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Abstract

Background: Bacterial surfaces are complex systems, constructed from membranes, peptidoglycan and,
importantly, proteins. The proteins play crucial roles as critical regulators of how the bacterium interacts with and
survive in its environment. A full catalog of the motifs in protein families and their relative conservation grade is a
prerequisite to target the protein-protein interaction that bacterial surface protein makes to host proteins.

Results: In this paper, we propose a greedy approach to identify conserved motifs in large sequence families
iteratively. Each iteration discovers a motif de novo and masks all occurrences of that motif. Remaining unmasked
sequences are subjected to the next round of motif detection until no more significant motifs can be found. We
demonstrate the utility of the method through the construction of a proteome-wide motif repository for Group A
Streptococcus (GAS), a significant human pathogen. GAS produce numerous surface proteins that interact with over
100 human plasma proteins, helping the bacteria to evade the host immune response. We used the repository to find
that proteins part of the bacterial surface has motif architectures that differ from intracellular proteins.

Conclusions: We elucidate that the M protein, a coiled-coil homodimer that extends over 500 A from the cell wall,
has a motif architecture that differs between various GAS strains. As the M protein is known to bind a variety of
different plasma proteins, the results indicate that the different motif architectures are responsible for the quantitative
differences of plasma proteins that various strains bind. The speed and applicability of the method enable its
application to all major human pathogens.
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Background
The rise of antibiotics resistant bacteria poses a major
global health issue predicted to cause 10 million deaths
per year in 2050, more than heart disease and cancer com-
bined [1]. The increasing resistance to antibiotics necessi-
tates the development of alternative treatment strategies.
One promising alternative treatment strategy includes the
disruption of protein binding interfaces between bacteria
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and human proteins to disarm bacterial defense systems
[2]. Such strategies require high-confident identification
of sequence motifs that correspond to a structural unit
that are necessary for protein folding or binding of ligands
and other proteins.

Motifs are short segments of a protein sequence which
shows a level of conservation throughout a protein fam-
ily and beyond. Conserved motifs can be extracted from
multiple sequence alignment of proteins with similar
functions in different species. While finding such motifs
can provide insights for prediction of functional residues,
identifying and understanding them is fundamental to
discovering binding interfaces in protein complexes [3].
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Fig. 1 The pseudo-algorithm of de novo motif discovery approach

It is generally believed that the binding interfaces form-
ing interactions to help bacteria evade the immune system
or to obtain nutrients are comparatively more conserved
compared to interactions that are benefiting the host,
such as surface exposed epitope. Over time, this results in
segments of exposed proteins that are significantly more
conserved for functional reasons.

Disrupting the protein-protein interactions by target-
ing the conserved segments would potentially facilitate
the host immune response [4–6]. However, the high vari-
ability of bacterial surface proteins makes it challenging
to study them with traditional sequence analysis meth-
ods. InterPro for example [7] contains motifs for the
anchor and the signal peptide whereas the rest of the
protein sequence remains largely unannotated. Multiple-
sequence alignment algorithms typically run into prob-
lems with the variable number of repeats and tends to
produce highly gapped alignments. The rapid growth of
known bacterial protein sequences presents an opportu-
nity to identify protein-family specific motifs (in contrast
to Interpro that attempts to find motifs common to mul-
tiple families).

Group A streptococcus (GAS) is one of the most impor-
tant bacterial pathogens causing over 700 million mild
infections such as tonsillitis, impetigo and erysipelas and,
occasionally, severe invasive infections including sepsis,
meningitis or necrotizing fasciitis with mortality rates
up to 25% [8]. Surface proteins play important roles

in the interaction with host proteins [9]. Several bac-
terial surface proteins interact with numerous of host
proteins, forming complex protein-protein interaction
networks.

One of the key surface proteins of S. pyogenes is the M
protein, a coiled-coil homodimer that extends over 500 Å
from the cell wall. The M protein is capable of binding
several plasma proteins such as fibrinogen [6] and albu-
min [10, 11]. A crystal structure of M and fibrinogen was
published in 2011 demonstrates that the M and fibrino-
gen form a cross-like complex structure. Further, the M
protein is composed of several repeats that are present
a variable number of times; some of these repeats over-
lap with protein-protein interactions binding interfaces
[12–15]. Accordingly, a comprehensive repository of the
motifs in coiled-coil proteins and their relative conserva-
tion grade is a prerequisite to target the protein-protein
interaction that bacterial surface protein makes to host
proteins [16].

Here, we present a strategy to iteratively iden-
tify protein-family specific motifs from large genome
resources, then mask all occurrences of these motifs until
no more significant motifs can be found. We applied this
strategy to a GAS strain as a model system. We con-
structed a compendium of almost 60000 motifs for GAS.
Further, we demonstrate the power of the approach using
the M protein and describe the motif resource in general
terms.
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Methods
Outline of the algorithm
The algorithm starts with a database of protein sequence
families and sub-selects a user-defined number (here 100)
of sequences for each family containing more than 100
sequences as shown in the pseudocode in Fig. 1. The main
part of the algorithm finds the first motif in a sequence
and mask all identified occurrences, then remove them
from the sequence and produce one new sequence for
each occurrence in the second iteration. After finishing
this loop, all identified motifs are stored in the main repos-
itory and followed by architectural analysis by considering
the occurrences of each motif in the entire genome and
by computing the internal overlaps of that motif inside the
family as well. In the last step, the results will be com-
pared with InterPro to find common overlapping motifs
to report and the new ones for further analysis. All the
results as well as the main repository of all discovered
motifs are stored and available in a SQLite table. SQLite
is an embedded SQL database engine that implements a
transactional SQL database engine. The code for SQLite
is in the public domain and free for use.

Construction of protein families
We selected a representative genome from an invasive M1 S.
pyogenes isolated in Ontario, Canada. This sample is
available with id 293653.4 from PatricBRC, the bacterial
bioinformatics resource database [17]. This genome has
1931 coding sequences (CDS). We downloaded additional
70459 genomes from PatricBRC. This number here refers
to the number of genomes available at PatricBRC that
had both an .ffa protein fasta file and .cds files that con-
tains a table which links the PatricBRC sequence accession
number to the FigFam ID [18]. We used this resource to
build one protein fasta file per FigFam ID filtering out
duplicate entries. We constructed 1564 FIGfams fami-
lies containing a total of 9,041,083 protein sequences of
which 3,817,065 were unique at the amino acid level. This
sequence resource was used as input to the workflow
outlined in Fig. 2.

MEME and FIMO
Figure 2 shows the general workflow of our approach,
where we make use of MEME [19, 20] and FIMO [21] in
the core part of the system to handle motif discovery and
masking the multiple occurrences of each motif on the
sequence. MEME is an open-source application which has
been widely used for sequence motif discovery and anal-
ysis in both DNA and proteins. It is based on GLAM2
algorithm [22] and enables covering of motifs containing
gaps. While MEME finds a single occurrence of a motif
in the sequence, FIMO is able to consider the MEME’s
output and define multiple occurrences for any individ-
ual gapped or un-gapped motifs. FIMO assign different

Fig. 2 The workflow of de novo motif discovery approach. All FIGfams
families were downloaded for a user-specified organism and get
through the core of the processing -MEME and FIMO- where all the
motifs are discovered and masked in an iterative process. A sqlite
repository stores all the motifs and motif architectures with required
information like organism name, FIGfams family name, the start and
stop points on the sequence and etc

scores for each matched sequence according to a dynamic
programming approach [23] and then motif-specific q-
values are computed based on a bootstrap procedure
[24]. FIMO’s outputs are considered according to their p-
values, and q-values make it possible to set a user-defined
thresholds to cover only specific motif occurrences.

InterPro
InterProScan [7] is a reference resource that provides
a functional analysis of protein sequences by classifying
them into families and predicting the presence of domains
and important sites. In order to achieve a general view
of the coverage of our approach, we compared the gen-
erated de novo based motif repository of GAS with all
GAS-related motifs in InterProScan.

Assigning proteins to cellular compartments
All proteins were assigned to one of seven compartments by
using information from mass spectrometry experiments,
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Fig. 3 Sub-selection test on two sample families. Two sample families are selected and analyzed by sub-selection test. The bubble graph indicates
that selection of 100 sequences has a good coverage while saving computational resources more than 20-fold

annotations from several databases followed by manual
curation. In short, we identified exposed, cell wall asso-
ciated and secreted protein using data from Karlsson
et al. [9]. Transmembrane proteins were identified using
TMHMM [25]. DNA associated protein and transcription
factors were identified using InterPro [7] and RegPrecise
[26]. All other proteins were assigned to the intracellular
compartment.

Software availability
MEME and FIMO 4.11.1 was used through out the
project. The workflow is implemented in GC3pie [27]
which makes it possible to parallelize over all available
computational cores. All parts of the workflow are written
in Python 2.7 and is wrapped by applicake, an open-
source and free framework useful when designing work-
flows. The workflow is available through a singularity
container [28] and the container together with the data
and an ipython notebook contains instructions and exam-
ples to parse the data are provided online with this DOI:
10.5281/zenodo.1403142.

Results
Sub-selection
We analyzed a large sequence database of all GAS proteins
containing 1564 FIGfams sequence families as outlined
in the Methods section. The FIGfams contain a different

number of sequences. This begs the question whether a
subset of them would be sufficient to cover most of the
motifs. We designed a general sub-selection test to reduce
the number of sequences due to computational resource
reasons. The sub-selection considers two different fami-
lies and select a set of 2, 10, 20, 50, 100, 250, 500, and
1000 sequences randomly and repeat the whole analysis
for 10 times. In each sub-selection test, we ran the work-
flow to find all the motifs, and we made an average of
motif-coverage between all 10 repeats. Figure 3 demon-

Table 1 Comparison of sub-selection test between different
families with different number of selected sequences

Num of sequences Coverage Computational time

2 5% 1m

10 51% 5m

20 62% 10m

50 70% 15m

100 74% 30m

250 78% 2h

500 83% 5h

1000 90% 16h

> 2000 ∼ 100% > 2d

The number of sequences, the motif coverage in percentage (which is the average
of 10 repeated test) and the computational time on 1 CPU are shown
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Fig. 4 Two rounds (first to the left, second to the right) of the algorithm is displayed. It starts with a collection of sequences and then discovers
motifs in this collection using MEME. It uses FIMO to find additional occurrences of the motif within the sequence collection. In the second round,
the motifs are masked (gray bars) before MEME is applied once more. The algorithm iterates through round 3 to N until no more motifs are found, or
the sequence collection is fully annotated

strates that sub-selection of 100 sequences is sufficient to
cover the majority number of all motifs while reducing
time and computational resources more than 20-fold (see
Table 1).

MEME/FIMO
The workflow starts by entering the name of the desired
organism and the q-value cut-off (optional) which are the
only required inputs (Fig. 2). In the second phase, all

FIGfams protein families related to the input organism
are downloaded and stored in a database. Then, by con-
sidering the accessibility of computational resources, de
novo motif discovery on protein families starts. Figure 4
shows two sample runs of the algorithm where MEME is
applied to the sequence collection, restricting the num-
ber of identified motifs to one. Motif occurrences were
discovered in the sequence collection using FIMO, and
only occurrences with e-values of 1e-6 or lower were

Fig. 5 The auto-generated result of our approach on M1 protein. a: Binding interfaces of fibrinogen according to the reference crystal structure (PDB
id 2XNX). [6]. b: M1 domains proposed in [10]. c: The output results of our approach
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Table 2 Architectures identified for M1 protein

Architectures Support

1 m07:3 m01:1 m06:2 m05:1 1

2 m07:3 m01:2 m06:4 m05:1 1

3 m07:3 m01:3 m06:4 m05:0 1

4 m07:3 m01:4 m06:5 m05:1 1

5 m07:3 m01:2 m06:3 m05:1 2

6 m07:2 m01:3 m06:4 m05:1 2

7 m07:3 m01:3 m06:4 m05:1 10

Seven different motif architectures are identified with different level of supports.
The last one (most important one) supports by 10 proteins in the family. The table
also shows that motifs m07, m01, m06, and m05 are the most prevalent motifs in
M1 and also generally in M protein family

considered. The proteins were split using the number of
occurrences and remaining parts longer than ten amino
acids are carried forward to create a new merged sequence
collection, mixed with full-length and partial proteins.

The new sequence collection is used as the input for
each iterative round of MEME, FIMO, split until no more
significant motifs could be discovered, or all remaining
sub-sequence were below ten amino acids. All the motif
occurrences with corresponding features are stored in
an SQLite database. To give further information to the
user, known motifs are also integrated from [10] and the
InterPro database and visualized using pViz.js [29].

Protein M1 Motif discovery
As an example of application on specific protein family,
we collected a large sequence collection of M proteins
from four sources: PatricBRC, genomes we have pre-
viously sequenced and assembled [30], the M database
from CDC (Centers for Disease Control and prevention)
and the UniProtKB/TrEMBL database. Any M protein
sequence without motifs representing an anchor or a sig-
nal peptide was discarded, and the remaining sequences
were reduced to a 98% sequence identity using CD-HIT
[31]. In total, the algorithm ended after 18 rounds, result-
ing in 20 motifs from the M protein sequence collection.
The SF370 M1 protein reference [32] contained motifs
m01-m03, m05-m08, m11-m14, m16-m17 but not m04,
m09-10, m15, and m18-20. Additional file 1 contains the
logo of all discovered motifs.

Figure 5 shows the general motif architecture as the
output of the algorithm. Note that an architecture (motif
pattern) shows the distribution of motifs over the entire
protein family. By considering such representation, it is
possible to show the general motif pattern that most of
the proteins in the family follow. So, the architectural
motif view helps to find potential protein-protein inter-
action binding sites as the majority member of the family
desire to follow such pattern. Accordingly, we found a total

of 123 motif architectures, and of these, 85% (104) are
associated with a single serotype.

Here in M protein, architecture [m01:3, m02:1, m03:1,
m05:1, m06:4, m07:3, m08:1, m11:1, m12:1, m14:1, m16:1,
m17:1] is the architecture that exists in several serotypes
(emm52, emm23, emm16, emm83, emm10). For the M1
proteins, we identified seven motif architectures (Table 2).
For emm1 in Fig. 5, we see that m08 and m02 are the first
and second part of the YSIRK signal peptide. m03 largely
overlap with the anchor region. m01 and m06 correspond
to the C repeats, m07 overlaps with the B repeats although
we fail to identify the second and third B-domain. m13
finds the S region and m14 overlap partly with the A
domain. The D domain is largely split into several motifs -
m12, m18 followed by m05.

Analysis of conserved motif in GAS genome
We evaluated identified motifs separately based on pro-
tein families in different cellular compartments (Table 3).
The main idea is to provide a general comparison between
protein families in different cellular compartments in
terms of motif-based conservation grade which helps to
discover the general evolutionary pressure on cellular
compartments and further distinguishing potential drug
targets inside and outside the cell. To do that, one should
consider the fact that the number of motifs in each com-
partment is a function of sequence length and the average
is dependent on sequence variability. Such dependency
affects the comparison between different protein fami-
lies led to results that are biased against sequence length.
To address these issues, we represent motif architecture
per sequence and most importantly per family. Accord-
ingly, each protein or its related family can have one or
several architectures based on motif variability on that
family. Consequently, protein families with few architec-
tures indicates higher sequence conservation inside the
family and generally shows that the family has more con-
served motifs to do special cellular functions. In this way,
by comparing the number of architecture in two different
protein families, it is possible to state which family is more
conserved.

Table 3 Protein characterization in different cellular
compartments

Compartments Number of sequences

0 DNA 104

1 Exposed 40

2 Intracellular 1172

3 Secreted 52

4 Transcription factor 71

5 Transmembrane 217

6 Cell wall 130
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Table 4 Comprehensive comparison based on number of motifs per sequence and architecture in different cellular compartments

Compartments cds Unique sequences Motifs Motifs/sequences Sequences/architectures

DNA 96 22 86 3.91 9.04

Exposed 97 17 92 5.41 6.70

Intracellular 2116 304 1273 4.19 6.94

Secreted 204 23 193 8.40 4.65

Transcription factor (TF) 208 35 127 3.63 7.15

Transmembrane (TM) 714 75 601 8.01 4.55

Cell wall 407 60 284 4.73 6.69

As shown in Table 4, most variable proteins in GAS are
transmembrane and secreted proteins which are less con-
served and have a more diversified interaction with host
proteins. Most conserved proteins are DNA-related and
transcription factors together with intracellular proteins
that have special machinery roles inside the cell. Trans-
membrane proteins which play crucial role as the trans-
portation system on the bacterial surface are also more
evolved according to the evolutionary pressure. In general
as Fig. 6 indicates, we can conclude that the evolutionary
pressure is lower on intracellular proteins compared to the
surface and secreted proteins.

Comparison with InterPro
To compare our results to InterPro, we analyzed and fil-
tered motifs based on their signature from InterProScan

which revealed that 11996 distinct motifs related to GAS
are not recognized/discovered by InterProScan (71.15%
of all discovered motifs) while there are many important
motifs also in common (28.85%). Table 5 contains the
list of most commonly overlapping motifs with special
InterPro description which discovered by our approach.

Discussion
Conserved protein sequence domains, also referred to as
motifs, play an important role in protein function, pro-
tein structure and protein-protein interactions. Motifs are
the results of several evolutionary processes where, for
example, a part of a protein is evolving at a different rate
compared to other parts of the same protein. Identifying
motifs are fundamental to understanding protein function
and to discover putative binding interfaces.

Fig. 6 Motif-based architectural comparison between different cellular compartments. The bar-plot to the left shows the general comparison while
different cellular compartments are separated in a schematic cell view to the right. Transmembrane proteins (TM) and secreted proteins have the
least number of architecture per family. It shows that motif diversity in these compartments are high and changing by the time. In contrary
DNA-related proteins and Transcription Factors (TF) show more conserve motifs on their sequence with having the highest number of architecture
per family
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Table 5 The InterProScan results that are most commonly overlapping with a motif

Num interpro_ac Count Distinct motif Interpro description

0 None 58604 11996 None

1 IPR003439 9652 402 ABC transporter-like

2 IPR027417 6384 1187 P-loop containing nucleoside triphosphate hydr...

3 IPR003593 5060 446 AAA+ ATPase domain

4 IPR017871 1683 49 ABC transporter, conserved site

5 IPR000515 1131 178 ABC transporter type 1, transmembrane domain M...

6 IPR035906 835 204 MetI-like superfamily

7 IPR001789 750 62 Signal transduction response regulator, receiv...

8 IPR030679 498 155 ABC-type amino acid transport system, ATPase c...

9 IPR036188 392 153 FAD/NAD(P)-binding domain superfamily

10 IPR005670 356 98 Phosphate transport system permease protein 1

11 IPR036388 323 191 Winged helix-like DNA-binding domain superfamily

12 IPR036890 318 110 Histidine kinase/HSP90-like ATPase superfamily

13 IPR013785 316 274 Aldolase-type TIM barrel

14 IPR000524 307 17 Transcription regulator HTH, GntR

15 IPR003594 305 69 Histidine kinase/HSP90-like ATPase

16 IPR000843 299 22 LacI-type HTH domain

17 IPR002347 288 42 Short-chain dehydrogenase/reductase SDR

18 IPR036291 276 177 NAD(P)-binding domain superfamily

19 IPR000795 269 45 Transcription factor, GTP-binding domain

20 IPR017853 263 169 Glycoside hydrolase superfamily

21 IPR001650 237 68 Helicase, C-terminal

22 IPR014001 230 95 Helicase superfamily 1/2, ATP-binding domain

23 IPR029063 230 205 S-adenosyl-L-methionine-dependent methyltransf...

24 IPR001360 227 47 Glycoside hydrolase family 1

25 IPR036390 214 113 Winged helix DNA-binding domain superfamily

26 IPR006047 212 68 Glycosyl hydrolase, family 13, catalytic domain

27 IPR011006 209 77 CheY-like superfamily

28 IPR020846 206 92 Major facilitator superfamily domain

29 IPR001638 202 48 Solute-binding protein family 3/N-terminal do...

Motifs can both be used to shed light on the evolution-
ary process underpinning the development of a protein
family with respect to the protein’s function over time;
it can also be used to produce a simplified view on
the protein as a series of conserved motifs that together
specify a proteins motif architecture. Although several
approaches have been developed to address motif dis-
covery on protein sequences, most are either focused
on a given motif or finding motifs, such as signal pep-
tides, that can be found in a general population of protein
sequences.

Here, we developed a de novo motif discovery approach
and applied to protein families that share a common
ancestral protein; this resulted in a repository of motifs

over an entire organism. This approach is focused on
understanding the evolutionary processes that have acted
on that protein family in a comparatively short evolu-
tionary time. We developed and designed this approach
as a software package which is written in Python and
distributed via singularity containers [28] making it easy
to install and use. We demonstrated the approach on
GAS, an important human pathogen with a mortality
rate of 25% at invasive infections. We also characterized
the proteome-wide motif repository by comparing it to
InterPro; furthermore, we analyzed the motif architec-
ture for these proteins and discovered that the number of
sequence per architecture is different for different cellular
compartments.
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Given the speed and flexibility of our approach, we
believe it will be useful in breaking analyzing surface
protein of pathogens as these proteins are under high
selective pressure and therefore cannot be analyzed using
more traditional approaches such as multiple-sequence
alignments (MSAs). Our attempts to use various MSA
algorithms failed due to high sequence variability in
regions between motifs and the varying number of motifs.
Also, motif searching approaches failed and only iden-
tified a small subset of the motifs that our approach
discovered.

Conclusion
In this paper, we demonstrate a proof-of-principle
approach to parsing large sequence families into motifs
using a denovo-based greedy approach. This simple
approach can easily handle situations where parts of
proteins are repeated or re-arranged, and this can be
time-consuming using other approaches. While this gen-
eral approach can be applied to any bacteria, we used
GAS as a model system to make a comprehensive motif
repository of its proteins. We further analyzed M1 pro-
tein, one of the most important virulence factor of S.
pyogenes to show the motif-based architectural analy-
sis. We observe that we over-parse some domains, but
also observe that many of these large domains are only
partly conserved over the sequence collection. The result
indicates that many of the newly discovered motifs are
not always present together with adjacent motifs, indi-
cating that they might have different and independent
functions. Interestingly, many of our newly discovered
motifs are not found in any of the emm1 strains, and
some of these might be responsible for binding other
ligands.

Additional file

Additional file 1: Supplementary Table 1. The logo of all 20 motifs
obtained from our approach for M protein family is listed in a multi-page
table in the supplementary material. (PDF 1075 kb)
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