the approximate number of
inserted and missing segments in the data block. Usu-
ally, the distribution of alignment sequences is rela-
tively uniform, but when they are too concentrated or
sparse, the variation situation is more complicated and
more calculations are required. In the sequence

Xiao et al. BMC Bioinformatics (2019) 20:76

features, this is reflected that the range of the site cov-
ering the chromosome within the data block is too
short or long. In general, the number of alignment se-
quence in every data block is equivalent. When the
number of alignment sequence in some data blocks is
significantly less than that in others, it is owing to the
effect of the filters of HaplotypeCaller, indicating that
part of alignment sequence in these data blocks are un-
reliable and need to be filtered. The alignment se-
quence situation in this region may be more complex
and it is likely to require more calculations to execute
variant calling, resulting in a time-consuming increase.

Based on the above analysis, our segmentation target
is the top n% of the most time-consuming data blocks
and they are predicted according to the following four
rules. The parameters of rules and specific segmentation
ratio will be discussed in the later experimental part.

« Top m% of the data blocks sorted by Interval from
low to high.

« Top k% of the data blocks sorted by Interval from
high to low.

» Top s% of the data blocks sorted by RecordNum
from low to high.

o Top r% of the data blocks sorted by (CIGAR_I+
CIGAR_D) from high to low.

These four rules correspond to several time-consuming
situations analyzed above. The first two rules filter out the
data blocks in which alignment sequence distribution is
too concentrated or too sparse. The third rule filters out
those data blocks in which the number of alignment reads
is significantly less than that in others and the last rule fil-
ters out those blocks in which there are more insertions
and deletions. These filtered data blocks are potential
blocks that cause a long time for variant calling. In order
to find time-consuming data blocks as much as possible,
we do not consider priorities among above rules and as
long as sequence features satisfy any rule, this data block
is predicted to be time-consuming.

In the process of adaptive data segmentation,
ADS-HCSpark first reads the sequence features of each
original data block from the preprocessing result file and
then all the original data blocks are sorted according to
the requirements of four rules mentioned above. For the
data blocks that satisfy any one rule, they are considered
as the time-consuming block and their index numbers
are stored in a collection. These blocks will be seg-
mented into multiple new blocks which are set to high
priority to execute variant calling. Other blocks that are
not in the collection are not segmented and set to stand-
ard execution priority. After completing adaptive data seg-
mentation, all the data blocks will be sorted by their
execution priority, thereby ensuring that time-consuming
blocks will be processed firstly. The algorithm description
for computing the index number of data block to be

Page 5 of 13

segmented and segmenting data blocks are respectively
described in the Additional files 4 and 5.

Customized Hadoop-BAM for overlapped blocks

After adaptive data segmentation, new data blocks will be
read in parallel for processing. Since the variant calling of
one site is associated with the alignment information of
the sites in the vicinity, simple partitioning strategy by data
block may lead to unreliable results. For higher accuracy
of variant calling, ADS-HCSpark adopts an approach to
partition data blocks with overlapped boundaries of adja-
cent data block. Hadoop-BAM [17] is a library commonly
used to read BAM files in parallel by Spark and Hadoop,
but it cannot achieve overlapped processing between adja-
cent data blocks, which needs to be customized. Thus, we
improved the Hadoop-BAM library to implement
partitioning BAM file into overlapped blocks. In
ADS-HCSpark, the size of overlapped boundaries of adja-
cent data blocks is set to the parameter overlapSize and
different values of this parameter will affect the result of
subsequent variant calling. The experiment is conducted
to evaluate it in detail in the later chapter. In the process
of partition of BAM file with overlapped blocks, all the
data block information of the BAM file is obtained firstly
and then data blocks are sorted according to the block
number to ensure that data blocks are order. Then the
program traverses all the data blocks and except for the
last data block, the rest need to be extended the size of
overlapped boundary. After overlapped processing, the
boundary of two adjacent data blocks are the same. The
size of overlapped boundary is up to the parameter over-
lapSize. Finally, the program returns all the overlapped
blocks. The algorithm description for acquiring over-
lapped data blocks is described in the Additional file 6.

Algorithm framework of ADS-HCSpark
In the step of variant calling, ADS-HCSpark uses the main
algorithm of HaplotypeCaller to discover and obtain vari-
ants. After adaptive data segmentation and overlapped
processing, ADS-HCSpark performs operations such as
identifying active regions, local reassembly, likelihood cal-
culation and assigning genotypes for all the alignment data
in each data blocks in parallel. Finally, all the variants dis-
covered are merged and output into a VCEF file.
Combining all the above steps, the entire algorithm
framework of ADS-HCSpark is illustrated in Fig. 2. In
the preprocessing, the program scans the input BAM file
to obtain the sequence features of each original block.
According to the preprocessing result and the rules
mentioned above, data blocks to be split are predicted
and segmented. Then overlapped blocks are read in par-
allel by customized Hadoop-BAM and finally variant
calling is executed on them.

Xiao et al. BMC Bioinformatics (2019) 20:76

Page 6 of 13

/Stepz: Computing the index\
number of block to be split

TndexiD
Interval
uuuuuuuuuu
CIGAR_I
CIGAR R

(N

Whether the
block to be split

e

/ Step4: Partition with \
overlapped blocks

New New New Original
block 1 [[block2 [| block 3 block
Il

(N VA AV
¥

verlapped| [Overlapped| [Overlapped| [Overlapped|
block1 block2 block3 bIockAj @

/Steplz Scanning and getting\

Step3: Segmentation and
sequence features sorting of data blocks HaplotypecCaller in parallel
Overlapped Haplotype VCF
block1 block2 block3 blockl Caller partl
IndexiD IndexiD IndexiD II w
Interval Interval Interval block2 Caller
RecordNum RecordNum RecordNum
CIGAR_I CIGAR_| CIGAR_I Overlapped Haplotype VCF
CIGAR_R CIGAR R CGARR || block3 Caller parts
\ j j \ i ni i j

Step5: Executing \

library and finally variant calling is executed on them

Fig. 2 Algorithm framework diagram of ADS-HCSpark. The figure shows the entire algorithm framework of ADS-HCSpark. In the preprocessing,
the program scans the input BAM file to obtain the sequence features of each original block. According to the preprocessing result and the rules
mentioned above, data blocks to be split are predicted and segmented. Then overlapped blocks are read in parallel by customized Hadoop-BAM

Results

Experiment setup

ADS-HCSpark is evaluated on our cluster with 6 nodes.
Each node is equipped with two E5-2670 CPU (2.6GHz,
8 cores) with 64 GB memory. The network is 1 GigE.
Spark version is 2.2.0. Scala version is 2.11.8. The data-
sets used in the experiments are from the reference [18]
and the human genome data are selected. The datasets
are described in detail in the Table 3. Some program
execution scripts and dataset details in the experiments
are respectively described in the Additional files 7 and 8.

Parameters of adaptive segmentation

As mentioned above, our segmentation target is the top
n% of the most time-consuming data blocks. In order to
determine the value of n, the HaplotypeCaller algorithm
is separately executed on every data block of the dataset
D1 and their respective running time is recorded. Then
data blocks are sorted by execution time from high to
low and the percentage of time consumption for per 5%
data blocks is counted, as is shown in Fig. 3. It could be
clearly found that the top 5% of the data blocks are up

Table 3 Experimental datasets

Dataset Genome File format Coverage File size Default number

depth of data blocks
D1 NA12878 BAM 14x 67.7GB 543
D2 NA12878 BAM 28x 1285GB 1028
D3 NA18507 BAM 11x 59.3GB 475
D4 NA12878 BAM 60x 250.15GB = 2002

to 16.9% of the total running time and obviously higher
than the latter. Thus, we consider this top 5% of data
blocks as the long time-consuming blocks and our target
is to predict and segment them.

To determine the parameters of predict rules, the spe-
cific segmentation ratio is adjusted on the dataset D1
and verified on the dataset D2, D3 and D4. The parame-
ters chosen should allow our approach to find as many
time-consuming raw data blocks as possible. For the pa-
rameters of four rules, when we set m% = 5%, k% = 7%,
8% = 5%, and r% = 7%, the detailed situation of the seg-
mentation indicators in each dataset is shown in Table 4.
Segmenting precision is defined as: P = %, and segment-
ing recall is defined as: R = 2. TP is the number of true
time-consuming data blocks in the predicted data
blocks. N is the number of the predicted data blocks. M
is the target number of time-consuming data blocks in
the original data blocks. From Table 4, the recall rates of
segmenting on four datasets are high even reaching
100%, which means that our solution could find most or
even all of the top 5% of the most time-consuming data
blocks. This is the reason why adaptive data segmenta-
tion can solve the problem of computation skew. As for
segmenting precision, it is maintained at approximately
33%, which indicates that some of the predicted data
blocks are not time-consuming, but segmenting some
non-target data blocks does not affect the final running
time much. Because the problem of computation skew is
mainly caused by time-consuming data blocks, as long

Xiao et al. BMC Bioinformatics (2019) 20:76

Page 7 of 13

Percentag of running time (%)

N

16
14
12
10
8
6
4 |
0
1 2 3 4 5 6 7

\

8 9 10 11 12 13 14 15 16 17 18 19 20
per 5% data blocks

Fig. 3 The percentage of running time per 5% data blocks after all the data blocks are sorted. The HaplotypeCaller algorithm is separately
executed on every original data blocks of dataset D1 and their respective running time is recorded. Then data blocks are sorted by execution
time from high to low and the percentage of time consumption for per 5% data blocks is counted, as is shown in the figure

as most of time-consuming blocks are included in our
predicted blocks (meaning high recall rate), long tail
tasks could be effectively avoided. Thus, we give priority
to a high recall rate while allowing a certain precision
ratio to be sacrificed.

Impact of overlapped boundaries on the variant calling
accuracy

In ADS-HCSpark, the size of overlapped boundaries of
adjacent data blocks is set to the parameter overlapSize
and different values of this parameter will affect the accur-
acy of variant calling. The following experiments were
performed to evaluate the accuracy of ADS-HCSpark
under different size of overlapped boundaries of adjacent
blocks. The accuracy is evaluated by comparing the
variants detected by ADS-HCSpark with the results of
GATK3.8 HaplotypeCaller as a baseline. The experi-
mental result is shown in Table 5. Even though there
are no overlapped boundaries of adjacent blocks,

Table 4 The detailed situation of the segmentation indicators
in each dataset

Dataset D1 D2 D3 D4

BAM file size 67.8GB 1285GB 59.3GB 250.15GB
Default number of data blocks 543 1028 475 2002
Target number of 28 52 24 102
segmentations (5%)

Actual number of segmentations 84 147 76 303
Actual proportion of segmenting 1547% 14.3% 16% 15.13%
Number of matching blocks 27 52 24 101
Segmenting Precision 32.14% 3537% 31.58% 33.33%
Segmenting Recall 96.43% 100% 100% 99.02%

ADS-HCSpark could reach a high accuracy with over
99.9%. When there are overlapped boundaries of adjacent
blocks, the accuracy of ADS-HCSpark is generally higher
than that without overlapped boundaries, which explains
that overlapped boundaries could maintain the integrity of
variant calling. Simultaneously, overlapped boundaries of
different sizes have a slight effect on the accuracy and
overlapped boundaries are too small to completely cover
the detection of the edges. When the size of overlapped
boundaries of adjacent blocks is set to 512KB,
ADS-HCSpark achieves the highest accuracy and the ac-
curacy tends to be stable when continuing to increase the
size of overlapped area. Thus, the parameter overlapSize is
set to 512 KB.

Performance analysis

Data preprocessing

To analyze the performance of data preprocessing, the
experiment was conducted on one node with different
threads. The execution time and speedup of data prepro-
cessing on four datasets are illustrated in Fig. 4. In the
figure, T(D1), T(D2), T(D3), T(D4) represent the execu-
tion time of preprocessing on dataset D1, D2, D3, D4

Table 5 Accuracy of ADS-HCSpark in different sized overlapped

boundaries

Overlap Size D1 D2 D3 D4

0 KB 99.9828% 99.9678% 99.9887% 99.9842%
64 KB 99.9829% 99.9686% 99.9896% 99.9844%
128 KB 99.9831% 99.9691% 99.9891% 99.9847%
256 KB 99.9832% 99.9698% 99.9891% 99.9851%
512 KB 99.9835% 99.9698% 99.9893% 99.9856%
1024 KB 99.9835% 99.9698% 99.9893% 99.9856%

Xiao et al. BMC Bioinformatics (2019) 20:76 Page 8 of 13
p
200 7
R 180 6
£ 160
E 140 5
g 120 . §
= 100 o
S go 3 g
é 60 ?
8 2
aj 40 I 1
20
’ alal B0 GER LER
1 4 8 16 32
Number of threads
= T(D1) m T(D2) T(D3) T(D4)
s(D1) —S(D2) —(D3) —5(D4)

Fig. 4 Execution time and speedup of preprocessing with different threads. The figure shows the execution time and speedup of data
preprocessing on four datasets. T(D1), T(D2), T(D3), T(D4) represent the execution time of preprocessing on dataset D1, D2, D3, D4 and S(D1),
S(D2), S(D3), S(D4) represent the speedup of preprocessing on dataset D1, D2, D3, D4

and S(D1), S(D2), S(D3), S(D4) represent the speedup of
preprocessing on dataset D1, D2, D3, D4. Speedup is de-

fined as: S = %

s

T, represents the execution time to

serially perform the algorithm and 7; represents the exe-
cution time to parallelly perform the algorithm on p
processors. As the number of threads increases, the run-

ning time of preprocessing decreases and the speedup
ratio is on the rise. When the number of threads exceeds
8, the speedup remains stable or drops slightly, which
indicates that there is a bottleneck in the scalability of
the preprocessing step. Figure 5 shows the comparison
of network transmission rates for different threads (1t
represents 1 thread in the figure) on dataset D1, which
could be found that the bottleneck of the preprocessing
step is the network bandwidth. The theoretical network
transmission rate of Gigabit Ethernet is 120 MB/s. When

executing preprocessing with 8 threads, the network
transmission is already close to the bandwidth limit. Con-
tinuing to allocate more threads brings a lower promotion
of performance and even may lead to performance deg-
radation due to excessive threads competing for network
resources. Thus, the optimal number of threads for data
preprocessing step is 8 in a single-node and Gigabit Ether-
net environment. In a multi-node cluster, the optimal
number of threads in this step is 8 threads per node.

Adaptive data segmentation and scalability analysis

ADS-HC needs to segment the target data blocks and the
different granularity of data segmentation will also affect
the running time of ADS-HC. The granularity is the num-
ber of new data blocks divided from the time-consuming
block. The following experiments were conducted to

120

% —1t—2t

= 100

2 4t 6t

© 80

©

C

kel

860 — 0t e— 3t

€ NN\

S 40

=

f T B g —

s 20

2

[}

z 0
=S 2222222222222 =222=222=222°2
< € € € € € € € € € AQAAd I C< << <<

timeOOOOOOOOOOOOOOOOOOOOOOO
22222 222220222222 Q2QQ Qe
O N & W 0 O N < O 0 O N < W 00 O N < U 0 O N <
Qe Qo Qo ddddddNddNan 00 d TS
AN AN AN NN AN AN NN AN NN NN NN NN NN NN NN NN
L TR B B o I B B I B IR e R B B B L IR B R B B R |

Fig. 5 Network transmission rate of preprocessing with different threads on D1. The figure shows the comparison of network transmission rate
for different threads on dataset D1. Curves of different colors indicate different threads. 11t represents 1 thread, 2 t represents 2 threads and so on

J

Xiao et al. BMC Bioinformatics (2019) 20:76

Table 6 ADS-HC running time with different granularity of data
segmentation

Page 9 of 13

the control group in which the BAM file is seg-
mented and processed by default Spark framework

Execution only sorted 2 blocks 4 blocks 6 blocks 8 blocks 0 blocks without any preprocessing.
time (min) + sorted + sorted + sorted + sorted + no sorted In the experiment on a single node, running time
(D]Wno o 7389 7530 7576 U642 AT 8509 of “only sorted” strategy is usually shorter than
others. This is because all four datasets are quite
D2 100.14 10105 10379 10512 10344 10668 . .
(1 node) large and their default numbers of partitions are a
D3 71,45 143 767 7330 7511 8067 lot, while the degree of parallelism (execution threads)
(1 node) of one node is low. In this case, each thread needs to
D4 160.59 16140 16432 16593 16843 18285 execute more tasks, so long tail tasks could be
(1 node) avoided by prioritizing time-consuming blocks even
D1 2732 2034 1946 1841 1849 3392 without fine-grained segmentation. Furthermore, ex-
(6 nodes) . . .
cessive blocks will lead to extra scheduling overhead.
(D62n odes) 3302 2895 2nls 60T 26224032 Therefore, with more default blocks and lower degree
s “ ” .
o3 6o 509 1931 1933 2065 3314 of parallelism, “only sorted” strategy can achieve bet-
(6 nodes) ter results. However, when ADS-HC runs on a cluster
D4 (6 4738 440 375 4322 4322 6213 with 6 nodes, the degree of parallelism is much more
nodes) than that of one single node, so it needs to segment

evaluate the impact of various granularity of data segmen-
tation. The running time of different fine-grained seg-
menting numbers on a single node with 32 threads and a
6-node cluster with 192 threads is shown in Table 6.

In Table 6, “only sorted” strategy represents that
after preprocessing, only data blocks are sorted by
processing priority from high to low and the
time-consuming data blocks are directly processed
without being segmented. “n blocks + sorted” strategy
means that every target data block is equally seg-
mented to n new blocks after preprocessing and they
are set to higher processing priority. Then data blocks
are sorted by processing priority from high to low.
The last column “O blocks + no sorted” strategy is

the default data blocks properly to avoid long tail
tasks. The running time of “6 blocks + sorted” strat-
egy is shorter than that of others. Too few segments
could not avoid long tail tasks and excessive segments
will cause extra overhead. Summarizing above experi-
mental results, compared to the default blocking
mode, the adaptive data segmentation strategy could
effectively predict and segment the time-consuming
data blocks, thus avoiding long tail tasks and address-
ing the problem of computation skew.

The scalability of ADS-HC is evaluated on a 6-node
cluster with different threads using the “6 blocks +
sorted” strategy. The running time and the corre-
sponding speedup on four datasets are illustrated in
Fig. 6. In the figure, T(D1), T(D2), T(D3), T(D4) rep-
resent the execution time on dataset D1, D2, D3, D4

500 80
450 70
400
— 60
= 350
S
~ 300 0 o
o 3
S
£ 250 40 g
c o
S 200 30 P
§ 150 .
& 100
50 II 10
0 nl ull ul 0
6 12 24 48 96 192
Number of threads
m T(D1) T(D2) T(D3) T(D4)
S(D1) S(D2) S(D3) = 5(D4)
Fig. 6 Execution time and speedup of ADS-HC with different threads on 6 nodes. The figure shows that the execution time and the
corresponding speedup of ADS-HC with different threads on a 6-node cluster. T(D1), T(D2), T(D3), T(D4) represent the running time on dataset
D1, D2, D3, D4 and S(D1), S(D2), S(D3), S(D4) represent the speedup ratio on dataset D1, D2, D3, D4

Xiao et al. BMC Bioinformatics (2019) 20:76

and S(D1), S(D2), S(D3), S(D4) represent the speedup
ratio on dataset D1, D2, D3, D4. From the experi-
mental results, as the number of threads increases,
the execution time decreases and the speedup rate in-
creases. Particularly, when the number of threads in-
creases from 1 to 96, ADS-HC achieves good
scalability, and the speedup rate linearly increases, ap-
proximately. While the number of threads exceeds 96,
the speedup ratio increases slowly, because the aver-
age number of threads used per node is more than
16 at this time. Although each node could support up
to 32 threads with 32 logical cores, there are only 16
physical cores. In these datasets, D4 is the completed
NA12878 dataset with the coverage depth of 60x.
From the experimental results, ADS-HCSpark
achieves good scalability for datasets of different size
and coverage depth, which proves that it could be
used to execute variant calling on large scale datasets.

Comparison with GATK and SparkGA

Multiple threads on single node

GATK HaplotypeCalller is the benchmark of variant
calling tool, which supports multithreading on single
node. Our ADS-HCSpark is also implemented based
on GATK3.8 HaplotypeCaller. In the previous ana-
lysis, the time-consuming characteristics of four data-
sets are similar, so we take dataset D1 as an example
to compare the execution time and scalability of
ADS-HCSpark with that of GATK3.8 HaplotypeCaller
on a single node. HaplotypeCaller includes two steps:
building index and variant calling, while
ADS-HCSpark also consists of two parts: data prepro-
cessing and ADS-HC. The experimental result is

Page 10 of 13

Table 7 Comparison of execution time on D1 (unit: min)
Number of threads 1 8 16 24 32
GATK3.8 HaplotypeCaller 137233 369.77 35621 361.19 32648
ADS-HCSpark 138421 18007 11040 9234 8381

shown in Table 7, and corresponding diagram is illus-
trated in Fig. 7. In the figure, T (GATK3.8 Haplotype-
Caller), T (ADS-HCSpark) represent the execution
time of GATK3.8 HaplotypeCaller and ADS-HCSpark.
S (GATK3.8 HaplotypeCaller), S (ADS-HCSpark) rep-
resent the speedup of GATK3.8 HaplotypeCaller and
ADS-HCSpark. In case of full load with 32 threads,
where both tools achieve optimal performance, the
running time of ADS-HCSpark is reduced by 74.33%
compared to GATK3.8 HaplotypeCalller. After
GATK3.8 HaplotypeCaller reaches 8 threads, the
speedup remains around 4, while the speedup ratio of
ADS-HCSpark continues to increase, eventually
reaching 16.5, which is more scalable than GATK3.8
HaplotypeCaller. The CPU utilization of GATK3.8
HaplotypeCaller is lower than that of ADS-HCSpark,
because in GATK3.8 HaplotypeCaller, data are serially
read and processed firstly, consuming too much time
and easily causing waiting among threads. Conversely,
ADS-HCSpark uses customized Hadoop-BAM to read
alignment data in parallel, achieving high CPU
utilization.

Multiple threads on multiple nodes
GATK4.0 is a toolkit developed by Broad Institute
based on Spark framework and HaplotypeCallerSpark

1600

1400

1200

1000

Execution time (min)

N T(GATK3.8 HaplotypeCaller)

S(GATK3.8 HaplotypeCaller)

HaplotypeCaller and ADS-HCSpark

14
12
10
800
8
600
6
400 [_ J— 4
0 il N [- -m
1 8 16 24 32

Number of threads

Fig. 7 Comparison of execution time and speedup on a single node. The figure shows the comparison of execution time and speedup between
GATK3.8 HaplotypeCaller and ADS-HCSpark on a single node with different threads. T (GATK3.8 HaplotypeCaller), T (ADS-HCSpark) represent the
execution time of GATK3.8 HaplotypeCaller and ADS-HCSpark. S (GATK3.8 HaplotypeCaller), S (ADS-HCSpark) represent the speedup of GATK3.8

Speedup

mm T(ADS-HCSpark)
S(ADS-HCSpark)

Xiao et al. BMC Bioinformatics (2019) 20:76

Table 8 Comparison of execution time on D1 (unit: min)

Number of threads 6 12 24 48 96 192
GATK4 30632 17032 10591 7641 5956 -
HaplotypeCallerSpark

SparkGA 286.18 14535 8594 5129 3676 2873
ADS-HCSpark 20993 10996 5845 3470 2497 2071

is its variant calling tool, which could run on a multi-
node cluster. SparkGA is also a high-performance
genome analysis toolkit based on Spark framework.
The experiments were conducted to compare both
running time and scalability among these three tools
on a cluster with 6 nodes on dataset DI.
ADS-HCSpark includes data preprocessing and vari-
ant calling, while GATK4 HaplotypeCallerSpark and
SparkGA only includes variant calling stage. Table 8
describes the running time of them with different
threads and the corresponding diagram is illustrated
in Fig. 8. In the figure, T (GATK4 HaplotypeCaller-
Spark), T (SparkGA), T (ADS-HCSpark) represent the
execution time of GATK4.0 HaplotypeCallerSpark,
SparkGA and ADS-HCSpark. S (GATK4 Haplotype-
CallerSpark), S (SparkGA), S (ADS-HCSpark) repre-
sent the speedup of GATK4.0 HaplotypeCallerSpark,
SparkGA and ADS-HCSpark. Since GATK4 Haploty-
peCallerSpark consumes a large amount of memory,
this experimental platform cannot support Haplotype-
CallerSpark running on 6 nodes over 96 threads.
With 96 threads, ADS-HCSpark is 57.69% faster than
GATK4 HaplotypeCallerSpark. Besides, its speedup is

Page 11 of 13

low and only reaches around 30 at the end. The
speedup of ADS-HCSpark continues to increase and
eventually reaches 60. Therefore, the scalability of
ADS-HCSpark on 6 nodes is far better than that of
GATK4 HaplotypeCallerSpark. As for the comparison
between SparkGA and ADS-HCSpark, in case of full
load with 192 threads, ADS-HCSpark is 27.91% faster
than SparkGA and it is similar in the trend of their
speedup ratios. Since the adaptive data segmentation,
ADS-HCSpark effectively avoids long tail tasks and
outperforms SparkGA in execution time.

Conclusion

In this paper, we present ADS-HCSpark, a scalable
tool for variant calling based on Spark framework.
ADS-HCSpark implements the parallelization of the
mainstream variant calling algorithm HaplotypeCaller
on multi-node and multi-core, accelerating the
procession of variant calling. In ADS-HCSpark, a par-
allel strategy of adaptive data segmentation is pro-
posed and a variant caller based on adaptive data
segmentation (ADS-HC) is implemented to solve the
problem of computation skew in HaplotypeCaller.
Furthermore, for the requirement that adjacent data
blocks should have overlapped boundaries, Hadoop-
BAM library is customized to implement partitioning
BAM file into overlapped blocks, improving the ac-
curacy of variant calling. The performance of
ADS-HCSpark is evaluated and the experimental re-
sult demonstrates that in the case of best perform-
ance that could be achieved in this experimental
platform, ADS-HCSpark is 74% faster than GATK3.8

350

300

N
w1
o

200

=
u
o

100

Execution time (min)

w1
o

12 24

I T(GATK4 HaplotypeCallerSpark)
T(ADS-HCSpark)
e S(SparkGA)

Number of threads

Fig. 8 Comparison of execution time and speedup on 6 nodes. The figure shows the comparison of execution time and speedup with different
threads on a 6-node cluster among three tools: GATK4.0 HaplotypeCallerSpark, SparkGA and ADS-HCSpark. T (GATK4 HaplotypeCallerSpark), T
(SparkGA), T (ADS-HCSpark) represent the execution time of GATK4.0 HaplotypeCallerSpark, SparkGA and ADS-HCSpark. S (GATK4
HaplotypeCallerSpark), S (SparkGA), S (ADS-HCSpark) represent the speedup of GATK4.0 HaplotypeCallerSpark, SparkGA and ADS-HCSpark

70

60

50

40

30

Speedup

20

Il T
48 96 192
s T(SparkGA)

S(GATK4 HaplotypeCallerSpark)
S(ADS-HCSpark)

Xiao et al. BMC Bioinformatics (2019) 20:76

HaplotypeCaller on single-node experiments, 57% fas-
ter than GATK4.0 HaplotypeCallerSpark and 27% fas-
ter than SparkGA on multi-node experiments, with
better scalability and the accuracy of over 99%. The
future work will be to optimize performance and
scale to large scale cloud computing platform.

Availability and requirements
Project name: ASD-HCSpark

Project home page: http://github.com/SCUT-CCNL/
ADS-HCSpark.git.

Operating system: Linux

Programming language: Java

Other requirements: Java 1.8, Scala 2.11.8, Hadoop
2.6.4, Spark2.2.0, Maven 3.5.3

License: New BSD License

Any restrictions to use by non-academics: none

Additional files

Additional file 1: ADS-HCSpark's source code. This is a compressed file
and needs to be decompressed first. It contains all the code for this
software. (ZIP 1793 kb)

Additional file 2: ADS-HCSpark's usage document. This file introduces
the software preparation environment and how to build and use ASD-
HCSpark. (PDF 89 kb)

Additional file 3: The algorithm description of data preprocessing. This
file includes the algorithm table and implementation details of data
preprocessing. (PDF 47 kb)

Additional file 4: The algorithm description of computing the index
number of data block to be split. This file includes the algorithm table
and implementation details of computing the index number of data
block to be split. (PDF 66 kb)

Additional file 5: The algorithm description of segmenting data blocks
and sorting. This file includes the algorithm table and implementation
details of segmenting data blocks and sorting. (PDF 51 kb)

Additional file 6: The algorithm description of acquiring overlapped
data segments. This file includes the algorithm table and implementation
details of acquiring overlapped data segments. (PDF 55 kb)

Additional file 7: The execution scripts. This file contains some execution
scripts used in the experiments and some parameter settings. (PDF 64 kb)

Additional file 8: Dataset document. This file describes the datasets
used in the experiments. (PDF 19 kb)

Abbreviations

ADS-HC: a variant calling algorithm based on adaptive data segmentation;
CPU: Central Processing Unit; DNA: Deoxyribonucleic acid; GATK: Genome
Analysis Toolkit; GigE: Gigabit Ethernet; HDFS: Hadoop file system; I/O: input/
output; NGS: next-generation sequencing; SNP: single nucleotide
polymorphism; VCF: Variant Call Format

Acknowledgements

The authors would like to thank Mr. Yong Zhang and Shengkang Li of Beijing
Genomics Institute (BGI) for great help and guidance in the processing of
genes data and providing test platforms for tools in our research.

Funding

This study was supported by a grant (2015A030308017) from Guangdong
Natural Science Foundation of China. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Page 12 of 13

Availability of data and materials

The datasets supporting the conclusions of this paper are available from
http://smash.cs.berkeley.edu. Our software ADS-HCSpark are available from
https://github.com/SCUT-CCNL/ADS-HCSpark git.

Authors’ contributions

AX summarized the software, performed the experiments and wrote the
paper. ZW designed the algorithms and coded the programs. SD guided the
project, advised on the design of the software and modified the paper. All
authors read and approved the manuscript.

Ethics approval and consent to participate
The datasets used in the experiment are publicly available on the website
http://smash.cs.berkeley.edu, so the ethics approval is not required.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 9 November 2018 Accepted: 30 January 2019
Published online: 14 February 2019

References

1. CORNELISSEN M, GALL A, VINK M. From clinical sample to complete
genome: comparing methods for the extraction of HIV-1 RNA for high-
throughput deep sequencing. Virus Res. 2017;239:10-6.

2. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010;20(9):1297-303.

3. Highnam G, Wang JJ, Kusler D, et al. An analytical framework for optimizing
variant discovery from personal genomes. Nat Commun. 2015,6:6275.

4. Hwang S, Kim E, Lee |, et al. Systematic comparison of variant calling pipelines
using gold standard personal exome variants. Sci Rep. 2015;5:17875.

5. Li H, Handsaker B, Wysoker A. The sequence alignment/map format and
SAMtools. Bioinformatics. 2009;25(16):2078-9.

6. Huang S, Manikandan GJ, Ramachandran A, et al. Hardware acceleration of
the pair-HMM algorithm for DNA variant calling. Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
2017:275-84.

7. Deng L, Huang G, Zhuang Y, et al. HiGene: A high-performance platform for
genomic data analysis. IEEE International Conference on Bioinformatics and
Biomedicine. 2016:576-83.

8. Zaharia M, Franklin MJ, Ghodsi A. Apache spark: a unified engine for big
data processing. Commun ACM. 2016;59(11):56-65.

9. Taylor RC. An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics. BMC Bioinformatics. 2010;
11(Suppl 12):S1.

10. O'Connor B D, Merriman B, Nelson S F. SeqWare Query Engine: storing and
searching sequence data in the cloud. BMC Bioinformatics. 2010; 11 Suppl
12: S2-52.

11, GATK Queue. https://software.broadinstitute.org/gatk/documentation/
indextintro1306 . Accessed 23 Mar 2018.

12. Decap D, Reumers J, Herzeel C, et al. Halvade: scalable sequence analysis
with MapReduce. Bioinformatics. 2015;31(15):2482.

13. Kelly BJ, Fitch JR, Hu Y, et al. Churchill: an ultra-fast, deterministic, highly
scalable and balanced parallelization strategy for the discovery of human
genetic variation in clinical and population-scale genomics. Genome Biol.
2015;16(1):6.

14. Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv. 2012;(1207):3907.

15. Mushtaqg H, Liu F, Costa C, et al. SparkGA: A Spark Framework for Cost
Effective, Fast and Accurate DNA Analysis at Scale. Proceedings of the 8th
ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics. 2017:148-57.

http://github.com/SCUT-CCNL/ADS-HCSpark.git
http://github.com/SCUT-CCNL/ADS-HCSpark.git
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
https://doi.org/10.1186/s12859-019-2665-0
http://smash.cs.berkeley.edu
https://github.com/SCUT-CCNL/ADS-HCSpark.git
http://smash.cs.berkeley.edu
https://software.broadinstitute.org/gatk/documentation/index#intro1306
https://software.broadinstitute.org/gatk/documentation/index#intro1306

Xiao et al. BMC Bioinformatics (2019) 20:76 Page 13 of 13

16. Broad Institute Gatk 4.0. https://software broadinstitute.org/gatk/gatk4.
Accessed 11 May 2018.

17. Niemenmaa M, Kallio A, Schumacher A. Hadoop-BAM: directly manipulating
next generation sequencing data in the cloud. Bioinformatics. 2012;28(6):876-7.

18. Talwalkar A, Liptrap J, Newcomb J. SMaSH: A benchmarking toolkit for
human genome variant calling. Bioinformatics. 2014;30(19):2787-95.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

https://software.broadinstitute.org/gatk/gatk4

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Overview of ADS-HCSpark
	Data preprocessing
	Adaptive data segmentation
	Customized Hadoop-BAM for overlapped blocks
	Algorithm framework of ADS-HCSpark

	Results
	Experiment setup
	Parameters of adaptive segmentation
	Impact of overlapped boundaries on the variant calling accuracy
	Performance analysis
	Data preprocessing
	Adaptive data segmentation and scalability analysis

	Comparison with GATK and SparkGA
	Multiple threads on single node
	Multiple threads on multiple nodes

	Conclusion
	Availability and requirements
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

