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Abstract

Background: A large fraction of human and mouse autosomal genes are subject to random monoallelic expression
(MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell
lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide
insight into its biological function. Its detection, however, remains challenging.

Results: We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity
and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present
an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference
from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.
com/gimelbrantlab/magic.

Conclusion: The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using
existing models and to train new models with additional sets of chromatin marks.
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Background
Genotype-phenotype relationship in mammals is pro-
foundly affected by three epigenetic phenomena that
control the relative expression of the two parental alleles:
imprinting, X-chromosome inactivation, and autosomal
random monoallelic expression (MAE) [1, 14]. MAE is
the most widespread of these three phenomena, affecting
over 10% of human autosomal genes, including multiple
genes implicated in cancer, autism, and Alzheimer’s dis-
ease [5, 6, 13]. Similar to X-inactivation, the active allele is
randomly selected early in the development and then
maintained in mitotically stable manner, making MAE
clone-specific [2, 4, 17]. As a result, existing allelic imbal-
ances at the level of individual clones cannot be detected

in polyclonal, tissue-level sequencing experiments. As an
alternative to direct measurement, we have identified a
chromatin signature of monoallelic expression, which can
be applied to detect MAE in polyclonal samples [10].
This chromatin signature of MAE is based on

gene-body enrichment of histone H3 Lys-27 trimethyla-
tion (H3K27me3) and H3 Lys-36 trimethylation
(H3K36me3) as measured by ChIP-seq. The first chro-
matin mark is associated with active transcription and
the second one is associated with silencing; MAE genes
are enriched among genes displaying a characteristic
chromatin signature: the two marks simultaneously occur-
ring in the gene body. We experimentally confirmed the
signature’s accuracy in multiple human and mouse
cell-types using clonal cell lines with known allelic expres-
sion as a reference [10, 11]. Use of the chromatin-based
MAE maps has already led to new insight in genome evo-
lution [15] and neurodevelopmental disease [16]. How-
ever, the initial implementation of the method was not
integrated in a unified, shareable pipeline and had limited
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flexibility. We thus set out to build a user-friendly, flexible,
open-source toolset to enable systematic analysis of a var-
iety of large-scale datasets.
Here, we describe an R pipeline named monoallelic gene

inference from chromatin (MaGIC) with command-line
and Shiny app interface. In addition to classifying genes as
MAE or biallelic based on existing models, MaGIC can also
generate predictive models de novo as new, larger datasets
become available.

Implementation
MaGIC is a command-line software package written in
R that consists of three separate parts (Fig. 1a).

Process.R uses ChIP-seq bigWig [7] files to calculate
gene-body or promoter enrichment normalized to control
data (e.g. ChIP input) or to feature length. First, Bwtool
[12] is used to calculate mean signals for gene intervals
based on a reference annotation. X-linked, imprinted,
and olfactory receptor genes are then filtered out by de-
fault to focus on the less characterized autosomal ran-
dom MAE genes. Intervals with control signals lower
than a user-defined threshold are also removed. Finally,
ChIP-seq signal is normalized to control signal, and the
resulting values are converted to quantile rank and saved
to a file. This output file can be used to generate new clas-
sifiers using generate.R or to predict monoallelic expres-
sion using analyze.R with pre-trained classifiers.

C

BA

Fig. 1 The MaGIC 2.0 pipeline and evaluation of glm performance. a Process.R calculates ChIP-seq enrichment per gene from ChIP-seq and
control bigWig files. Generate.R trains classifiers using ChIP-seq enrichment and true MAE/BAE calls. Analyze.R uses classifiers to predict MAE/BAE
gene status from ChIP-seq data. b Chromatin signature space of classifier features (H3K27me3 vs. H3K36me3) with the glm’s decision boundary
plotted (dashed line) with MAE status of true labeled testing data (MAE: blue, BAE: red). c Confusion matrices and performance metrics for the
selected models evaluated on additional testing data (glm and svm are selected as the best models based on the precision and the recall; ada
model is presented for comparison reasons as the closest to the model in [11])
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Generate.R trains classifiers on ChIP-seq data proc-
essed by the process.R script using a variety of algorithms
supported by the caret R package [8]. A set of training
labels containing true allelic expression calls for genes in
the same tissue should be provided in a separate file. Al-
ternatively, the user can use one of the training label
sets we provide, which list MAE and BAE genes in hu-
man and mouse B lymphoid cells. By default, generate.R
trains models with five-fold cross-validation, although
the degree of cross-validation can be modified by the
user. If the user has a separate validation set, they can
instead train the classifier on the complete set of train-
ing data. In all cases, generate.R outputs a set of models
and a summary file containing per-model performance
metrics. By default, a total of 9 models are trained,
including a neural network with two hidden layers, a
support vector machine with multiple kernels, a multi-
layer perceptron, three tree-based models (an adaptive
boosted classification tree - ada, tree models from gen-
etic algorithms, and recursive partitioning and regres-
sion trees), random forest, a K-Nearest Neighbor model
and a generalized linear model with stepwise feature
selection (glm). Among all models trained, we recom-
mend choosing the model with the highest F1-score as
discussed below. Therefore, this model is selected by
default for subsequent analysis but the user has the
option to override this choice by selecting additional or
different models.
Analyze.R predicts monoallelic expression using ChIP-

seq data processed by process.R and classifiers generated
by generate.R. The predictions can be filtered by minimal
gene length and expression level, with values provided by
the user in separate files, with default thresholds as de-
fined in [11]. The output from analyze.R contains pre-
dicted allelic expression status by gene.

Shiny web application
To make the MaGIC software more user-friendly and add
additional visualizations, we developed a web application
using the Shiny framework. This graphical user interface
offers all the functionality of the pipeline with a stream-
lined workflow and can be run locally following installa-
tion from https://github.com/gimelbrantlab/magic.

Results
The MaGIC pipeline begins with ChIP-seq data process-
ing and concludes with the prediction of MAE genes
based on this data (see Implementation for more details).
First, we process ChIP-seq files into gene-body or pro-
moter enrichment normalized to control data. Next, this
processed signal is used to classify genes into MAE and
BAE using existing or user-generated models. New
models can be generated with a training set of genes
containing true allelic expression calls, typically determined

by RNA-Seq in related clonal cell lines and allowing to dir-
ectly classify genes as MAE or BAE.

Software validation
In order to validate MaGIC software, we trained a mono-
allelic expression classifier using the same datasets as in
our previous studies [10, 11]. The datasets include
ChIP-seq H3K27me3 and H3K36me3 enrichment data for
the GM12878 human B-lymphoblastoid cell line [3] and a
list of 263 monoallelically expressed and 1024 biallelically
expressed genes identified in human B-lymphoblastoid
clonal cell lines [4]. We used precision and recall to assess
the classifiers performance, which are defined as the frac-
tion of correct MAE predictions among all genes pre-
dicted as MAE and the fraction of correct MAE
predictions over the total number of MAE genes in the
dataset, respectively.
MAE genes make up between 5 and 20% of expressed

genes in a given tissue, so these datasets are naturally
imbalanced. In order to avoid excessive numbers of false
positive calls due to this imbalance, we trained the
models to optimize the metric Kappa rather than accur-
acy, as Kappa accounts for imbalanced number of genes
belonging to each class in training data [9]. We trained
a total of 9 models, including a neural network, a sup-
port vector machine, a multi-layer perceptron, three
tree-based models, random forest, a K-Nearest Neigh-
bor model, and a generalized linear model (glm).
After the training step, all models were tested on an

additional human dataset with 253 MAE genes and 1127
BAE genes identified in monoclonal cell lines derived
from GM12878 (Dataset S2 from [10]).
Among all models tested, glm had the highest preci-

sion value and svm had the highest F1 score (Fig. 1b, c;
Additional file 1: Table S1). The choice between models
can be made using one of the performance metrics, de-
pending on the purpose of the analysis. We generally
recommend to use the F1 score, which is a balanced
metric calculated as a harmonic mean of precision and
recall. The precision score is superior if the user wants
to have the lowest number of false positives possible
e.g., in identifying high-confidence MAE genes. These
gene lists can be further used to design experiments
aimed at studying MAE genes’ properties. However, it
should be noted that high precision values come at the
expense of recall or general coverage of the dataset as
the classifier misses a significant portion of MAE genes
in the sample via false negative predictions. The F1
score is useful if the user is performing genome-wide
analysis and wants a higher coverage of MAE genes. In
both cases, further experimental validation is recom-
mended, but the initial lists of MAE genes are a good
starting point for guiding experimental design and ex-
ploratory analysis.
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The generalized linear model is packaged along with the
MaGIC software. It was also evaluated on mouse
B-lymphoid clonal cell lines, mouse fibroblasts and mouse
neural progenitor cells (data from Nag et al., 2015 [11],
Tables S2 and Table S3 and it performed similarly to the
classifier from Nag et al., 2015 [11] (Additional file 2:
Table S2). The classifier performance on the mouse data-
sets tested is still low compared to the human datasets
(the precision is 0.56–0.65 and the recall is 0.08–0.45,de-
pending on the cell type), but this may be caused by dis-
crepancy in the quality of the data rather than profound
differences in MAE chromatin signature between the two
species, as previously discussed [11]. In particular, due to
the limited number of clones assessed and differences ori-
ginating in the derivation process of the F1 genetic back-
ground, the GLM’s performance metrics provide a
lower-bound estimate of the potential accuracy in poly-
clonal cell populations. Using more histone marks data
originating from high-quality ChIP-seq experiments and
getting matching training data from a bigger number of
clones would potentially increase the performance of the
classifiers and allow for more precise predictions of MAE
genes in the mouse.

Conclusion
The MaGIC toolset builds on our previously reported
MAE chromatin signature classifier in two important
ways. It enhances the previously published method using
open source tools in a platform-independent running
environment with clear documentation. Additionally, the
new toolset can generate models using new data and
automatically assess the models’ performance. As epige-
nomic data is becoming increasingly available in many
cell and tissue types, we believe the versatility of the
MaGIC toolset will prove invaluable to investigate
MAE’s mechanisms, function, and contribution to
disease.

Availability and requirements
Project home page: https://github.com/gimelbrantlab/
magic
Operating system(s): Platform independent,

browser-based.
Programming language: R.
Other requirements: Modern web browser, Docker if

ran as a Docker container.
License: MIT License.
Any restrictions to use by non-academics: none.

Additional files

Additional file 1 Table S1. Models’ performances evaluated on an
additional human dataset, with MAE and BAE genes identified in
monoclonal cell lines derived from GM12878 ([10], Dataset S2). (PDF 26 kb)

Additional file 2 Table S2. The generalized linear model performance
evaluated on mouse B-lymphoid clonal cell lines (B-lymph), mouse
embryonic fibroblasts (MEF) and mouse neural progenitor cells (NPC).
(PDF 310 kb)
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